[go: up one dir, main page]

EP0178401A2 - Verfahren zur Anpassung eines Tunnelofens an unterschiedliche Leistungen sowie rechnergeführter Tunnelofen - Google Patents

Verfahren zur Anpassung eines Tunnelofens an unterschiedliche Leistungen sowie rechnergeführter Tunnelofen Download PDF

Info

Publication number
EP0178401A2
EP0178401A2 EP85109570A EP85109570A EP0178401A2 EP 0178401 A2 EP0178401 A2 EP 0178401A2 EP 85109570 A EP85109570 A EP 85109570A EP 85109570 A EP85109570 A EP 85109570A EP 0178401 A2 EP0178401 A2 EP 0178401A2
Authority
EP
European Patent Office
Prior art keywords
firing
tunnel
individual
tunnel furnace
process computer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP85109570A
Other languages
English (en)
French (fr)
Other versions
EP0178401A3 (de
Inventor
Wolfgang Dr.-Ing. Leisenberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0178401A2 publication Critical patent/EP0178401A2/de
Publication of EP0178401A3 publication Critical patent/EP0178401A3/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/30Details, accessories or equipment specially adapted for furnaces of these types
    • F27B9/40Arrangements of controlling or monitoring devices

Definitions

  • the invention relates to a method for adapting a tunnel kiln in the ceramic industry to different outputs and firing curves, and a computer-guided tunnel kiln for using this method.
  • the fired material passes through a stationary temperature profile and is treated according to a heating and cooling process specified by the fired material.
  • the temperature profile is currently kept constant by individual control loops in the area of the firing, heating and cooling zone.
  • mathematical models of furnace behavior are known, the energy and material flows being adapted to changing conditions by means of computers.
  • the conventional tunnel furnace having a permanently a certain temperature profile to the requirements of B race good only at a throughput rate and at a constant material meet. If the thrust speed is changed or a different firing material is used, the furnace firing curve must be readjusted manually. This means considerable personnel expenditure, which, however, is no longer economically viable. Therefore, most tunnel kilns have a temperature profile driven that requires as few changes to the tunnel furnace as possible; However, this does not, or only rarely, result in an economically and qualitatively optimal furnace operation.
  • Running a tunnel kiln according to a mathematical model is, however, very complex, since the static and dynamic behavior of the kiln is known and a high level of identification must be carried out as a result.
  • adaptive algorithms must ensure that the system constantly adapts to changing conditions and signs of wear. This in turn requires an extraordinarily high mathematical and computational effort, which is hardly justified in any case.
  • the control of the tunnel furnace should take place depending on the thrust speed of the material to be fired and its nature, so that an optimal adaptation can always be achieved.
  • the method for adapting a tunnel kiln in the ceramic industry to different capacities is characterized in that two or more sets of setpoints for the tunnel kiln are determined empirically for different kiln capacities that are as far apart as possible and are stored in a process computer that the for all other capacities of the tunnel kiln are stored in the process computer valid setpoints are determined by regression and that The material flows can be controlled via the controller of the tunnel furnace depending on the required output.
  • control the material flows in the heating and / or cooling zone of the tunnel oven by setting the temperature profile at one or more points and to record the temperature profile in the heating and / or cooling zone of the tunnel oven using optical pyrometers.
  • the change in temperature of the setpoints depending on the thrust speed of the material to be burned should also be applied to all individual firing curves.
  • the stocking weight of the firing material in the parameters for the individual treatment of individual batches and to evaluate them in such a way that a control function is superimposed on the air volume control loops in the heating zone and / or the cooling zone of the tunnel oven, by means of which one can be determined empirically Characteristic curve, the air volume flows can be set depending on the material flow of the firing material which can be determined from the pushing speed and the weight of the stock. It is also advisable to guide the individual kiln cars transporting the firing material through the tunnel kiln according to an individual firing curve that accompanies them.
  • the computer-guided tunnel kiln for the application of this method is characterized in that information about the required firing curve is fed to the process computer for each fired item introduced into the tunnel kiln, that the process computer receives a program for tracking the individual batches, and that the process computer about the controllers the target values of the tunnel kiln Set the temperature for the individual positions according to the firing curve that applies to the firing material in the respective position.
  • the temperature change in the target values should g by means of the process computer in dependence on the Schubgeschwindi ness of the combustible material in magnitude to all individual firing curves are transmitted.
  • the stocking weight of the material to be fired should be included in the parameters for the individual treatment of individual batches and evaluated in the process computer in such a way that a control function is superimposed on the air volume control loops in the heating zone and / or the cooling zone of the tunnel kiln, by means of which empirically Ascertainable characteristic curve, the air volume flows can be set as a function of the material flow of the firing material which can be determined from the pushing speed and the stocking weight.
  • the method according to the invention for adapting a tunnel furnace in the ceramic industry to different outputs and firing curves, as well as the computer-guided tunnel furnace for using this method thus make it possible to achieve extensive adaptation of the tunnel furnace to different operating states with relatively little effort in identification and computing.
  • the two variables thrust speed and material type intervene differently in the control.
  • the pushing speed of the fired material affects both the heating and cooling zone and the fire zone of the tunnel kiln. These three areas are different in terms of control technology.
  • the heating and cooling zone are in principle countercurrent heat exchangers. The air flow gives off energy to the stock in the heating zone and is heated by it in the cooling zone.
  • the local temperatures in the heating and cooling zone change with the throughput with the same air / brick ratio and the same temperature profile on the firing material. This means that the temperature setpoints for the individual furnace zones change depending on the throughput according to an unknown and theoretically difficult to grasp function.
  • the method according to the invention is now based on an empirical identification, which in the simplest case can consist in experimentally setting the furnace to optimal setpoints at very low power and doing the same at very high power. These setpoints are entered into the process computer and this interpolates linearly for all furnace outputs in between. Depending on the desired effectiveness, the method can be operated with two or any number of setpoint value sets . Non - linear regression is possible from three sets, the accuracy of which increases with the number of reference points.
  • the invention further consists in that the process computer for each kiln car or for each batch is informed before entering the tunnel kiln by entering correspondingly coded information with which firing curve and with which reduction atmosphere the firing material is to be treated.
  • the computer is able to determine at which position of the furnace which firing material is located by recording the firing stock flow.
  • the firing curves also stored in the process computer can also be used to determine which temperature setpoint is required for a specific furnace position in the preselected firing curve. This setpoint is given to the temperature controller integrated in the process computer and this sets the required temperature by comparison with the prevailing actual temperature. In principle, this means that the firing curve can be adapted to the conditions required by the material without any human effort, up to the extreme case that each kiln car is treated with a different firing curve, which runs through the furnace with it to a certain extent.
  • waiting times can be entered until the corresponding setpoints are actually reached or at least within a predetermined tolerance.
  • both changes in performance and the type of material are required, so that both adaptation methods must interact.
  • the change in output for different types of material can be detected by at least approximately assuming that the temperature drop is the same for different products when the service life is extended.
  • the determined temperature reduction depending on the thrust speed can be applied to all entered firing curves. This applies equally well to the changes in the setpoints in the heating and cooling areas. A multi-dimensional adjustment does not seem justified in view of the considerable increase in identification effort and the relatively low benefit for the quality of the product.
  • an upper firing curve 11 for a high power and a lower firing curve 12 for a low power are recorded over the path length S of a tunnel furnace 1 having a heating zone a, a firing zone b and a cooling zone c, which thus include an interpolation area 13.
  • arrows 2 and 3 indicate the material to be fired and the temperature.
  • the arrows 4, 5, 6 and 7 represent material flows, namely the arrow 4 the flue gas, the arrows 5 the fuel addition, the arrow 6 the lintel cooling and the arrow 7 the suction.
  • the values The upper and lower firing curves 11 and 12 have been empirically determined by setting the tunnel kiln 1 to optimal setpoints at high and low power. The target values determined by such an empirical identification are entered in a process computer 25.
  • the measured values 22 of individual measuring points 21 are fed to a controller 23 which is connected to the process computer 25 or is contained therein.
  • the firing curves stored in it can thus be used to determine which temperature setpoint is required for the given firing curve. This setpoint is set by comparison with the prevailing temperature using an integrated temperature selector 24.
  • the process computer 25 is able to determine at which point in the tunnel kiln 1 which firing material is located. Before entering the tunnel kiln 1, this was communicated to each tunnel kiln car by entering correspondingly coded information. It is therefore possible to run the firing curve selected for its stock through the tunnel kiln with a tunnel kiln car.
  • FIG. 3 This is shown in FIG. 3 for the combustion zone b of the tunnel kiln 1.
  • the target profile of a running firing curve, designated 34 is provided, while the stocking of the tunnel kiln cars 32 and 33, in contrast, is to be subjected to a temperature profile in the firing zone b which is characterized by the 35 or 36 designated target profiles is marked.
  • a temperature according to the firing curve 34 is thus set with the aid of the process computer 25 over the whole of the firing zone b, the stocking of the tunnel kiln cars 32 and 33, on the other hand, is subjected to a temperature, the course of which is determined by the firing curves 35 and 36 is specified. This results in an actual profile of a firing curve, which is denoted by 35, composed of the individual values in the firing zone b.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Tunnel Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

