[go: up one dir, main page]

EP0171516B1 - Yarn storage feeder - Google Patents

Yarn storage feeder Download PDF

Info

Publication number
EP0171516B1
EP0171516B1 EP85105703A EP85105703A EP0171516B1 EP 0171516 B1 EP0171516 B1 EP 0171516B1 EP 85105703 A EP85105703 A EP 85105703A EP 85105703 A EP85105703 A EP 85105703A EP 0171516 B1 EP0171516 B1 EP 0171516B1
Authority
EP
European Patent Office
Prior art keywords
sensing element
feeding device
storage body
yarn
sensing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85105703A
Other languages
German (de)
French (fr)
Other versions
EP0171516A2 (en
EP0171516A3 (en
Inventor
Lars Helge Gottfrid Tholander
Anton Patrick Kerff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iro AB
Original Assignee
Iro AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from SE8404112A external-priority patent/SE8404112D0/en
Priority claimed from SE8404179A external-priority patent/SE8404179D0/en
Priority claimed from DE19843434257 external-priority patent/DE3434257A1/en
Application filed by Iro AB filed Critical Iro AB
Priority to CN 85106977 priority Critical patent/CN1009912B/en
Publication of EP0171516A2 publication Critical patent/EP0171516A2/en
Publication of EP0171516A3 publication Critical patent/EP0171516A3/en
Application granted granted Critical
Publication of EP0171516B1 publication Critical patent/EP0171516B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D47/00Looms in which bulk supply of weft does not pass through shed, e.g. shuttleless looms, gripper shuttle looms, dummy shuttle looms
    • D03D47/34Handling the weft between bulk storage and weft-inserting means
    • D03D47/36Measuring and cutting the weft
    • D03D47/361Drum-type weft feeding devices
    • D03D47/367Monitoring yarn quantity on the drum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2557/00Means for control not provided for in groups B65H2551/00 - B65H2555/00
    • B65H2557/30Control systems architecture or components, e.g. electronic or pneumatic modules; Details thereof
    • B65H2557/33Control systems architecture or components, e.g. electronic or pneumatic modules; Details thereof for digital control, e.g. for generating, counting or comparing pulses