Um einen Tunnelofen (1) der keramischen Industrie an unterschiedliche Leistungen und Brennkurven anzupassen, werden zwei oder mehrere Sollwertsätze (Brennkurven 11, 12) des Tunnelofens (1) bei uinterschiedlichen möglichst weit auseinanderliegenden Ofenleistungen empirisch ermittelt und in einem Prozeßrechner gespeichert. Ferner werden in dem Prozeßrechner die für alle weiteren Leistungen des Tunnelofens gültigen Sollwerte durch Regression ermittelt und über die Regler des Tunnelofens werden in Abhängigkeit von der geforderten Leistung die Stoffströme gesteuert. Auf diese Weise ist es möglich, mit geringem Identifikationsund Rechneraufwand eine weitgehende Anpassung des Tunnelofens an unterschiedliche Betriebszustände zu erreichen. Die Steuerung des Tunnelofens erfolgt somit in Abhängigkeit von der Schubgeschwindigkeit des Brenngutes und dessen Beschaffenheit, so daß stets eine optimale Anpassung zu erzielen ist.

Description

  • Die Erfindung bezieht sich auf ein Verfahren zur Anpassung eines Tunnelofens der keramischen Industrie an unterschiedliche Leistungen und Brennkurven sowie einen rechnergeführten Tunnelofen zur Anwendung dieses Verfahrens.
  • In einem Tunnelofen durchläuft das Brenngut ein stationäres Temperaturprofil und wird dabei nach einem durch das Brenngut vorgegebenen Aufheiz- und Kühlverlauf behandelt. Zur Zeit wird das Temperaturprofil durch einzelne Regelkreise im Bereich der Brenn-, Aufheiz- und Kühlzone konstant gehalten. Darüber hinaus sind mathematische Modelle des Ofenverhaltens bekannt, wobei durch Rechner die Energie- und Stoffströme an sich ändernde Verhältnisse angepaßt werden.
  • Der herkömmliche Tunnelofen mit fest bestimmtem Temperaturprofil wird den Anforderungen des Brenngutes nur bei einer Durchlaufgeschwindigkeit und bei gleichbleibendem Material gerecht. Wird die Schubgeschwindigkeit geändert oder ein anderes Brenngut verwendet, so muß die Ofenbrennkurve manuell nachgestellt werden. Dies bedeutet erheblichen personellen Aufwand, der jedoch wirtschaftlich nicht mehr tragbar ist. Daher werden die meisten Tunnelöfen mit einem Temperaturprofil gefahren, das möglichst wenig Veränderungen am Tunnelofen erfordert; damit ist jedoch nicht oder nur selten ein wirtschaftlich und qualitativ optimaler Ofenbetrieb gegeben.
  • Einen Tunnelofen nach einem mathematischen Modell zu führen, ist jedoch sehr aufwendig, da das statische und dynamische Verhalten des Ofens bekannt sein und dadurch ein hoher Identifikationsaufwand getrieben werden muß. Darüber hinaus muß durch adaptive Algorithmen dafür gesorgt werden, daß sich das System an wechselnde Bedingungen und Verschleißerscheinungen ständig erneut anpaßt. Dies wiederum erfordert einen außerordentlich hohen mathematischen und rechnertechnischen Aufwand, der in kaum einem Fall gerechtfertigt ist.
  • Es ist daher Aufgabe der Erfindung, ein Verfahren zur Anpassung eines Tunnelofens der keramischen Industrie an unterschiedliche Leistungen und Brennkurven sowie einen rechnergeführten Tunnelofen zur Anwendung dieses Verfahrens zu schaffen, die es ermöglichen, mit geringem Identifikations- und Rechneraufwand eine weitgehende Anpassung des Tunnelofens an unterschiedliche Betriebszustände zu erreichen. Die Steuerung des Tunnelofens soll hierbei in Abhängigkeit von der Schubgeschwindigkeit des Brenngutes und dessen Beschaffenheit erfolgen, so daß stets eine optimale Anpassung zu erzielen ist.
  • Das Verfahren zur Anpassung eines Tunnelofens der keramischen Industrie an unterschiedliche Leistungen ist dadurch gekennzeichnet, daß zwei oder mehrere Sollwertsätze des Tunnelofens bei unterschiedlichen, möglichst weit auseinanderliegenden Ofenleistungen empirisch ermittelt und in einem Prozeßrechner gespeichert werden, daß in dem Prozeßrechner die für alle weiteren Leistungen des Tunnelofens gültigen Sollwerte durch Regression ermittelt werden und daß über die Regler des Tunnelofens in Abhängigkeit von der geforderten Leistung die Stoffströme gesteuert werden.
  • Zweckmäßig ist es hierbei, die Steuerung der Stoffströme in der Aufheiz- und/oder Kühlzone des Tunnelofens über die Einstellung des Temperaturverlaufs an einer oder mehreren Stellen vorzunehmen und den Temperaturverlauf in der Aufheiz- und/oder Kühlzone des Tunnelofens mittels optischer Pyrometer zu erfassen. Bei unterschiedlichen Brennkurven sollte ferner die Temperaturänderung der Sollwerte in Abhängigkeit von der Schubgeschwindigkeit des Brenngutes dem Betrage nach auf alle individuellen Brennkurven angewandt werden.
  • Vorteilhaft ist es des weiteren, in die Parameter für die individuelle Behandlung einzelner Chargen das Besatzgewicht des Brenngutes einzubeziehen und in der Weise auszuwerten, daß den Luftmengenregelkreisen in der Aufheizzone und/oder der Kühlzone des Tunnelofens eine Steuerungsfunktion überlagert wird, mittels der nach einer empirisch ermittelbaren Kennlinie die Luftmengenströme in Abhängigkeit von dem aus Schubgeschwindigkeit und Besatzgewicht bestimmbaren Materialstrom des Brenngutes einstellbar sind. FAngebracht ist es auch, die einzelnen das Brenngut transportierenden Ofenwagen nach einer individuellen diese begleitenden Brennkurve durch den Tunnelofen zu führen.
  • Der rechnergeführte Tunnelofen zur Anwendung dieses Verfahrens ist dadurch gekennzeichnet, daß mittels Codierungen dem Prozeßrechner für jedes in den Tunnelofen eingebrachte Brenngut eine Information über die geforderte Brennkurve zugeführt wird, daß der Prozeßrechner ein Programm zur Verfolgung der einzelnen Chargen erhält und daß der Prozeßrechner über die Regler des Tunnelofens die Sollwerte der Temperatur für die einzelnen Positionen entsprechend der vorgebenen Brennkurve einstellt, die für das in der jeweiligen Position befindliche Brenngut gültig ist.
  • Hierbei ist es angebracht, den Transport des Brenngutes im Tunnelofen mittels des Prozeßrechners derart zu steuern, daß dieser den Weitertransport erst freigibt, sobald alle oder ein spezifizierender Anteil der Regelgrößen innerhalb vorgegebener Toleranzen im Bereich des Sollwertes liegen und für den Bereich der Aufheizzone und/oder der Kühlzone mittels des Prozeßrechners einen Mittelwert der geforderten Temperaturen als Sollwert vorzugeben.
  • Bei unterschiedlichen Brennkurven sollten ebenfalls die Temperaturänderung der Sollwerte mittels des Prozeßrechners in Abhängigkeit von der Schubgeschwindigkeit des Brenngutes dem Betrage nach auf alle individuellen Brennkurven übertragen werden.
  • Des weiteren sollten in die Parameter für die individuelle Behandlung einzelner Chargen das Besatzgewicht des Brenngutes einbezogen und in dem Prozeßrechner in der Weise ausgewertet werden, daß den Luftmengenregelkreisen in der Aufheizzone und/oder der Kühlzone des Tunnelofens eine Steuerfunktion überlagert wird, mittels der nach einer empirisch ermittelbaren Kennlinie die Luftmengenströme in Abhängigkeit von dem aus Schubgeschwindigkeit und Besatzgewicht bestimmbaren Materialstrom des Brenngutes einstellbar sind.
  • Sehr vorteilhaft ist es ferner, den Prozeßrechner derart zu steuern, daß die einzelnen den Besatz tragenden Ofenwagen nach einer individuellen diese begleitenden Brennkurve durch den Tunnelofen hindurchführbar sind.
  • Das erfindungsgemäße Verfahren zur Anpassung eines Tunnelofens der keramischen Industrie an unterschiedliche Leistungen und Brennkurven sowie der rechnergeführte Tunnelofen zur Anwendung dieses Verfahrens ermöglichen es somit mit relativ geringem Identifikations- und Rechneraufwand, eine weitgehende Anpassung des Tunnelofens an unterschiedliche Betriebszu .. stände zu erreichen. Dabei greifen die beiden Variablen Schubgeschwindigkeit und Materialart unterschiedlich in die Steuerung ein.
  • Die Schubgeschwindigkeit des Brenngutes hat sowohl Wirkungen auf die Aufheiz- und Kühlzone als auch auf die Feuerzone des Tunnelofens. Diese drei Bereiche sind steuerungstechnisch wiederum unterschiedlich geartet. Aufheiz-und Kühlzone stellen prinzipiell Gegenstromwärmetauscher dar. Der Luftstrom gibt in der Aufheizzone Energie an den Besatz ab und wird in der Kühlzone durch diesen aufgeheizt.
  • Um eine bestimmte Aufheizgeschwindigkeit, die vom Material vorgegeben ist, zu erreichen, muß ein bestimmtes Verhältnis der Stoffströme eingehalten werden. Dieses Luft/Brenngutverhältnis wirkt sich auf den Temperaturverlauf in Aufheiz-und Kühlzone aus und kann über die Temperaturen der Luft bzw. des Brenngutes gesteuert werden. Hierbei wird zweckmäßigerweise die Gutstemperatur durch optische Pyrometer direkt und nicht die Lufttemperatur gemessen, da die Temperaturdifferenz zwischen Luft und Brenngut leistungsabhängig ist und die Lufttemperatur damit nur näherungsweise die für den Vorgang entscheidende Brennguttemperatur wiedergibt.