Definitions

  • the invention relates to a thread storage and delivery device according to the known type defined in the preamble of claim 1 (e.g. DE-A-3 123 760).
  • the switching device controls the drive which is responsible for the addition of the thread supply. If the size of the thread supply is reduced to a minimum, the thread supply is increased again, if necessary up to a maximum size, when this drive is stopped again. It is also possible to carry out the control in such a way that the thread supply is always supplemented such that its size fluctuates between the maximum and the minimum value without ever reaching it. However, if the size of the thread supply reaches the minimum or maximum size value, this is a sign of a malfunction, whereupon the switching device not only stops the drive for the thread storage and delivery device, but also for devices that cooperate with it, possibly connected downstream.
  • a finger-like sensor attached outside the storage body is usually used, the end of which is immersed in an axial depression of the storage body and is loaded by a spring.
  • the sensor either works with a switching device or has contacts that work with counter-contacts for signal generation. As soon as the thread supply becomes so large that it deflects the sensor to a certain extent, a signal is generated which interrupts the increase in the thread supply.
  • the disadvantage here is that the sensor exerts a certain load on the thread turns, which is felt as a jerk when each thread turn is removed.
  • the thread tension of the drawn thread not only remains small but also constant, which is one of the main tasks of the thread storage and delivery device.
  • the thread When the thread is pulled off, it should form a so-called balloon, if possible, which is prevented by the sensor which engages from the outside. Furthermore, it is unfavorable that the sensor or its suspension must be adjusted to the respective thread type or characteristic and that the sensor must also be adjusted depending on the thread thickness, for which a relatively large amount of construction work is required. For this reason, more and more people have switched to optical or opto-electronic sensors, which are able to scan the thread supply size without contact. In these, the directed light beam is reflected by a mirror surface fixed to the storage body and then, for. B. scanned for its intensity. It is very difficult to permanently generate a strong and significant and reliably scannable signal.
  • the invention has for its object to provide a thread storage and delivery device of the type mentioned, in which the control or monitoring of the size of the thread supply is achieved without interfering influence on the thread withdrawal from the storage body.
  • an extremely light and easily movable sensing element can be used, which is not susceptible to contamination and has the advantage that it no longer noticeably impairs the thread take-off and the thread feed because in the one position in which the sensing element protrudes from the surface of the storage body , the thread is lifted from the surface of the storage body and over the sensing element or is already lifted from the surface of the storage body at a relatively large distance in front of the sensing element, and because in the other position the sensing element is under the one extraordinarily low restoring force is anyway flush with the surface of the thread body or is even behind it, so that it is practically absent for the thread.
  • the sensing element does not directly actuate any contacts or switching devices, so that it imposes a barely perceptible load on the thread. However, the sensing element detects a change in position of the sensing element without contact and generates the reaction signal which actuates the switching device, since the movement of the sensing element determined by the sensing element signals that the thread supply has become too large or too small.
  • the proximity initiator provides e.g. B. based on an influence on the field generated by him, the change in position of the sensing element and generates the signal.
  • Commercial proximity initiators respond extremely sensitively to changes in position associated with changes in distance and can easily stand so far from the surface of the storage body that they do not hinder the thread movements. Other electrically or magnetically conductive elements that are not directly in the sensing range are ignored.
  • the embodiment of claim 3 is also expedient because a metal leaf spring can be easily bent into the optimum shape in each case at a low weight, the restoring force permanently applies itself and is easy to attach. Together with the small and light proximity initiator, this creates a reliable, light, and space-saving sensing unit.
  • an embodiment is also expedient, as indicated in claim 4. Every change in the position of the sensing element requires a change in the position of the magnetic field, which the sensing element detects as a change in the field strength and is used to emit a signal.
  • This axis, about which the sensing element pivots, can be relatively close to the surface of the storage body, so that the mass of the sensing element is concentrated around the axis, together with the permanent magnet, which benefits the easy mobility of the sensing element. It is favorable that the tilting movement leads to a defined tilting movement of the magnetic field of the permanent magnet, which is felt by the sensing element with a sudden and relatively strong change in the strength of the magnetic field.
  • the respective tilt axis for the end can be arranged so that a large lever arm and thus a small force for moving the end can be achieved.
  • an embodiment as claimed in claim 7 is also advantageous.
  • Such a spiral spring is durable and can be loaded with a uniformly low resistance and has the advantage that it can simultaneously secure the position of the sensing element in the storage body.
  • the tension spring takes over the resilient property of the spiral spring and ensures that the sensing element returns to the one position in which it protrudes over the surface of the storage body when the thread supply has released the sensing area.
  • the sensing element is not acted directly in the sense of a reset, but again only in a magnetic manner, which can easily be accomplished in such a way that the initial force for deflecting the sensing element from one position is very low, which is favorable for the thread turns.
  • the sensing element is displaced in a linear direction by the thread turns, the weakening of the magnetic field strength occurring then also being determined by the sensing element and used to emit the signal. It is favorable here that the sensing element can be accommodated in a small opening in the storage body, which can be shielded well against contamination.
  • sensing element has no fixed tilt axis in the storage body, but is held in an unstable equilibrium position by the restoring force, from which it can be rolled into another, possibly stable, equilibrium position under the action of the thread turns.
  • the oval shape of the disc then ensures that the sensing element no longer protrudes beyond the surface of the storage body in the second position.
  • an embodiment is also expedient, as can be seen from claim 12.
  • the step in the guideway ensures that the sensing element protrudes above the surface in one position and no longer protrudes above the surface in the other.
  • the measure of claim 14 is also important so that the thread turns can easily move the sensing element from one position to the other.
  • a further, particularly expedient embodiment emerges from ' Claim 18. Thanks to the polarity of both permanent magnets, the tilting element is slavishly forced to follow a tilting movement of the sensing element.
  • the tilting element can easily be designed so that it actuates a switching device or cooperates with an opto-electronic switching element protected against dirt, which would not be possible for the sensing element.
  • the sensing element gives, so to speak, the magnetic pulse for the tilting element, which causes it to move with which a signal is generated.
  • FIG. 17 is also particularly expedient because it eliminates the need for its own spring or permanent magnet to set up the sensing element and the magnetic effect between the two permanent magnets of the sensing element and the tilting element is used to generate the mutual force.
  • sensing element is not only simple and inexpensive to manufacture, easy to accommodate in the storage body, but also allows a quick response to contact with a thread turn to be achieved.
  • the penetration of dirt, which may impair the function of the sensing element, can be effectively prevented according to claim 19.
  • An embodiment is almost completely maintenance-free, as can be seen from claim 20, because the recess receiving the sensing element is hermetically sealed from the outside, so that no contamination can impair the function of the sensing element.
  • each sensing element thus monitors a limit on the size of the thread supply and a total of two signals can be generated, which can be further processed analog or digitally and used to control different devices.
  • claim 22 specifies a structurally simple embodiment in which both sensing elements are formed on the leaf spring.
  • the change in position of the sensing element is used to also shift a light beam reflected by the sensing element, which comes from a light beam directed onto the sensing element.
  • a very powerful light beam can be used and that, due to the displacement of the reflected light beam, a very strong signal is produced because the receiver does not detect the change in the intensity of the light intensity of the reflected beam, which is relatively weak for certain reasons , as before, but clearly differentiates between the presence of a strong reflected light beam and its absence. For this reason, this optical device is much less sensitive and reliable than previously known.
  • the receiver is positioned at a point along the path through which the reflected light beam travels when the sensing element changes position. At one point in the movement of the sensing element, the receiver receives the light beam while it is not being acted upon over the rest of the movement path.
  • the signal that can be generated is significant and strong.
  • Another, alternative embodiment is characterized by the measure of claim 25.
  • the light beam is applied to the receiver. If the sensing element moves out of this position, the receiver receives no reflected light beam and is clearly informed of the change in position that has taken place.
  • the feature of claim 26 is also important, because with the respective choice of the direction of the light beam, which is reflected by the sensing element, an optimal control behavior can be selected, or because the designer of the device changes in the assignment of the individual interacting components in a larger one Area is enabled.
  • a thread storage and delivery device 1 is shown schematically and in partial section, which has a lower housing part 2 with a lateral holding arm 3, to which a carrier 4 is fastened with a thread take-off eye 5.
  • the lower housing 2 contains a drive motor (not shown) for a tubular thread winding member 6, which rotates with a drive shaft 7 which passes through the device 1 in the axial direction.
  • a drive motor (not shown) for a tubular thread winding member 6, which rotates with a drive shaft 7 which passes through the device 1 in the axial direction.
  • two halves 10 and 11 of a drum-shaped storage body are rotatably mounted in separate bearings 8 and 9 with mutually inclined axes of rotation (not shown), which have interlocking rods 12 and 13 which define an approximately cylindrical surface 15 of the storage body.
  • the thread designated 27 is fed through the thread winding member 6 and wound in the tangential direction onto the surface 15, where it forms the thread supply 26 with several turns, from which the thread then passes over a head part 22 of the storage body or its thickened edge through the thread eyelet 5 is withdrawn again.
  • a maximum sensor 18 and a minimum sensor 19 are arranged, with which the respective size of the thread supply 26 can be scanned.
  • sensing elements 20 and 21 are aligned with the sensors 18 and 19, which scan the respective position of each sensor and generate signals therefrom with which, for. B. the drive motor in the lower housing part 2 is started or stopped in order to wind up more thread to increase the thread supply 26 or to stop winding the thread.
  • a magnet 24 is fastened in the head part 22, which is aligned with a magnet 23 accommodated in a holder 25. Between these magnets 23 and 24, a holding force is built up which keeps the storage body still, so that the drive shaft 7 rotates in it and thereby excites the two halves 10 and 11 of the storage body to the feed movement.
  • a filler 14 is also contained in the storage body and has to prevent the ingress of contaminants into the cavity of the storage body and to the bearing points 8 and 9.
  • the thread supply 26 should have a certain size, which changes depending on how much new thread the thread winding member 6 winds up and how much thread is drawn through the thread take-off eye 5.
  • the size should fluctuate between a maximum and a minimum value, both of which must not be exceeded. Accordingly, in FIG. 1 the minimum value sensor 19 is actuated, which indicates that the thread supply is larger than the minimum value, while the maximum sensor 18 is not actuated, which indicates that the thread supply 26 is correctly still smaller than the maximum value.
  • the maximum and minimum sensors 18, 19 are formed by sensing members which are the two ends 65, 65 'of an integral metal leaf spring 66.
  • the metal leaf spring 66 is fixed with a flat base part 67 in the recess 16 with a screw 68 in an easily replaceable manner.
  • Vertical legs 71 extend from the base part 67 in the direction of the surface 15 of the storage body, from which the ends 65, 65 'are laterally bent away, in such a way that each end 65, 65' projects above the surface 15 without the contact pressure of the turns 27 .
  • the end 65 ' is bent relative to an intermediate part 70 in such a way that it does not lie above the surface 15 in the unloaded state, but rather forms an oblique run-up surface for the windings 27, while in the loaded state it is pushed into the depression about a tilt axis 69' (Fig. 2a) that the intermediate part 70 is approximately flush with the surface 15.
  • the tilt axis 69 'of the end 65' could also lie at the lower end of the rear leg 71 in the transition to the base part 67.
  • the other end 65 has its tilt axis 69 either - as shown - in the transition from the right leg 71 to the base part 67 or in the transition from the end 65 to the right leg 71.
  • the sensing elements 20 ', 21' are proximity initiators which are electromagnetic or a Generate eddy current field, which is influenced by changing the position of the electrically conductive sensing element 28 ', 28 "for signal generation.
  • proximity initiators are commercially available and are available in different sensitivity levels. They work perfectly even when there are other metallic elements nearby. Therefore The one-piece design of the leaf spring 66 does not impair the proper functioning of both initiators 20 ', 21'. However, the two sensing elements 28 ', 28 "could also be formed by separate leaf springs.
  • the maximum and minimum sensors 18a and 19a are designed so that a block-shaped sensor element 28, in which a permanent magnet 29 is structurally incorporated with a certain polarity, is mounted on a spiral spring 30, which on a Abutment 31 is attached.
  • the spiral spring 30 can consist of soft rubber or an elastomer and bends in a region 35 when the sensing element 28 is loaded by the thread turns of the thread supply.
  • the sensor elements are fastened to spiral springs approximately radial to the axis of the device 1, while according to FIGS. 3a-c they are fastened to spiral springs 30 running approximately in the axial direction.
  • Each spiral spring 30 simultaneously secures the position of the sensing element 28 in its two positions, whereby in the one position under the restoring force of the spiral spring 30, the sensing element 28 with a wedge-shaped tip 34, a bearing surface 33 lying approximately perpendicular to the surface 15 and an inclined surface 32 over the Surface 15 protrudes, approximately at the height of the diameter of the thread turns.
  • the tip 34 of the sensing element 28 is approximately flush with the surface 15, so that the thread turns of the thread supply can slide forward essentially unimpeded.
  • the sensing element 28 is seated in the recess 16 of the storage body which is closely matched to the width of the sensing element 28.
  • the wedge-shaped tip 34 has a convex shape.
  • the permanent magnet 29 is arranged, for example, in such a way that, in the position shown in FIG. 2a, it generates a magnetic field with magnetic lines M, which are aligned with the sensing element 20 in the middle of the magnetic field.
  • the sensing element 20 is expediently a Hall element which immediately detects changes in the strength of the magnetic field and can derive a signal therefrom.
  • the block-shaped sensor element 28 with the integrated permanent magnet 29 is again provided, which can be tilted about a pivot axis 36 lying approximately parallel to the thread turns in a bearing 37 in the storage body.
  • the axis 36 is expediently in the vicinity of the center of gravity of the sensing element with the permanent magnet 29, so that only a small force is required to tilt the sensing element 28. It would also be possible to mount the pivot axis 36 directly in the center of gravity.
  • the restoring force which returns the sensing element 28 from the downward tilted position (FIG. 4c) to the position shown in FIG. 3a, is generated in this embodiment by a further permanent magnet 38 arranged in the storage body. B. reversed polarity as the permanent magnet 29 in the sensing element 28.
  • the magnets 29 and 38 cooperate in such a way that the sensing element 28 is pivoted back into the position shown in FIG. 3a, as soon as the load from the thread turns has ceased.
  • the minimum and maximum sensors 18c, 19c are designed as oval, disk-shaped sensor elements 39, into which the permanent magnets 29 are incorporated in the center.
  • the positioning force for each sensor element 39 is generated by a further permanent magnet 38 with reverse polarity.
  • Fig. 5b illustrates that each sensor element 39 is relatively wide and can therefore roll stably on a guideway 43 which is arranged in the recess 16 of the storage body and extends axially.
  • an expediently structured e.g. B. cross-ribbed, surface 40 over the surface 15 of the storage body over where it can be easily acted upon by the thread 27 so that the sensing element, for. B. the minimum sensor 19c, is rolled to the side and is flush with its surface 40 with the surface 15. Stops 41 and 42 can be provided on the guideway 43, which positively fix the two positions of each sensor element.
  • a sensor element 46 is provided in the form of a circular disk of a certain width, in which the permanent magnet 29 is integrated.
  • a guide track 44 is provided with a step 45 on which the sensor element 46 can roll such that it is in one position protrudes above the surface 15 and in the other position is flush with the surface 15 (indicated by dashed lines).
  • the positioning force or the positioning force returning the sensor element 46 from the other position to the one position is generated by the further permanent magnet 38.
  • the stops 41 and 42 which fix the two end positions in a form-fitting manner, are again provided on the guide track 44.
  • recesses 48 can be formed in the sensor element 46, which cooperate with teeth 47 on the guide track 44 in such a way that the sensor element 46 cannot rotate relative to the guide track 44.
  • the sensing element 46 could also have a spherical shape.
  • the block-shaped sensing element 28 with the integrated permanent magnet 29 is again provided and is tiltably supported about the axis 36 in the bearing points 37 in the storage body.
  • An extension pin 64 is arranged on the underside of the sensor element 28, on which a tension spring 49 engages, the free end of which is anchored to an abutment 50 fixed in the storage body.
  • the tension spring 49 provides the set-up force for the sensing element 28.
  • a stop (not shown) arranged in the storage body could be provided in order to positively determine the position according to FIG. 6a for the sensing element 28.
  • a block-shaped sensor element 28 is again provided, which, however, is arranged rotated by 180 ° with respect to the advancing movement of the turns of the thread 17 relative to the aforementioned exemplary embodiments, so that its oblique ramp surface 32 of the feed movement is directed opposite.
  • Each sensor element 28 is also rounded off at 51.
  • Both sensor elements 28 are mounted in radial shafts 52 of the storage body such that they can be displaced radially to the axis thereof, namely by means of the pressure bolts 54 which push through a support 53. Under the support 53, an enlarged collar 55 is formed on each pressure bolt 54, on which a compression spring 56 is supported, the free end of which rests on an abutment surface 57.
  • the shafts 52 are hermetically sealed from the outside by a thin skin 58.
  • the minimum sensor 19f is inserted so far through the thread supply that its tip 51 is approximately flush with the surface 15 and the collar 55 is pressed away from the support 53.
  • the sensing element 28 of the maximum sensor 18f is pushed out of the shaft 52 by the compression spring 56 until the collar 55 abuts the support 53, so that the run-up surface 32 protrudes above the surface 15 and the skin 58 is arched up.
  • the sensing elements 20 and 21 here are Hall elements which respond to the weakening of the strength of the magnetic field which occurs when each filling element 28 is displaced.
  • the block-shaped sensing element 28 is again provided with its permanent magnet 29, which is tiltably mounted about the axis 36 in the bearing points 37 of the storage body.
  • a further permanent magnet 38 is indicated in FIG. 9a, which may be provided for generating the raising force, but this further permanent magnet 38 is also unnecessary in this embodiment.
  • the sensing element aligned with the sensing element 28 is namely a tilting element 58, in which a permanent magnet 60 is integrated, which is polarized in the same way as the permanent magnet 29 in the sensing element 28.
  • the tilting element 58 has an upstanding arm 59, which is integrated into an optoelectronic sensor 63 intervenes.
  • the tilting element 58 is mounted such that it can be tilted about an axis 61 parallel to the axis 36 in a bearing 62.
  • the two permanent magnets 29 and 60 attract each other and act on one another such that when the sensing element 28 (FIG. 10) of the minimum sensor 18g is tilted, the permanent magnet 60 of the tilting element 58 is also tilted about the axis 61 because the magnetic lines of the two Attempt to align the magnetic fields of both magnets in parallel, as a result of which the arm 59 tilts out of the optoelectronic sensor 63 and the latter is excited to generate a signal.
  • a permanent magnet 38 which causes the lifting force is not required here.
  • FIGS. Ha, 11b and 11c show an optical principle with one maximum sensor 18 each.
  • the maximum sensor 18 is formed by the sensing element 28 ′′, which is formed by the resilient end 65 of a leaf spring 66 ′ fastened behind the surface 15 of the storage body in a manner not shown in detail.
  • the end 65 protrudes obliquely in the unloaded position I. the surface 15, while it can be pushed away approximately flush with the surface 15 by the thread turns 27 into the loaded position 11.
  • the end 65 has a reflecting surface 74, which can also be formed by a mirror surface provided there the device 1 is as Sensor element 20 "arranged a light-responsive element, for example a phototransistor, to which a light source 72, for example a light diode, is associated.
  • the light source 72 generates a light beam 73, for example from infrared light, which is directed so that it strikes the surface 74 of the end 65 and is reflected in the position I of the sensing element 28 "in the direction 73 I.
  • the sensing element 20 is aligned with the direction 73 of the reflected light beam. If, however, the end 65 is displaced into position II by the windings, the light beam 73 is reflected in a direction 73 11 in which it is no longer directed onto the sensing element 20" meets.
  • the light source 72 is structurally integrated in the sensing element 20 ", which thus also contains a receiver for the light beam 73 in addition to the light source.
  • the light source of the sensing element 20" sends a light beam 73 approximately radially to the storage body and perpendicular to the surface 15, which is reflected in the position of the end 65 in a direction 73 I, in which direction it does not hit the sensing element 20 ".
  • the end 65 is shifted to the position II in which it is with the surface 15 is approximately aligned, the light beam 73 is in turn reflected radially and perpendicularly to the surface 15 in a direction 73 II in which it hits the sensing element 20 ′′ completely.
  • the sensing element 28 " which in turn is used as the maximum sensor 18, is thus scanned for signal generation in its second position II, in which the light beam 73 is reflected in the direction 73 II on the sensing element 20".
  • the sensing element 28 " is designed as a block which can be moved radially into the storage surface 15 and which has an oblique run-up surface 74 'for the thread turns, the surface 74' either being reflective or with a reflective insert.
  • the sensing element 28 "" here also belongs to a maximum sensor 18.
  • the light source 72 is arranged, which emits a light beam 73 onto the surface 74 'of the sensing element 28 "", which extends approximately radially and perpendicular to the surface 15.
  • the light beam directed onto the sensing element can have practically any direction. It is only necessary to ensure that the reflected light beam is reflected on the sensing element in any position of the sensing element and cannot reach the sensing element in other positions of the sensing element. It is irrelevant in which direction relative to the surface 15 or to the axis of the storage body the sensing element can be displaced by the thread turns (either radially or about a tilt axis parallel to the storage body axis or parallel to the thread turns), provided that it is ensured that the Change in position of the sensing element, the reflected light beam also carries out a change in position, which the sensing element can use to generate signals.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Sewing Machines And Sewing (AREA)
  • Looms (AREA)
  • Geophysics And Detection Of Objects (AREA)