  • Da der Wärmetauschvorgang innerhalb der Aufheiz- und Kühlzone nicht gleichmäßig verläuft, ändern sich bei gleichem Luft/Ziegelverhältnis und gleichem Temperaturverlauf am Brenngut die örtlichen Temperaturen in der Aufheiz- und Kühlzone mit der Durchsatzleistung. Das bedeutet, daß sich die Temperatursollwerte für die einzelnen Ofenzonen in Abhängigkeit von der Durchsatzleistung nach einer unbekannten und theoretisch schwer erfaßbaren Funktion ändern.
  • Ein ähnliches gilt für die Temperatursollwerte der Regelkreise in der Feuerzone, wo bei langsamerer Schubzeit das Feuer durch Temperaturabsenkung einzelner Zonen verkürzt bzw. die Garbrandtemperatur bei gleicher Feuerlänge abgesenkt werden kann. Auch hier ist eine theoretische Berechnung außerordentlich schwierig.
  • Das erfindungsgemäße Verfahren geht nun von einer empirischen Identifikation aus, die im einfachsten Fall darin bestehen kann, daß der Ofen bei sehr niedriger Leistung experimentell auf optimale Sollwerte eingestellt wird und das gleiche bei sehr hoher Leistung vorgenommen wird. Diese Sollwertsätze werden dem Prozeßrechner eingegeben und dieser interpoliert linear für alle dazwischen liegenden Ofenleistungen. Das Verfahren kann je nach gewünschter Effektivität mit zwei oder beliebig vielen Sollwertsätzen betrie- ben werden, wobei ab drei Sätzen eine nichtlineare Regression möglich ist, deren Genauigkeit mit der Zahl der Stützpunkte steigt.
  • Neben der Tatsache, daß sich das empirische Modell der Sollwertabhängigkeit auf reale Ofenzustände bezieht und damit niemals zu unzulässigen Ofenzuständen führen kann, ist der Identifikationsaufwand beliebig wählbar und im Falle der linearen Interpolation nicht größer als bei einer herkömmlichen Inbetriebnahme. Darüber hinaus kann bei Änderungen des Ofenverhaltens ebenso einfach eine Nachjustierung vorgenommen werden.
  • Die Erfindung besteht weiterhin darin, daß dem Prozeßrechner für jeden Ofenwagen bzw. für jede Charge vor Eintritt in den Tunnelofen durch Eingabe von entsprechend codierten Informationen mitgeteilt wird, mit welcher Brennkurve und mit welcher Reduktionsatmosphäre das Brenngut behandelt werden soll. Durch Erfassung des Brenngutvorlaufs ist der Rechner in der Lage, festzustellen, an welcher Position des Ofens sich welches Brenngut befindet. Durch die ebenfalls im Prozeßrechner gespeicherten Brennkurven kann weiterhin festgestellt werden, welchen Temperatursollwert für eine bestimmte Ofenposition bei der vorgewählten Brennkurve gefordert ist. Dieser Sollwert wird dem im Prozeßrechner integrierten Temperaturregler vorgegeben und dieser stellt die geforderte Temperatur durch Vergleich mit der herrschenden Isttemperatur ein. Dadurch kann prinzipiell ohne personellen Aufwand die Brennkurve an die vom Material geforderten Bedingungen angepaßt werden bis hin zum Extremfall, daß jeder Ofenwagen mit einer anderen Brennkurve behandelt wird, die gewissermaßen mit ihm durch den Ofen hindurch läuft.
  • Bei stark wechselnden Temperaturen kann man Wartezeiten einlegen, bis die entsprechenden Sollwerte tatsächlich erreicht oder zumindest innerhalb einer vorgegebenen Toleranz sind.
  • Dies wiederum ermöglicht eine Selbststeuerung der Schubgeschwindigkeit dadurch, daß jeweils das Signal zum Weitertransport des Brenngutes erst gegeben wird, sobald alle oder eine bestimmte Anzahl von Regelkreisen innerhalb der Sollwerttoleranzen liegen. Auf diese Weise kann der Tunnelofen leistungsoptimal bei vorgegebener Brennkurve gefahren werden.
  • Im normalen Betrieb eines Tunnelofens sind sowohl Änderungen der Leistung als auch der Materialart erforderlich, so daß beide Adaptionsverfahren ineinanderwirken müssen. In der Brennzone kann die Änderung der Leistung für verschiedene Materialarten dadurch erfaßt werden, daß man zumindest näherungsweise davon ausgehen kann, daß die Temperaturabsenkung bei Verlängerung der Standzeit für verschiedene Produkte gleich ist. Insofern kann unabhängig von der individuellen Brennkurve die ermittelte Temperaturabsenkung in Abhängigkeit von der Schubgeschwindigkeit dem Betrage nach auf alle eingegebenen Brennkurven angewandt werden. Dies gilt mit ebenso guter Näherung auch für die Änderungen der Sollwerte im Aufheiz- und Kühlbereich. Eine mehrdimensionale Anpassung erscheint im Hinblick auf die erhebliche Steigerung des Identifikationsaufwandes und dem relativ geringen Nutzen für die Qualität des Produktes nicht gerechtfertigt.