Description

Die Erfindung betrifft eine Fadenspeicher- und -liefervorrichtung entsprechend der im Oberbegriff des Anspruchs 1 definierten bekannten Art (z. B. DE-A-3 123 760).The invention relates to a thread storage and delivery device according to the known type defined in the preamble of claim 1 (e.g. DE-A-3 123 760).

Bei derartigen Fadenspeicher- und -liefervorrichtungen wird mit der Schalteinrichtung der Antrieb gesteuert, der für die Ergänzung des Fadenvorrats verantwortlich ist. Vermindert sich die Größe des Fadenvorrats bis zu einem Minimum, so wird der Fadenvorrat wieder vergrößert, gegebenenfalls bis zu einer maximalen Größe, bei deren Erreichen dieser Antrieb dann wieder stillgesetzt wird. Möglich ist es ferner, die Steuerung so vorzunehmen, daß die Ergänzung des Fadenvorrats immer so vorgenommen wird, daß dieser in seiner Größe zwischen dem Maximal- und dem Minimalwert schwankt, ohne ihn jemals zu erreichen. Erreicht die Größe des Fadenvorrats jedoch den Minimal-oder Maximalgrößenwert, so ist dies ein Zeichen für eine Störung, worauf über die Schalteinrichtung nicht nur der Antrieb für die Fadenspeicher- und -liefervorrichtung, sondern auch für mit dieser zusammenarbeitende, gegebenenfalls nachgeschaltete Einrichtungen stillgesetzt wird. Bei Fadenspeicher- und -liefervorrichtungen mit stillstehendem Speicherkörper wird üblicherweise ein außerhalb des Speicherkörpers befestigter, fingerartiger Fühler verwendet, der mit seinem Ende in eine axiale Vertiefung des Speicherkörpers eintaucht und durch eine Feder belastet wird. Der Fühler arbeitet entweder mit einer Schalteinrichtung zusammen oder besitzt selbst Kontakte, die mit Gegenkontakten zur Signalerzeugung zusammenwirken. Sobald der Fadenvorrat so groß wird, daß er den Fühler in einem bestimmten Ausmaß auslenkt, wird ein Signal erzeugt, das die Vergrößerung des Fadenvorrats unterbricht. Nachteilig ist dabei, daß der Fühler eine bestimmte Belastung auf die Fadenwindungen ausübt, die beim Abziehen jeder Fadenwindung als Ruck spürbar wird. Insbesondere in der Textilverarbeitung ist es jedoch notwendig, daß die Fadenspannung des abgezogenen Fadens nicht nur klein, sondern auch konstant bleibt, was eine der Hauptaufgaben der Fadenspeicher- und -liefervorrichtung ist. Beim Abziehen des Fadens soll dieser nach Möglichkeit einen sogenannten Ballon bilden, was durch den von außen eingreifenden Fühler verhindert wird. Weiterhin ist es ungünstig, daß der Fühler bzw. seine Federung auf die jeweilige Fadenart oder Eigenart einzustellen ist und daß der Fühler auch in Abhängigkeit von der Fadendicke verstellt werden muß, wofür baulich verhältnismäßig viel Aufwand zu treiben ist. Es wurde deshalb mehr und mehr zu optischen oder opto-elektronischen Fühlern übergegangen, die die Fadenvorratsgröße berührungsfrei abzutasten vermögen. Bei diesen wird der gerichtete Lichtstrahl von einer am Speicherkörper fest angeordneten Spiegelfläche reflektiert und dann, z. B. auf seine Intensität abgetastet. Hierbei ist es sehr schwierig, dauerhaft ein starkes und signifikantes und zuverlässig abtastbares Signal zu erzeugen.In such thread storage and delivery devices, the switching device controls the drive which is responsible for the addition of the thread supply. If the size of the thread supply is reduced to a minimum, the thread supply is increased again, if necessary up to a maximum size, when this drive is stopped again. It is also possible to carry out the control in such a way that the thread supply is always supplemented such that its size fluctuates between the maximum and the minimum value without ever reaching it. However, if the size of the thread supply reaches the minimum or maximum size value, this is a sign of a malfunction, whereupon the switching device not only stops the drive for the thread storage and delivery device, but also for devices that cooperate with it, possibly connected downstream. In thread storage and delivery devices with a stationary storage body, a finger-like sensor attached outside the storage body is usually used, the end of which is immersed in an axial depression of the storage body and is loaded by a spring. The sensor either works with a switching device or has contacts that work with counter-contacts for signal generation. As soon as the thread supply becomes so large that it deflects the sensor to a certain extent, a signal is generated which interrupts the increase in the thread supply. The disadvantage here is that the sensor exerts a certain load on the thread turns, which is felt as a jerk when each thread turn is removed. In textile processing in particular, however, it is necessary that the thread tension of the drawn thread not only remains small but also constant, which is one of the main tasks of the thread storage and delivery device. When the thread is pulled off, it should form a so-called balloon, if possible, which is prevented by the sensor which engages from the outside. Furthermore, it is unfavorable that the sensor or its suspension must be adjusted to the respective thread type or characteristic and that the sensor must also be adjusted depending on the thread thickness, for which a relatively large amount of construction work is required. For this reason, more and more people have switched to optical or opto-electronic sensors, which are able to scan the thread supply size without contact. In these, the directed light beam is reflected by a mirror surface fixed to the storage body and then, for. B. scanned for its intensity. It is very difficult to permanently generate a strong and significant and reliably scannable signal.

Es ist ferner bekannt (DE-A 1 928 040) einen durch den Fadenvorrat verschwenkbaren Fühler zu benutzen, der als zweiarmiger Hebel ausgebildet ist. Der eine Arm greift von außen in den Fadenvorrat ein und liegt an dessen Rückseite an, so daß er bei wachsendem Fadenwickel nach innen verschwenkt wird. Der andere Arm trägt einen Permanentmagneten, der bei der Schwenkbewegung seinen Abstand zu einem Magnetschalter vergrößert bzw. verkleinert und dadurch diesen Schalter berührungslos zum Ein- bzw. Ausschalten beaufschlagt. Bei der betreffenden Fadenspeicher- und -liefervorrichtung handelt es sich um eine ungewöhnliche Spezialkonstruktion, bei der sich der Fadenvorrat entgegen der Fadenabzugsrichtung auf dem stillstehenden Speicherkörper bewegt, also in einer zur allgemein üblichen Gattung der Fadenspeicher-und -liefervorrichtungen, zu der auch die Vorrichtung der vorliegenden Anmeldung gehört, entgegengesetzten Weise. Bei dieser bekannten Sonderform besteht somit kein Hinderungsgrund, ein Fühlelement der geschilderten Art einzusetzen. Bei den üblichen Vorrichtungen, auf welche sich die vorliegende Erfindung alleine bezieht, würde ein Teil des geschilderten bekannten Fühlerelementes im Garnabzugsweg liegen, kommt also für diese Art der Fadenspreicher- und -liefervorrichtungen nicht in Frage. Ferner treten bei Fadenspeicher- und -liefervorrichtungen der der Erfindung zugrundeliegenden Art Anschlußprobleme für im Speicherkörper angeordnete Fühlglieder auf, die bei der bekannten Spezialvorrichtung nicht vorhanden sind.It is also known (DE-A 1 928 040) to use a sensor which can be pivoted through the thread supply and which is designed as a two-armed lever. One arm engages in the thread supply from the outside and lies against the back of it, so that it is pivoted inward as the thread winding grows. The other arm carries a permanent magnet, which increases or decreases its distance from a magnetic switch during the swiveling movement and thereby acts on this switch in a contactless manner for switching on and off. The thread storage and delivery device in question is an unusual special construction in which the thread supply moves on the stationary storage body counter to the thread take-off direction, that is to say in a general type of thread storage and delivery device, to which the device of the this application belongs in the opposite way. In this known special form there is no reason to use a sensing element of the type described. In the conventional devices, to which the present invention relates alone, part of the known sensor element described would lie in the yarn take-off path, and is therefore out of the question for this type of thread storage and delivery device. In addition, thread storage and delivery devices of the type on which the invention is based have connection problems for sensing elements arranged in the storage body, which are not present in the known special device.