  • Bei Kenntnis und Eingabe bzw, Erfassung des Besatzgewichtes können die Luftmengen in Aufheiz- und Kühlzone durch Ermittlung des mittleren Massestromes innerhalb der betrachteten und für einen Luftvolumenstrom gültigen Bereiches erfaßt und dieser im feed-forward-Prinzip angepaßt werden. Diese Steuerfunktion sollte jedoch den Luftmengenregelkreis nicht ersetzen, sondern ihn lediglich überlagern. Dadurch muß die Steuerfunktion nur näherungsweise und mit entsprechend geringem Identifikationsaufwand bestimmt werden, da eine mögliche Fehlanpassung durch den überlagerten Regelkreis korrigiert wird.
  • In der Zeichnung ist die erfindungsgemäße Verfahrensweise zur Anpassung eines Tunnelofens an unterschiedliche Leistungen in Form von Diagrammen dargestellt. Hierbei zeigen:
    • Fig. 1 den oberen und unteren Temperaturverlauf in den einzelnen Zonen eines Tunnelofens,
    • Fig. 2 das Prinzip eines rechnergeführten Tunnelofens mit einer Brennkurve aus dem Interpolationsbereich der in Figur 1 dargestellten Brennkurven und
    • Fig. 3 das Istprofil einer Brennkurve in der Brennzone eines Tunnelofens sowie drei Sollprofile als mitlaufende Brennkurven für das Brenngut.
  • In Fig.1 ist über der Weglänge S eines eine Aufheizzone a, eine Brennzone b sowie eine Kühlzone c aufweisenden Tunnelofens 1 eine obere Brennkurve 11 für eine große Leistung und eine untere Brennkurve 12 für eine kleine Leistung aufgezeichnet, die somit einen Interpolationsbereich 13 einschließen. Des weiteren sind durch Pfeile 2 und 3 das Brenngut sowie die Temperatur gekennzeichnet. Ferner stellen die Pfeile 4, 5, 6 und 7 Stoffströme dar,und zwar der Pfeil 4 das Rauchgas, die Pfeile 5 die Brennstoffzugabe,der Pfeil 6 die Sturzkühlung sowie die Pfeil 7 die Absaugung. Die Werte der oberen und der unteren Brennkurven 11 und 12 sind hierbei empirisch ermittelt worden, indem der Tunnelofen 1 bei großer und niederer Leistung jeweils auf optimale Sollwerte eingestellt wurde. Die durch eine derartige empirische Identifikation ermittelten Sollwerte sind in einem Prozeßrechner 25 eingegeben.
  • Soll nunmehr die in Fig, 2 dargestellte Brennkurve 14 aus dem Interpolationsbereich 13 gefahren werden, so werden die Meßwerte 22 einzelner Meßpunkte 21 einem Regler 23 zugeführt, der mit dem Prozeßrechner 25 in Verbindung steht oder in diesem enthalten ist. Durch die in diesem gespeicherten Brennkurven kann somit festgestellt werden, welcher Temperatursollwert bei der vorgegebenen Brennkurve gefordert ist. Dieser Sollwert wird durch Vergleich mit der herrschenden Temperatur mittels eines integrierten Temperaturwählers 24 eingestellt. Des weiteren ist der Prozeßrechner 25 in der Lage, festzustellen, an welcher Stelle des Tunnelofens 1 sich welches Brenngut befindet. Vor Eintritt in den Tunnelofen 1 wurde diesem für jeden Tunnelofenwagen durch Eingabe entsprechend codierter Informationen dies mitgeteilt. Es ist somit möglich, mit einem Tunnelofenwagen die für dessen Besatz gewählte Brennkurve durch den Tunnelofen mitlaufen zu lassen.
  • In Fig. 3 ist dies für die Brennzone b des Tunnelofens 1 dargestellt. Für den Besatz des Tunnelofenwagens 31 ist hierbei das mit 34 bezeichnete Sollprofil einer mitlaufenden Brennkurve vorgesehen, der Besatz der Tunnelofenwagen 32 bzw. 33 soll dagegen in der Brennzone b einem Temperaturverlauf unterworfen werden, der durch die mit 35 bzw. 36 bezeichneten Sollprofile gekennzeichnet ist. Für den Besatz der Tunnelofenwagen 31 wird somit mit Hilfe des Prozeßrechners 25 über die gesamte der Brennzone b in dieser eine Temperatur nach der Brennkurve 34 eingestellt, der Besatz der Tunnelofenwagen 32 bzw. 33 wird dagegen einer Temperatur unterworfen, deren Verlauf durch die Brennkurven 35 und 36 vorgegeben ist. Dadurch ergibt sich zusammengesetzt aus den einzelnen Werten in der Brennzone b ein Istprofil einer Brennkurve, die mit 35 bezeichnet ist.