Der Erfindung liegt die Aufgabe zugrunde, eine Fadenspeicher- und -liefervorrichtung der eingangs genannten Art zu schaffen, bei der die Steuerung oder Überwachung der Größe des Fadenvorrats ohne störende Beeinflussung des Fadenabzugs vom Speicherkörper erreicht wird.The invention has for its object to provide a thread storage and delivery device of the type mentioned, in which the control or monitoring of the size of the thread supply is achieved without interfering influence on the thread withdrawal from the storage body.

Die gestellte Aufgabe wird erfindungsgemäß durch die den'Patentanspruch 1 kennzeichnenden Merkmale gelöst.The stated object is achieved according to the invention by the features characterizing ' Claim 1.

Bei dieser Ausbildung läßt sich ein außerordentlich leichtes und leicht bewegliches Fühlelement einsetzen, das verschmutzungsunanfällig arbeitet und den Vorteil hat, daß es den Fadenabzug und den Fadenvorschub nicht mehr spürbar beeinträchtigt, weil in der einen Stellung, in der das Fühlelement von der Oberfläche des Speicherkörpers vorsteht, der Faden von der Oberfläche des Speicherkörpers ab und über das Fühlelement gehoben bzw. in einem verhältnismäßig großen Abstand vor dem Fühlelement schon von der Oberfläche des Speicherkörpers abgehoben wird, und weil in der andern Stellung das Fühlelement unter der einer außerordentlich geringen Rückstellkraft ohnedies mit der Oberfläche des Fadenkörpers bündig ist oder sogar hinter dieser liegt, so daß es für den Faden praktisch nicht vorhanden ist. Das Fühlelement betätigt keine Kontakte oder Schalteinrichtungen unmittelbar, so daß es den Faden mit einer kaum spürbaren Belastung beaufschlagt. Das Fühlglied stellt aber eine Lageveränderung des Fühlelements berührungslos fest und erzeugt das Reaktionssignal, das die Schalteinrichtung betätigt, da die vom Fühlglied ermittelte Bewegung des Fühlelements signalisiert, daß der Fadenvorrat zu groß oder zu klein geworden ist.In this design, an extremely light and easily movable sensing element can be used, which is not susceptible to contamination and has the advantage that it no longer noticeably impairs the thread take-off and the thread feed because in the one position in which the sensing element protrudes from the surface of the storage body , the thread is lifted from the surface of the storage body and over the sensing element or is already lifted from the surface of the storage body at a relatively large distance in front of the sensing element, and because in the other position the sensing element is under the one extraordinarily low restoring force is anyway flush with the surface of the thread body or is even behind it, so that it is practically absent for the thread. The sensing element does not directly actuate any contacts or switching devices, so that it imposes a barely perceptible load on the thread. However, the sensing element detects a change in position of the sensing element without contact and generates the reaction signal which actuates the switching device, since the movement of the sensing element determined by the sensing element signals that the thread supply has become too large or too small.

Eine vorteilhafte Ausführungsform geht aus Anspruch 2 hervor. Der Näherungs-Initiator stellt, z. B. anhand eines Einflusses auf das von ihm selbst erzeugte Feld, die stattgefundene Lageänderung des Fühlelementes fest und erzeugt das Signal. Handelsübliche Näherungs-Initiatoren sprechen auf mit Abstandsänderungen verbundene Lageänderungen außerordentlich feinfühlig an und können dabei ohne weiteres soweit von der Speicherkörperoberfläche entfernt stehen, daß sie die Fadenbewegungen nicht behindern. Andere nicht unmittelbar im Fühlbereich liegende, elektrisch oder magnetisch leitfähige Elemente werden dabei ignoriert.An advantageous embodiment emerges from claim 2. The proximity initiator provides e.g. B. based on an influence on the field generated by him, the change in position of the sensing element and generates the signal. Commercial proximity initiators respond extremely sensitively to changes in position associated with changes in distance and can easily stand so far from the surface of the storage body that they do not hinder the thread movements. Other electrically or magnetically conductive elements that are not directly in the sensing range are ignored.

Zweckmäßig ist weiterhin die Ausführungsform von Anspruch 3, weil eine Metallblattfeder bei geringem Gewicht leicht in die jeweils optimale Form gebogen sein kann, die Rückstellkraft dauerhaft selbst aufbringt und einfach zu befestigen ist. Zusammen mit dem kleinen und leichten Näherungs-Initiator entsteht so eine zuverlässige, leichte und nur wenig Platz beanspruchende Fühleinheit.The embodiment of claim 3 is also expedient because a metal leaf spring can be easily bent into the optimum shape in each case at a low weight, the restoring force permanently applies itself and is easy to attach. Together with the small and light proximity initiator, this creates a reliable, light, and space-saving sensing unit.

Alternativ ist auch eine Ausführungsform zweckmäßig, wie sie mit Anspruch 4 angedeutet ist. Jede Lageänderung des Fühlelements bedingt eine Lageänderung des Magnetfeldes, die das Fühlglied als Veränderung der Feldstärke feststellt und zur Signalabgabe benutzt.Alternatively, an embodiment is also expedient, as indicated in claim 4. Every change in the position of the sensing element requires a change in the position of the magnetic field, which the sensing element detects as a change in the field strength and is used to emit a signal.

Ein wichtiger Gedanke geht weiterhin aus Anspruch 5 hervor. Da beim Rückführen des Fühlelementes an diesem keinerlei Fremdkräfte angreifen, kann die Rückstellkraft ausserordentlich gering ausgelegt werden, was der leichten Bewegbarkeit des Fühlelementes von der einen in die andere Stellung entgegen der Rückstellkraft zugute kommt. Da die Fadenwindungen nur in einem vernachlässigbarem Maß belastet werden, wird die Fadenabzugspannung oder die Vorschubbewegung des Fadenvorrats nicht beeinflußt.An important idea continues to emerge from claim 5. Since no external forces act on the sensing element when it is returned, the restoring force can be designed to be extraordinarily low, which is beneficial for the easy movement of the sensing element from one position to the other against the restoring force. Since the thread windings are loaded only to a negligible extent, the thread pull tension or the feed movement of the thread supply is not influenced.

Eine weitere zweckmäßige Ausführungsform geht aus Anspruch 6 hervor. Diese Achse, um die das Fühlelement schwenkt, kann verhältnismäßig nahe an der Oberfläche des Speicherkörpers liegen, so daß die Masse des Fühlelementes um die Achse konzentriert ist, und zwar zusammen mit dem Permanentmagneten, was der leichten Beweglichkeit des Fühlelements zugute kommt. Günstig ist dabei, daß die Kippbewegung zu einer definierten Kippbewegung des Magnetfeldes des Permanentmagneten führt, die für das Fühlglied mit einer schlagartigen und verhältnismäßig starken Veränderung der Stärke des Magnetfeldes spürbar ist. Bei der Blattfeder läßt sich die jeweilige Kippachse für das Ende so anordnen, daß ein großer Hebelarm und damit eine kleine Kraft zum Verlagern des Endes erreicht werden.Another useful embodiment is set out in claim 6. This axis, about which the sensing element pivots, can be relatively close to the surface of the storage body, so that the mass of the sensing element is concentrated around the axis, together with the permanent magnet, which benefits the easy mobility of the sensing element. It is favorable that the tilting movement leads to a defined tilting movement of the magnetic field of the permanent magnet, which is felt by the sensing element with a sudden and relatively strong change in the strength of the magnetic field. In the leaf spring, the respective tilt axis for the end can be arranged so that a large lever arm and thus a small force for moving the end can be achieved.

Alternativ dazu ist auch eine Ausführungsform vorteilhaft, wie sie aus Anspruch 7 hervorgeht. Eine solche Biegefeder ist dauerhaft und mit gleichmäßig geringem Widerstand belastbar und hat den Vorteil, daß sie gleichzeitig die Lagesicherung des Fühlelements im Speicherkörper übernehmen kann.As an alternative to this, an embodiment as claimed in claim 7 is also advantageous. Such a spiral spring is durable and can be loaded with a uniformly low resistance and has the advantage that it can simultaneously secure the position of the sensing element in the storage body.

Alternativ dazu ist auch eine Ausführungsform zweckmäßig wie sie aus Anspruch 8 hervorgeht. Dabei übernimmt die Zugfeder die federnde Eigenschaft der Biegefeder und sorgt dafür, daß das Fühlelement wieder in die eine Stellung zurückkehrt, in der es über die Oberfläche des Speicherkörpers übersteht, wenn der Fadenvorrat den Fühlbereich freigegeben hat.As an alternative to this, an embodiment is also expedient as can be seen from claim 8. The tension spring takes over the resilient property of the spiral spring and ensures that the sensing element returns to the one position in which it protrudes over the surface of the storage body when the thread supply has released the sensing area.

Eine weitere, vorteilhafte Ausführungsform geht aus Anspruch 9 hervor. Hierbei wird auf das Fühlelement nicht direkt im Sinn einer Rückstellung eingewirkt, sondern wiederum nur auf magnetische Weise, was sich ohne weiteres so bewerkstelligen läßt, daß die Anfangskraft zum Auslenken des Fühlelementes aus der einen Stellung sehr gering ist, was für die Fadenwindungen günstig ist.Another advantageous embodiment is set out in claim 9. Here, the sensing element is not acted directly in the sense of a reset, but again only in a magnetic manner, which can easily be accomplished in such a way that the initial force for deflecting the sensing element from one position is very low, which is favorable for the thread turns.

Eine weitere alternative Ausführungsform geht aus Anspruch 10 hervor. Hierbei wird das Fühlelement in einer linearen Richtung durch die Fadenwindungen versetzt, wobei auch dann die auftretende Schwächung der Magnetfeldstärke vom Fühlglied festgestellt und zur Signalabgabe herangezogen wird. Günstig ist hierbei, daß das Fühlelement in einer kleinen Öffnung im Speicherkörper untergebracht werden kann, die gut gegen Verschmutzung abzuschirmen ist.A further alternative embodiment emerges from claim 10. In this case, the sensing element is displaced in a linear direction by the thread turns, the weakening of the magnetic field strength occurring then also being determined by the sensing element and used to emit the signal. It is favorable here that the sensing element can be accommodated in a small opening in the storage body, which can be shielded well against contamination.

Eine weitere alternative Ausführungsform geht aus Anspruch 11 hervor. Hier hat das Fühlelement keine feste Kippachse im Speicherkörper, sondern sie wird durch die Rückstellkraft in einer labilen Gleichgewichtslage gehalten, aus der sie unter der Einwirkung der Fadenwindungen in eine andere, gegebenenfalls stabile, Gleichgewichtslage gerollt werden kann. Die ovale Form der Scheibe sorgt dann dafür, daß in der zweiten Stellung das Fühlelement nicht mehr über die Oberfläche des Speicherkörpers übersteht.A further alternative embodiment emerges from claim 11. Here the sensing element has no fixed tilt axis in the storage body, but is held in an unstable equilibrium position by the restoring force, from which it can be rolled into another, possibly stable, equilibrium position under the action of the thread turns. The oval shape of the disc then ensures that the sensing element no longer protrudes beyond the surface of the storage body in the second position.

Alternativ dazu ist auch eine Ausführungsform zweckmäßig, wie sie aus Anspruch 12 hervorgeht. Dabei sorgt die Stufe in der Führungsbahn dafür, daß das Fühlelement in der einen Stellung über die Oberfläche und in der anderen nicht mehr über die Oberfläche ragt.Alternatively, an embodiment is also expedient, as can be seen from claim 12. The step in the guideway ensures that the sensing element protrudes above the surface in one position and no longer protrudes above the surface in the other.

Hierbei ist es wichtig, wenn auch die Maßnahmen von Anspruch 13 vorgesehen sind, da dann die Endstellungen des Fühlelementes genau von vornherein festgelegt sind und damit auch die Lage des Magnetfeldes des Permanentmagneten, die ja das Fühlglied genau abtasten muß.It is important here if the measures of claim 13 are also provided, since then the end positions of the sensing element are precisely defined from the outset and thus also the position of the magnetic field of the permanent magnet, which the sensing element must scan precisely.

Damit die Fadenwindungen das Fühlelement leicht von der einen in die andere Stellung bewegen können, ist auch die Maßnahme von Anspruch 14 wichtig.The measure of claim 14 is also important so that the thread turns can easily move the sensing element from one position to the other.

Schon kleine Änderungen der Stärke des Magnetfeldes lassen sich mit einem Fühlglied abtasten, wie es in Anspruch 15 enthalten ist.Even small changes in the strength of the magnetic field can be sensed with a sensing element, as is contained in claim 15.

Eine weitere, besonders zweckmäßige Ausführungsform geht aus'Anspruch 18 hervor. Dank der jeweiligen Polung beider Permanentmagneten ist das Kippelement sklavisch dazu gezwungen, einer Kippbewegung des Fühlelements zu folgen. Das Kippelement läßt sich dabei ohne weiteres so ausbilden, daß es eine Schalteinrichtung betätigt bzw. mit einem gegen Schmutz geschützten opto-elektronischen Schaltglied zusammenarbeitet, was für das Fühlelement ja nicht möglich Wäre. Das Fühlelement gibt sozusagen den magnetischen Impuls für das Kippelement, das dieses zu einer Bewegung veranlaßt, mit der ein Signal erzeugt wird.A further, particularly expedient embodiment emerges from ' Claim 18. Thanks to the polarity of both permanent magnets, the tilting element is slavishly forced to follow a tilting movement of the sensing element. The tilting element can easily be designed so that it actuates a switching device or cooperates with an opto-electronic switching element protected against dirt, which would not be possible for the sensing element. The sensing element gives, so to speak, the magnetic pulse for the tilting element, which causes it to move with which a signal is generated.

Besonders zweckmäßig ist weiterhin die Ausführungsform von Fig. 17, weil damit eine eigene Aufstellfeder oder ein Permanentmagnet zum Aufstellen des Fühlelementes entfällt und die Magnetwirkung zwischen den beiden Permanentmagneten des Fühlelements und des Kippelements zur gegenseitigen Aufstellkrafterzeugung verwendet wird.The embodiment of FIG. 17 is also particularly expedient because it eliminates the need for its own spring or permanent magnet to set up the sensing element and the magnetic effect between the two permanent magnets of the sensing element and the tilting element is used to generate the mutual force.

In der Praxis hat sich eine Ausführungsform als besonders zweckmäßig erwiesen, die aus Anspruch 18 hervorgeht. Diese Form des Fühlelements ist nicht nur einfach und preiswert herstellbar, leicht im Speicherkörper unterzubringen, sondern läßt auch ein rasches Ansprechen auf einen Kontakt mit einer Fadenwindung erreichen. Das Eindringen von gegebenenfalls die Funktion des Fühlelements beeinträchtigendem Schmutz läßt sich gemäß Anspruch 19 wirkungsvoll verhindern.In practice, an embodiment has proven to be particularly expedient, which emerges from claim 18. This form of the sensing element is not only simple and inexpensive to manufacture, easy to accommodate in the storage body, but also allows a quick response to contact with a thread turn to be achieved. The penetration of dirt, which may impair the function of the sensing element, can be effectively prevented according to claim 19.

Nahezu vollständig wartungsfrei ist eine Ausführungsform, wie sie aus Anspruch 20 hervorgeht, weil die das Fühlelement aufnehmende Vertiefung nach außen hin hermetisch abgedichtet ist, so daß keine Verschmutzungen die Funktion des Fühlelementes beeinträchtigen können.An embodiment is almost completely maintenance-free, as can be seen from claim 20, because the recess receiving the sensing element is hermetically sealed from the outside, so that no contamination can impair the function of the sensing element.

Günstig ist auch die Ausführungsform von Anspruch 21, weil damit jedes Fühlelement eine Grenze der Größe des Fadenvorrats überwacht und insgesamt zwei Signale erzeugbar sind, die analog oder digital weiterverarbeitbar und zum Steuern verschiedener Einrichtungen nutzbar sind.The embodiment of claim 21 is also favorable because each sensing element thus monitors a limit on the size of the thread supply and a total of two signals can be generated, which can be further processed analog or digitally and used to control different devices.

Weiterhin gibt Anspruch 22 eine baulich einfache Ausführungsvariante an, bei der an der Blattfeder beide Fühlelemente augebildet sind.Furthermore, claim 22 specifies a structurally simple embodiment in which both sensing elements are formed on the leaf spring.

Eine weitere, zweckmäßige Ausführungsform geht aus Anspruch 23 hervor. Hierbei wird die Lageänderung des Fühlelementes dazu benutzt, auch einen vom Fühlelement reflektierten Lichtstrahl mit zu verlagern, der von einem auf das Fühlelement gerichteten Lichtstrahl stammt. Gegenüber herkömmlichen optischen Fühlern ergibt sich der Vorteil, daß ein sehr kräftiger Lichtstrahl verwendet werden kann und daß dank der Verlagerung des reflektierten Lichtstrahles ein sehr starkes Signal entsteht, weil der Empfänger nicht die Änderung der Intensität der Lichtstärke des aus bestimmten Gründen relativ schwachen reflektierten Strahles feststellt, wie bisher, sondern deutlich zwischen dem Vorliegen eines kräftigen reflektierten Lichtstrahles und seinem Ausbleiben unterscheidet. Diese optische Einrichtung ist aus diesem Grund wesentlich unempfindlicher und zuverlässiger, als bisher bekannte.Another useful embodiment is set out in claim 23. The change in position of the sensing element is used to also shift a light beam reflected by the sensing element, which comes from a light beam directed onto the sensing element. Compared to conventional optical sensors, there is the advantage that a very powerful light beam can be used and that, due to the displacement of the reflected light beam, a very strong signal is produced because the receiver does not detect the change in the intensity of the light intensity of the reflected beam, which is relatively weak for certain reasons , as before, but clearly differentiates between the presence of a strong reflected light beam and its absence. For this reason, this optical device is much less sensitive and reliable than previously known.

Ein weiterer, wichtiger Gedanke geht aus Anspruch 24 hervor. Der Empfänger wird an einer Stelle längs des Weges positioniert, den der reflektierte Lichtstrahl bei der Lageänderung des Fühlelementes durchläuft. An einem Punkt der Bewegung des Fühlelementes erhält der Empfänger den Lichtstrahl, während er über den Rest des Bewegungsweges nicht beaufschlagt wird. Das erzeugbare Signal ist signifikant und stark.Another important idea emerges from claim 24. The receiver is positioned at a point along the path through which the reflected light beam travels when the sensing element changes position. At one point in the movement of the sensing element, the receiver receives the light beam while it is not being acted upon over the rest of the movement path. The signal that can be generated is significant and strong.