Claims (12)

1. Verfahren zur Anpassung eines Tunnelofens der keramischen Industrie an unterschiedliche Leistungen und Brennkurven,
dadurch gekennzeichnet,
daß zwei oder mehrere Sollwertsätze (Brennkurven 11, 12) des Tunnelofens (1) bei unterschiedlichen, möglichst weit auseinanderliegenden Ofenleistungen empirisch ermittelt und in einem Prozeßrechner (25) gespeichert werden,
daß in dem Prozeßrechner (25) die für alle weiteren Leistungen des Tunnelofens (1) gültigen Sollwerte durch Regression ermittelt werden und daß über die Regler (23) des Tunnelofens (1) in Abhängigkeit von der geforderten Leistung die Stoffströme (Rauchgas 4, Brenner 5, Kühlung 6, Absaugung 7) gesteuert werden.
2. Verfahren nach Anspruch 1,
dadurch gekennzeichnete
daß die Steuerung der Stoffströme (Rauchgas 4, Kühlung 6, Absaugung 7) in der Aufheiz- und/oder Kühlzone (a, c) des Tunnelofens (1) über die Einstellung des Temperaturverlaufs an einer oder mehreren Stellen erfolgt.
3. Verfahren nach Anspruch 1 oder 2,
dadurch gekennzeichnet,
daß der Temperaturverlauf in der Aufheiz- und/oder Kühlzone (a, c) des Tunnelofens (1) mittels optischer Pyrometer erfaßt wird.
4. Verfahren nach einem oder mehreren der Ansprüche 1 bis 3,
dadurch gekennzeichnet,
daß bei unterschiedlichen Brennkurven die Temperaturänderung der Sollwerte in Abhängigkeit von der Schubgeschwindigkeit des Brenngutes (2) dem Betrage nach auf alle individuellen Brennkurven angewandt wird.
5. Verfahren nach einem oder mehreren der Ansprüche 1 bis 4,
dadurch gekennzeichnet,
daß in die Parameter für die individuelle Behandlung einzelner Chargen das Besatzgewicht des Brenngutes (2) einbezogen und in der Weise ausgewertet wird, daß den Luftmengenregelkreisen in der Aufheizzone (a) und/oder der Kühlzone (c) des Tunnelofens (1) eine Steuerungsfunktion überlagert wird, mittels der nach einer empirisch ermittelbaren Kennlinie die Luftmengenströme in Abhängigkeit von dem aus Schubgeschwindigkeit und Besatzgewicht bestimmbaren Materialstrom des Brenngutes (2) einstellbar sind.
6. Verfahren nach einem oder mehreren der Ansprüche 1 bis 5,
dadurch gekennzeichnet,
daß die einzelnen das Brenngut (2) transportierenden Ofenwagen nach einer individuellen diese begleitenden Brennkurve durch den Tunnelofen (1) geführt werden.
7. Rechnergeführter Tunnelofen zur Anwendung des Verfahrens nach einem oder mehreren der Ansprüche 1 bis 6,
dadurch gekennzeichnet,
daß mittels Codierungen einem Prozeßrechner (25) für jedes in den Tunnelofen (1) eingebrachten Brenngut (2) eine Information über die geforderte Brennkurve zugeführt wird, daß der Prozeßrechner (25) ein Programm zur Verfolgung der einzelnen Chargen erhält und daß der Prozeßrechner (25) über die Regler (23) des Tunnelofens (1) die Sollwerte der Temperatur für die einzelnen Positionen entsprechend der vorgegebenen Brennkurve einstellt, die für das in der jeweiligen Position befindliche Brenngut (2) gültig ist.
8. Tunnelofen nach Anspruch 7,
dadurch gekennzeichnete
daß der Transport des Brenngutes (2) im Tunnelofen (1) mittels des Prozeßrechners (25) derart steuerbar ist, daß dieser den Weitertransport erst freigibt, sobald alle oder ein spezifizierender Anteil der Regelgrössen innerhalb vorgegebener Toleranzen im Bereich des Sollwertes liegen.
9. Tunnelofen nach Anspruch 6 oder 7,
dadurch gekennzeichnet,
daß für den Bereich der Aufheizzone (a) und/oder der Kühlzone (c) mittels des Prozeßrechners (25) ein Mittelwert der geforderten Temperaturen als Sollwert vorgegeben wird.
10. Tunnelofen nach einem oder mehreren der Ansprüche 7 bis 9,
dadurch gekennzeichnet,
daß bei unterschiedlichen Brennkurven die Temperaturänderung der Sollwerte mittels des Prozeßrechners (25) in Abhängigkeit von der Schubgeschwindigkeit des Brenngutes (2) dem Betrage nach auf alle individuellen Brennkurven übertragbar ist.
11. Tunnelofen nach einem oder mehreren der Ansprüche 7 bis 10,
dadurch gekennzeichnet,
daß in die Parameter für die individuelle Behandlung einzelner Chargen das Besatzgewicht des Brenngutes (2) einbezogen und in dem Prozeßrechner (25) in der Weise auswertbar ist, daß den Luftmengenregelkreisen in der Aufheizzone (a) und/oder der Kühlzone (c) des Tunnelofens (1) eine Steuerfunktion überlagert wird, mittels der nach einer empirisch ermittelbaren Kennlinie die Luftmengenströme in Abhängigkeit von dem aus Schubgeschwindigkeit und Besatzgewicht bestimmbaren Materialstrom des Brenngutes (2) einstellbar sind.
12. Tunnelofen nach einem oder mehreren der Ansprüche 7 bis 11,
dadurch gekennzeichnet,
daß der Prozeßrechner (25) derart steuerbar ist, daß die einzelnen den Besatz tragenden Ofenwagen (31, 32, 33) nach einer individuellen diese begleitenden Brennkurve (34, 35, 36) durch den Tunnelofen (1) hindurchführbar sind.
EP85109570A 1984-10-19 1985-07-30 Verfahren zur Anpassung eines Tunnelofens an unterschiedliche Leistungen sowie rechnergeführter Tunnelofen Withdrawn EP0178401A3 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3438347 1984-10-19
DE19843438347 DE3438347A1 (de) 1984-10-19 1984-10-19 Verfahren zur anpassung eines tunnelofens an unterschiedliche leistungen sowie rechnergefuehrter tunnelofen