Eine andere, alternative Ausführungsform zeichnet sich durch die Maßnahme von Anspruch 25 aus. Hier wird in einer der beiden Stellungen, zwischen denen sich die Lage des Fühlelementes ändert, der Empfänger mit dem Lichtstrahl beaufschlagt. Bewegt sich das Fühlelement aus dieser Stellung, so erhält der Empfänger keinen reflektierten Lichtstrahl und wird deutlich über die stattgefundene Lageänderung informiert.Another, alternative embodiment is characterized by the measure of claim 25. In one of the two positions between which the position of the sensing element changes, the light beam is applied to the receiver. If the sensing element moves out of this position, the receiver receives no reflected light beam and is clearly informed of the change in position that has taken place.

Schließlich ist auch das Merkmal von Anspruch 26 wichtig, weil mit der jeweiligen Wahl der Richtung des Lichtstrahles, der vom Fühlelement reflektiert wird, ein optimales Steuerverhalten wählbar ist, bzw. weil dem Konstrukteur der Vorrichtung Veränderungen in der Zuordnung der einzelnen zusammenwirkenden Komponenten in einem größeren Bereich ermöglicht wird.Finally, the feature of claim 26 is also important, because with the respective choice of the direction of the light beam, which is reflected by the sensing element, an optimal control behavior can be selected, or because the designer of the device changes in the assignment of the individual interacting components in a larger one Area is enabled.

Anhand der Zeichnungen werden nachstehend Ausführungsformen des Erfindungsgegenstandes erläutert. Es zeigen:

  • Fig. 1 einen Teillängsschnitt durch eine Fadenspeicher und -liefervorrichtung mit einem Maximal- und einem Minimalfühler für die Größe des Fadenvorrats,
  • Fig. 2a eine erste Abwandlung eines Minimal- und Maximalfühlers gemäß Fig. 1,
  • Fig. 2b einen Schnitt in der Ebene 11-11,
  • Fig. 3a eine zweite Abwandlung eines Minimalfühlers von Fig.1,
  • Fig. 3b eine Schnittansicht in der Ebene 111-111 von Fig. 3a,
  • Fig. 4a, 4b einander zugeordnete Ansichten einer weiteren Ausführungsform des Minimalfühlers von Fig. 1,
  • Fig. 5a eine weitere Ausführungsform der beiden Fühler,
  • Fig. 5b eine um 90° gedrehte Ansicht des Maximalfühlers von Fig. 4a,
  • Fig. 6a, 6b zwei einander zugeordnete Ansichten einer weiteren Ausführungsform eines Fühlers,
  • Fig. 7a, 7b zwei einander zugeordnete Ansichten einer weiteren Ausführungsform eines Fühlers,
  • Fig. 8 eine weitere Ausführungsform der beiden Fühler von Fig. 1
  • Fig. 9a, 9b zwei einander zugeordnete Ansichten einer weiteren Ausführungsform des Maximalfühlers von Fig. 1,
  • Fig. 10 den Maximalfühler von Fig. 9a und 9b in einer ausgelenkten Stellung, und
  • Fig. 11a,
  • 11b, 11c drei weitere Ausführungsformen eines auf optischer Basis betriebenen Maximalfühlers.
Embodiments of the subject matter of the invention are explained below with reference to the drawings. Show it:
  • 1 is a partial longitudinal section through a thread storage and delivery device with a maximum and a minimum sensor for the size of the thread supply,
  • 2a shows a first modification of a minimum and maximum sensor according to FIG. 1,
  • 2b shows a section in the plane 11-11,
  • 3a shows a second modification of a minimal sensor from FIG. 1,
  • 3b is a sectional view in the plane 111-111 of Fig. 3a,
  • 4a, 4b associated views of another embodiment of the minimum sensor of FIG. 1,
  • 5a shows a further embodiment of the two sensors,
  • 5b is a view rotated by 90 ° of the maximum sensor from FIG. 4a,
  • 6a, 6b two mutually associated views of a further embodiment of a sensor,
  • 7a, 7b two mutually associated views of a further embodiment of a sensor,
  • 8 shows a further embodiment of the two sensors from FIG. 1
  • 9a, 9b two mutually associated views of a further embodiment of the maximum sensor from FIG. 1,
  • Fig. 10 shows the maximum sensor of Fig. 9a and 9b in a deflected position, and
  • 11a,
  • 11b, 11c three further embodiments of a maximum sensor operated on an optical basis.

In Fig. 1 ist eine Fadanspeicher- und -liefervorrichtung 1 schematisch und in einem Teilschnitt gezeigt, die ein Gehäuseunterteil 2 mit einem seitlichen Haltearm 3 besitzt, an dem ein Träger 4 mit einer Fadenabzugsöse 5 befestigt ist. Im Untergehäuse 2 ist ein nicht dargestellter Antriebsmotor für ein rohrförmiges Fadenwickelorgan 6 enthalten, das sich mit einer Antriebswelle 7 dreht, die die Vorrichtung 1 in axialer Richtung durchsetzt. Auf der Antriebswelle 7 sind in voneinander getrennten Lagerstellen 8 und 9 mit gegeneinander schräggestellten Drehachsen (nicht dargestellt) zwei Hälften 10 und 11 eines trommelförmigen Speicherkörpers drehbar gelagert, die ineinandergreifende Stäbe 12 und 13 besitzen, die eine annähernd zylindrische Oberfläche 15 des Speicherkörpers definieren. Durch die Winkelversetzung zwischen den Drehachsen und gegebenenfalls eine nicht gezeigte Exzentrizität der Drehachsen der beiden Hälften wird über die Antriebswelle 7 auf übliche Weise einem auf der Oberfläche 15 liegenden Fadenvorrat 26 eine Vorschubbewegung in axialer Richtung vom Wickelorgan 6 weg erteilt.In Fig. 1, a thread storage and delivery device 1 is shown schematically and in partial section, which has a lower housing part 2 with a lateral holding arm 3, to which a carrier 4 is fastened with a thread take-off eye 5. The lower housing 2 contains a drive motor (not shown) for a tubular thread winding member 6, which rotates with a drive shaft 7 which passes through the device 1 in the axial direction. On the drive shaft 7, two halves 10 and 11 of a drum-shaped storage body are rotatably mounted in separate bearings 8 and 9 with mutually inclined axes of rotation (not shown), which have interlocking rods 12 and 13 which define an approximately cylindrical surface 15 of the storage body. Due to the angular displacement between the axes of rotation and possibly an eccentricity of the axes of rotation of the two halves (not shown), a feed movement in the axial direction away from the winding member 6 is given via the drive shaft 7 in a conventional manner to a thread supply 26 lying on the surface 15.

Der mit 27 bezeichnete Faden wird durch das Fadenwickelorgan 6 zugeführt und in tangentialer Richtung auf die Oberfläche 15 aufgewickelt, wo er mit mehreren Windungen den Fadenvorrat 26 bildet, aus dem der Faden dann über einen Kopfteil 22 des Speicherkörpers bzw. dessen verdickten Rand durch die Fadenöse 5 wieder abgezogen wird.The thread designated 27 is fed through the thread winding member 6 and wound in the tangential direction onto the surface 15, where it forms the thread supply 26 with several turns, from which the thread then passes over a head part 22 of the storage body or its thickened edge through the thread eyelet 5 is withdrawn again.

In einer längsverlaufenden Vertiefung 16 des Speicherkörpers, die durch eine Wand 17 begrenzt wird, sind ein Maximalfühler 18 und ein Minimalfühler 19 angeordnet, mit denen die jeweilige Größe des Fadenvorrats 26 abtastbar ist. In einem Abstand von den Fühlern 18 und 19 sind Fühlglieder 20 und 21 auf die Fühler 18 und 19 ausgerichtet, die die jeweilige Lage jedes Fühlers abtasten und daraus Signale erzeugen, mit denen z. B. der Antriebsmotor im Gehäuseunterteil 2 in Gang gesetzt oder stillgesetzt wird, um zur Vergrößerung des Fadenvorrats 26 mehr Faden aufzuwinden bzw. mit dem Aufwickeln des Fadens aufzuhören.In a longitudinal recess 16 of the storage body, which is delimited by a wall 17, a maximum sensor 18 and a minimum sensor 19 are arranged, with which the respective size of the thread supply 26 can be scanned. At a distance from the sensors 18 and 19, sensing elements 20 and 21 are aligned with the sensors 18 and 19, which scan the respective position of each sensor and generate signals therefrom with which, for. B. the drive motor in the lower housing part 2 is started or stopped in order to wind up more thread to increase the thread supply 26 or to stop winding the thread.

Da sich der Speicherkörper mit der Antriebswelle 7 mitdrehen möchte, was aber unbedingt zu vermeiden ist, ist im Kopfteil 22 ein Magnet 24 befestigt, der auf einen in einer Halterung 25 untergebrachten Magneten 23 ausgerichtet ist. Zwischen diesen Magneten 23 und 24 wird eine Haltekraft aufgebaut, die den Speicherkörper stillhält, so daß sich die Antriebswelle 7 in ihm dreht und dabei die beiden Hälften 10 und 11 des Speicherkörpers zu der Vorschubbewegung anregt. Im Speicherkörper ist ferner ein Füllkörper 14 enthalten, der das Eindringen von Verunreinigungen in den Hohlraum des Speicherkörpers und zu den Lagerstellen 8 und 9 zu verhindern hat.Since the storage body wants to rotate with the drive shaft 7, but this is absolutely to be avoided, a magnet 24 is fastened in the head part 22, which is aligned with a magnet 23 accommodated in a holder 25. Between these magnets 23 and 24, a holding force is built up which keeps the storage body still, so that the drive shaft 7 rotates in it and thereby excites the two halves 10 and 11 of the storage body to the feed movement. A filler 14 is also contained in the storage body and has to prevent the ingress of contaminants into the cavity of the storage body and to the bearing points 8 and 9.

Der Fadenvorrat 26 soll eine bestimmte Größe haben, die sich in Abhängigkeit davon, wieviel neuen Faden das Fadenwickelorgan 6 aufwindet und wieviel Faden durch die Fadenabzugsöse 5 abgezogen wird, verändert. Die Größe soll zwischen einem Maximal- und einem Minimalwert schwanken, die beide nicht überschritten werden dürfen. Demzufolge ist in Fig. 1 der Minimalwertfühler 19 betätigt, was anzeigt, daß der Fadenvorrat größer ist als der Minimalwert, während der Maximalfühler 18 nicht betätigt ist, was anzeigt, daß der Fadenvorrat 26 richtigerweise noch kleiner als der Maximalwert ist.The thread supply 26 should have a certain size, which changes depending on how much new thread the thread winding member 6 winds up and how much thread is drawn through the thread take-off eye 5. The size should fluctuate between a maximum and a minimum value, both of which must not be exceeded. Accordingly, in FIG. 1 the minimum value sensor 19 is actuated, which indicates that the thread supply is larger than the minimum value, while the maximum sensor 18 is not actuated, which indicates that the thread supply 26 is correctly still smaller than the maximum value.

Bei der Ausführungsform von Fig. 2a, 2b sind der Maximalund der Minimalfühler 18,19 von Fühlgliedern gebildet, die die beiden Enden 65, 65' einer einstückigen Metall-Blattfeder 66 sind. Die Metallblattfeder 66 ist mit einem ebenen Basisteil 67 in der Vertiefung 16 mit einer Schraube 68 leichtaustauschbar festgelegt. Vom Basisteil 67 erstrecken sich senkrechte Schenkel 71 in Richtung zur Oberfläche 15 der Speicherkörper, von denen die Enden 65, 65' seitlich weggebogen sind, und zwar derart, daß ohne den Auflagedruck der Windungen 27 jedes Ende 65, 65' über die Oberfläche 15 ragt. Das Ende 65' ist gegenüber einem Zwischenteil 70 so abgebogen, daß es in unbelastetem Zustand gerade nicht oberhalb der Oberfläche 15 liegt, sondern eine schräge Auflauffläche für die Windungen 27 bildet, während in belastetem Zustand so um eine Kippachse 69' in die Vertiefung gedrängt ist (Fig. 2a), daß der Zwischenteil 70 annähernd mit der Oberfläche 15 bündig ist. Die Kippachse 69' des Endes 65' könnte auch am unteren Ende des hinteren Schenkels 71 im Übergang zum Basisteil 67 liegen. Das andere Ende 65 hat seine Kippachse 69 entweder - wie gezeigt - im Übergang vom rechten Schenkel 71 zum Basisteil 67 oder im Übergang vom Ende 65 zum rechten Schenkel 71. Die Fühlglieder 20', 21'sind Näherungs-Initiatoren, die ein elektromagnetisches oder ein Wirbelstromfeld erzeugen, das durch Lageänderung des elektrisch leitfähigen Fühlelementes 28', 28" zur Signalerzeugung beeinflußt wird. Solche Näherungs-Initiatoren sind handelsüblich und in unterschiedlichen Empfindlichkeits-Abstufungen erhältlich. Sie arbeiten auch dann einwandfrei, wenn andere metallische Elemente in der Nähe vorliegen. Deshalb beeinträchtigt die einstückige Ausbildung der Blattfeder 66 das ordnungsgemäße Arbeiten beider Initiatoren 20', 21'nicht. Aber es könnten die beiden Fühlelemente 28', 28" auch durch getrennte Blattfedern gebildet werden.In the embodiment of Figures 2a, 2b, the maximum and minimum sensors 18, 19 are formed by sensing members which are the two ends 65, 65 'of an integral metal leaf spring 66. The metal leaf spring 66 is fixed with a flat base part 67 in the recess 16 with a screw 68 in an easily replaceable manner. Vertical legs 71 extend from the base part 67 in the direction of the surface 15 of the storage body, from which the ends 65, 65 'are laterally bent away, in such a way that each end 65, 65' projects above the surface 15 without the contact pressure of the turns 27 . The end 65 'is bent relative to an intermediate part 70 in such a way that it does not lie above the surface 15 in the unloaded state, but rather forms an oblique run-up surface for the windings 27, while in the loaded state it is pushed into the depression about a tilt axis 69' (Fig. 2a) that the intermediate part 70 is approximately flush with the surface 15. The tilt axis 69 'of the end 65' could also lie at the lower end of the rear leg 71 in the transition to the base part 67. The other end 65 has its tilt axis 69 either - as shown - in the transition from the right leg 71 to the base part 67 or in the transition from the end 65 to the right leg 71. The sensing elements 20 ', 21' are proximity initiators which are electromagnetic or a Generate eddy current field, which is influenced by changing the position of the electrically conductive sensing element 28 ', 28 "for signal generation. Such proximity initiators are commercially available and are available in different sensitivity levels. They work perfectly even when there are other metallic elements nearby. Therefore The one-piece design of the leaf spring 66 does not impair the proper functioning of both initiators 20 ', 21'. However, the two sensing elements 28 ', 28 "could also be formed by separate leaf springs.

In den Fig. 3a, 3b und 3c sind die Maximal- und Minimalfühler 18a und 19a so ausgebildet, daß ein blockförmiges Fühlerelement 28, in das ein Permanentmagnet 29 mit einer bestimmten Polung baulich eingegliedert ist, auf einer Biegefeder 30 gelagert ist, die auf einem Widerlager 31 befestigt ist. Die Biegefeder 30 kann aus Weichgummi oder einem Elastomer bestehen und knickt bei einer Belastung des Fühlelementes 28 durch die Fadenwindungen des Fadenvorrats in einem Bereich 35 ab. In Fig. 1 sind die Fühlerelemente auf annähernd zur Achse der Vorrichtung 1 radialen Biegefedern befestigt, während sie gemäß den Fig. 3a-c auf annähernd in Axialrichtung verlaufenden Biegefedern 30 befestigt sind. Jede Biegefeder 30 sichert gleichzeitig die Lage des Fühlelementes 28 in seinen beiden Stellungen, wobei in der einen Stellung unter der Rückstellkraft der Biegefeder 30 das Fühlelement 28 mit einer keilförmigen Spitze 34, einer annähernd senkrecht zur Oberfläche 15 liegenden Anlagefläche 33 und einer Schrägfläche 32 über die Oberfläche 15 ragt, und zwar annähernd in der Höhe des Durchmessers der Fadenwindungen. In der anderen Stellung, in der die Biegefeder abgeknickt ist (Fig. 3c), schließt die Spitze 34 des Fühlelementes 28 mit der Oberfläche 15 annähernd bündig ab, so daß die Fadenwindungen des Fadenvorrats im wesentlichen unbehindert vorwärtsgleiten können.3a, 3b and 3c, the maximum and minimum sensors 18a and 19a are designed so that a block-shaped sensor element 28, in which a permanent magnet 29 is structurally incorporated with a certain polarity, is mounted on a spiral spring 30, which on a Abutment 31 is attached. The spiral spring 30 can consist of soft rubber or an elastomer and bends in a region 35 when the sensing element 28 is loaded by the thread turns of the thread supply. In FIG. 1, the sensor elements are fastened to spiral springs approximately radial to the axis of the device 1, while according to FIGS. 3a-c they are fastened to spiral springs 30 running approximately in the axial direction. Each spiral spring 30 simultaneously secures the position of the sensing element 28 in its two positions, whereby in the one position under the restoring force of the spiral spring 30, the sensing element 28 with a wedge-shaped tip 34, a bearing surface 33 lying approximately perpendicular to the surface 15 and an inclined surface 32 over the Surface 15 protrudes, approximately at the height of the diameter of the thread turns. In the other position, in which the spiral spring is kinked (FIG. 3c), the tip 34 of the sensing element 28 is approximately flush with the surface 15, so that the thread turns of the thread supply can slide forward essentially unimpeded.

Gemäß Fig. 3b sitzt das Fühlelement 28 in der eng an die Breite des Fühlelementes 28 angepaßten Vertiefung 16 des Speicherkörpers. Die keilförmige Spitze 34 hat einen konvexen Verlauf. Der Permanentmagnet 29 ist beispielsweise so angeordnet, daß er in der Stellung gemäß Fig. 2a ein Magnetfeld mit Magnetlinien M erzeugt, die in der Mitte des Magnetfeldes gerade auf das Fühlglied 20 ausgerichtet sind. Das Fühlglied 20 ist zweckmäßigerweise ein Hallelement, das Änderungen der Stärke des Magnetfeldes sofort feststellt und daraus ein Signal ableiten kann.3b, the sensing element 28 is seated in the recess 16 of the storage body which is closely matched to the width of the sensing element 28. The wedge-shaped tip 34 has a convex shape. The permanent magnet 29 is arranged, for example, in such a way that, in the position shown in FIG. 2a, it generates a magnetic field with magnetic lines M, which are aligned with the sensing element 20 in the middle of the magnetic field. The sensing element 20 is expediently a Hall element which immediately detects changes in the strength of the magnetic field and can derive a signal therefrom.

Es liegt auf der Hand, daß in der anderen Stellung des Fühlelements 28 (Fig. 3c) das Magnetfeld mit den Magnetlinien M zur Seite gekippt ist, so daß das Fühlglied 21 des Minimalfühlers 19a durch das Magnetfeld wesentlich schwächer beaufschlagt ist, als in der einen Stellung gemäß Fig. 2a. Auf diese Weise kann das Fühlglied 20 oder 21 entweder beim Wegkippen des Fühlelements 28 oder beim Zurückkippen des Fühlelements 28 ein Signal entwickeln, oder in beiden Fällen.It is obvious that in the other position of the sensing element 28 (Fig. 3c) the magnetic field with the magnetic lines M is tilted to the side, so that the sensing element 21 of the minimum sensor 19a is acted upon by the magnetic field much weaker than in one Position according to Fig. 2a. In this way, the sensing element 20 or 21 can develop a signal either when the sensing element 28 is tilted away or when the sensing element 28 is tilted back, or in both cases.