Publications (2)

Publication Number Publication Date
EP0178401A2 true EP0178401A2 (de) 1986-04-23
EP0178401A3 EP0178401A3 (de) 1989-04-26

Family

ID=6248303

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85109570A Withdrawn EP0178401A3 (de) 1984-10-19 1985-07-30 Verfahren zur Anpassung eines Tunnelofens an unterschiedliche Leistungen sowie rechnergeführter Tunnelofen

Country Status (2)

Country Link
EP (1) EP0178401A3 (de)
DE (1) DE3438347A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106959008A (zh) * 2017-05-04 2017-07-18 江西爱瑞达电瓷电气有限公司 一种隧道窑控制系统
US11796252B2 (en) 2018-08-22 2023-10-24 Ngk Insulators, Ltd. Continuous heating furnace and operating method thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3916181A1 (de) * 1989-05-18 1990-11-22 Mahler Dienstleistung Durchlaufofen zum waermebehandeln von werkstuecken
DE4137148A1 (de) * 1991-11-12 1993-05-13 Transtec Verfahren zur steuerung eines tunnelofens
BE1025459B1 (nl) * 2017-08-08 2019-03-11 Db Solutions Bvba Temperatuursturing voor een bakproces van keramische materialen
EP3663688A1 (de) 2018-12-06 2020-06-10 DB Solutions bvba Tunnelofen für ein brennverfahren für keramische materialien

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1463821A (fr) * 1965-04-21 1966-07-22 Chichibu Cement Kk Procédé de contrôle de fours
US3607660A (en) * 1968-06-26 1971-09-21 Heinrich Kappers Gmbh Process for regulating the temperature of a coke oven chamber
DE2602070A1 (de) * 1976-01-21 1977-08-04 Hartmann & Braun Ag Verfahren zur regelung eines tunnelofens
US4176554A (en) * 1977-11-09 1979-12-04 Kazmierowicz Casimir W Method and apparatus for obtaining the temperature profile of a kiln
US4461616A (en) * 1983-02-25 1984-07-24 The Edward Orton Jr., Ceramic Foundation Ceramic heat treatment regulating apparatus and method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3868094A (en) * 1973-06-15 1975-02-25 Bloom Eng Co Inc Furnace control systems
JPS572843A (en) * 1980-06-04 1982-01-08 Mitsubishi Electric Corp Control method for heating in continuous type heating furnace
US4394121A (en) * 1980-11-08 1983-07-19 Yoshinori Wakamiya Method of controlling continuous reheating furnace

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1463821A (fr) * 1965-04-21 1966-07-22 Chichibu Cement Kk Procédé de contrôle de fours
US3607660A (en) * 1968-06-26 1971-09-21 Heinrich Kappers Gmbh Process for regulating the temperature of a coke oven chamber
DE2602070A1 (de) * 1976-01-21 1977-08-04 Hartmann & Braun Ag Verfahren zur regelung eines tunnelofens
US4176554A (en) * 1977-11-09 1979-12-04 Kazmierowicz Casimir W Method and apparatus for obtaining the temperature profile of a kiln
US4461616A (en) * 1983-02-25 1984-07-24 The Edward Orton Jr., Ceramic Foundation Ceramic heat treatment regulating apparatus and method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SPRECHSAAL, Band 118, Nr. 1, Januar 1985, Seiten 39-46, Coburg, DE; W. LEISENBERG: "Prozessrechnereinsatz an keramischen \fen" *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106959008A (zh) * 2017-05-04 2017-07-18 江西爱瑞达电瓷电气有限公司 一种隧道窑控制系统
US11796252B2 (en) 2018-08-22 2023-10-24 Ngk Insulators, Ltd. Continuous heating furnace and operating method thereof

Also Published As

Publication number Publication date
DE3438347A1 (de) 1986-04-24
EP0178401A3 (de) 1989-04-26

Similar Documents

Publication Publication Date Title
DE3016142C2 (de) Verfahren zum Regeln einer Heizvorrichtung eines Brammenwärmofens und Regelanordnung
DE3021127A1 (de) Gasbeheizter ofen
DE2428090B2 (de) Temperaturregelverfahren fuer einen mehrzonendurchlaufofen
DE2357057B2 (de) Verfahren und vorrichtung zur luftmengenregelung in einem tunnelofen
EP0178401A2 (de) Verfahren zur Anpassung eines Tunnelofens an unterschiedliche Leistungen sowie rechnergeführter Tunnelofen
DE3607261C2 (de) Verfahren und Vorrichtung zur Führung einer Anlage zur Herstellung von Zementklinker
DE1408996A1 (de) Verfahren zur automatischen Steuerung von Rostkuehlern bzw. Wanderrosten
EP1182413B1 (de) Verfahren zur Behandlung von Warenbahnen
DE3332989C2 (de)
EP0541982A1 (de) Verfahren zur Steuerung eines Tunnelofens
DE3821858C1 (de)
DE19513547C2 (de) Verfahren zum Steuern des Wärmebehandlungsprozesses in einer Pelletieranlage
DE4116300C2 (de)
DE1508574B1 (de) Einrichtung zur Regelung der Wärmezufuhr für Durchlauf- und ähnliche öfen
DE2550418A1 (de) Verfahren und anlage zum brennen oder sintern von feinkoernigem gut
DE2311616A1 (de) Analogsimulator fuer waermetauschvorgaenge, insbesondere in einem metallurgischen ofen
AT390322B (de) Vorrichtung zum durchwaermen von stahlteilen
DE2754934C3 (de) Verfahren zum kontinuierlichen Herstellen von stumpfgeschweißten Stahlrohren und Anlage zu dessen Durchführung
DE2327903A1 (de) Verfahren zur automatischen fuehrung von rostklinkerkuehlern
EP0198219B1 (de) Verfahren zur Anpassung der Luftmengenströme eines Tunnelofens
EP0133842A1 (de) Verfahren zum Betreiben eines offenen Ringkammerofens zum Herstellen von kohlenstoffhaltigen Formkörpern sowie eine Vorrichtung zur Durchführung des Verfahrens
DE827206C (de) Verfahren und Einrichtung zur Kontrolle von Waermoefen
DE2308023A1 (de) Durchlaufofen
DE1542265C3 (de) Verfahren zur selbsttätigen Regelung der Temperatur des Obertrumms eines Sinterrostes zur Wärmebehandlung von grünen Formungen aus Rohphosphat
DE1508539C3 (de) Mehrzonentunneldurchgangsofen, insbesondere zum Brennen von keramischem Gut

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT DE FR GB

17P Request for examination filed

Effective date: 19861010

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT DE FR GB

17Q First examination report despatched

Effective date: 19900322

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19910129