Bei der Ausführungsform des Minimalfühlers 18b gemäß den Fig. 4a und 4b ist wiederum das blockförmige Fühlerelement 28 mit dem integrierten Permanentmagneten 29 vorgesehen, das um eine annähernd parallel zu den Fadenwindungen liegende Schwenkachse 36 in einer Lagerstelle 37 im Speicherkörper kippbar ist. Die Achse 36 befindet sich zweckmäßigerweise in der Nähe des Massenschwerpunkts des Fühlelements mit dem Permanentmagneten 29, so daß zum Kippen des Fühlelements 28 nur eine geringe Kraft erforderlich ist. Es wäre auch möglich, die Schwenkachse 36 direkt im Schwerpunkt anzubringen. Die Rückstellkraft, die das Fühlelement 28 aus der nach unten gekippten Stellung (Fig. 4c) wieder in die in Fig. 3a gezeigte Stellung zurückführt, wird bei dieser Ausführungsform durch einen im Speicherkörper angeordneten, weiteren Permanentmagneten 38 erzeugt, der z. B. umgekehrt gepolt ist wie der Permanentmagnet 29 im Fühlelement 28. Die Magneten 29 und 38 wirken derart zusammen, daß das Fühlelement 28 wieder in die Stellung gemäß Fig. 3a zurückgeschwenkt wird, sobald die Belastung durch die Fadenwindungen aufgehört hat.In the embodiment of the minimum sensor 18b according to FIGS. 4a and 4b, the block-shaped sensor element 28 with the integrated permanent magnet 29 is again provided, which can be tilted about a pivot axis 36 lying approximately parallel to the thread turns in a bearing 37 in the storage body. The axis 36 is expediently in the vicinity of the center of gravity of the sensing element with the permanent magnet 29, so that only a small force is required to tilt the sensing element 28. It would also be possible to mount the pivot axis 36 directly in the center of gravity. The restoring force, which returns the sensing element 28 from the downward tilted position (FIG. 4c) to the position shown in FIG. 3a, is generated in this embodiment by a further permanent magnet 38 arranged in the storage body. B. reversed polarity as the permanent magnet 29 in the sensing element 28. The magnets 29 and 38 cooperate in such a way that the sensing element 28 is pivoted back into the position shown in FIG. 3a, as soon as the load from the thread turns has ceased.

Bei der Ausführungsform von Fig. 5a sind der Minimal- und der Maximalfühler 18c, 19c als ovale, scheibenförmige Fühlerelemente 39 ausgebildet, in die mittig die Permanentmagneten 29 eingegliedert sind. Die Aufstellkraft für jedes Fuhlerelement 39 wird durch einen weiteren Permanentmagneten 38 mit umgekehrter Polung erzeugt. Fig. 5b verdeutlicht, daß jedes Fühlerelement 39 relativ breit ausgebildet ist und damit stabil auf einer Führungsbahn 43 rollen kann, die in der Vertiefung 16 des Speicherkörpers angeordnet ist und axial verläuft. In der durch den Permanentmagneten 38 bewirkten, aufrechten Stellung des Fühlelements 39 steht eine zweckmäßigerweise strukturierte, z. B. quergerippte, Oberfläche 40 über die Oberfläche 15 des Speicherkörpers über, wo sie durch den Faden 27 leicht so beaufschlagt werden kann, daß das Fühlelement, z. B. der Minimalfühler 19c, zur Seite gerollt wird und mit seiner Fläche 40 bündig mit der Oberfläche 15 abschließt. Auf der Führungsbahn 43 können Anschläge 41 und 42 vorgesehen sein, die die beiden Stellungen jedes Fühlerelements formschlüssig festlegen.In the embodiment of FIG. 5a, the minimum and maximum sensors 18c, 19c are designed as oval, disk-shaped sensor elements 39, into which the permanent magnets 29 are incorporated in the center. The positioning force for each sensor element 39 is generated by a further permanent magnet 38 with reverse polarity. Fig. 5b illustrates that each sensor element 39 is relatively wide and can therefore roll stably on a guideway 43 which is arranged in the recess 16 of the storage body and extends axially. In the upright position of the sensing element 39 caused by the permanent magnet 38 there is an expediently structured, e.g. B. cross-ribbed, surface 40 over the surface 15 of the storage body over where it can be easily acted upon by the thread 27 so that the sensing element, for. B. the minimum sensor 19c, is rolled to the side and is flush with its surface 40 with the surface 15. Stops 41 and 42 can be provided on the guideway 43, which positively fix the two positions of each sensor element.

Bei der Ausführungsform des Minimalfühlers 18b gemäß Fig. 6a und 6b ist ein Fühlerelement 46 in Form einer kreisförmigen Scheibe einer bestimmten Breite vorgesehen, in das wiederum der Permanentmagnet 29 integriert ist. Im Speicherkörper ist eine Führungsbahn 44 mit einer Stufe 45 vorgesehen, auf der das Fühlerelement 46 derart abrollen kann, daß es in der einen Stellung über die Fläche 15 ragt und in der anderen Stellung mit der Fläche 15 bündig abschließt (strichliert angedeutet). Die Aufstellkraft bzw. die das Fühlerelement 46 aus der anderen Stellung in die eine Stellung rückführende Aufstellkraft wird durch den weiteren Permanentmagneten 38 erzeugt. Auf der Führungsbahn 44 sind wiederum die Anschläge 41 und 42 vorgesehen, die die beiden Endstellungen formschlüssig festlegen. Ferner können im Fühlerelement 46 Ausnehmungen 48 eingeformt sein, die mit Zähnen 47 auf der Führungsbahn 44 derart zusammenarbeiten, daß sich das Fühlerelement 46 nicht relativ zur Führungsbahn 44 verdrehen kann.In the embodiment of the minimum sensor 18b according to FIGS. 6a and 6b, a sensor element 46 is provided in the form of a circular disk of a certain width, in which the permanent magnet 29 is integrated. In the storage body, a guide track 44 is provided with a step 45 on which the sensor element 46 can roll such that it is in one position protrudes above the surface 15 and in the other position is flush with the surface 15 (indicated by dashed lines). The positioning force or the positioning force returning the sensor element 46 from the other position to the one position is generated by the further permanent magnet 38. The stops 41 and 42, which fix the two end positions in a form-fitting manner, are again provided on the guide track 44. Furthermore, recesses 48 can be formed in the sensor element 46, which cooperate with teeth 47 on the guide track 44 in such a way that the sensor element 46 cannot rotate relative to the guide track 44.

Im übrigen könnte das Fühlelement 46 auch eine ballförmige Gestalt haben.Otherwise, the sensing element 46 could also have a spherical shape.

Weiterhin wäre es möglich, bei den vorerwähnten Ausführungsformen anstelle der weiteren Permanentmagneten 38 Federn zu verwenden, die die Aufstellkraft für das Fühlelement erzeugen.Furthermore, it would be possible to use 38 springs instead of the other permanent magnets in the aforementioned embodiments, which generate the raising force for the sensing element.

Bei der Ausführungsform des Minimalfühlers 18e gemäß den Fig. 7a und 7b ist wiederum das blockförmige Fühlelement 28 mit dem integrierten Permanentmagneten 29 vorgesehen und um die Achse 36 in den Lagerstellen 37 im Speicherkörper kippbar gelagert. An der Unterseite des Fühlerelements 28 ist ein Verlängerungszapfen 64 angeordnet, an dem eine Zugfeder 49 angreift, deren freies Ende an einem im Speicherkörper festen Widerlager 50 verankert ist. Die Zugfeder 49 erbringt die Aufstellkraft für das Fühlelement 28. Es könnte dabei ein im Speicherkörper angeordneter, nicht dargestellter Anschlag vorgesehen sein, um die Stellung gemäß Fig. 6a für das Fühlelement 28 formschlüssig festzulegen.In the embodiment of the minimum sensor 18e according to FIGS. 7a and 7b, the block-shaped sensing element 28 with the integrated permanent magnet 29 is again provided and is tiltably supported about the axis 36 in the bearing points 37 in the storage body. An extension pin 64 is arranged on the underside of the sensor element 28, on which a tension spring 49 engages, the free end of which is anchored to an abutment 50 fixed in the storage body. The tension spring 49 provides the set-up force for the sensing element 28. A stop (not shown) arranged in the storage body could be provided in order to positively determine the position according to FIG. 6a for the sensing element 28.

Bei der Ausführungsform der Minimal- und Maximalfühler 19f, 18f gemäß Fig. 8 ist wiederum jeweils ein blockförmiges Fühlerelement 28 vorgesehen, das allerdings in bezug auf die Vorschubbewegung der Windungen des Fadens 17 gegenüber den vorerwähnten Ausführungsbeispielen um 180° gedreht angeordnet ist, so daß seine schräge Auflauffläche 32 der Vorschubbewegung entgegengesetzt gerichtet ist. Jedes Fühlerelement 28 ist zudem an der Spitze bei 51 abgerundet.In the embodiment of the minimum and maximum sensors 19f, 18f according to FIG. 8, a block-shaped sensor element 28 is again provided, which, however, is arranged rotated by 180 ° with respect to the advancing movement of the turns of the thread 17 relative to the aforementioned exemplary embodiments, so that its oblique ramp surface 32 of the feed movement is directed opposite. Each sensor element 28 is also rounded off at 51.

Beide Fühlerelemente 28 sind in radialen Schächten 52 des Speicherkörpers radial zu dessen Achse verschiebbar gelagert, und zwar mittels der Druckbolzen 54, die eine Abstützung 53 verschiebbar durchsetzen. Unter der Abstützung 53 ist an jedem Druckbolzen 54 ein verbreiterter Bund 55 angeformt, an dem sich eine Druckfeder 56 abstützt, deren freies Ende auf einer Widerlagerfläche 57 aufliegt. Die Schächte 52 sind durch eine dünne Haut 58 nach außen hin hermetisch abgedichtet.Both sensor elements 28 are mounted in radial shafts 52 of the storage body such that they can be displaced radially to the axis thereof, namely by means of the pressure bolts 54 which push through a support 53. Under the support 53, an enlarged collar 55 is formed on each pressure bolt 54, on which a compression spring 56 is supported, the free end of which rests on an abutment surface 57. The shafts 52 are hermetically sealed from the outside by a thin skin 58.

Der Minimalfühler 19f ist durch den Fadenvorrat so weit eingeschoben, daß seine Spitze 51 in etwa mit der Fläche 15 bündig abschließt und der Bund 55 von der Abstützung 53 weggedrückt ist. Das Fühlelement 28 des Maximalfühlers 18f wird hingegen durch die Druckfeder 56 bis zur Anlage des Bundes 55 an der Abstützung 53 aus dem Schacht 52 herausgeschoben, so daß die Auflauffläche 32 über die Oberfläche 15 ragt und die Haut 58 hochgewölbt ist.The minimum sensor 19f is inserted so far through the thread supply that its tip 51 is approximately flush with the surface 15 and the collar 55 is pressed away from the support 53. The sensing element 28 of the maximum sensor 18f, on the other hand, is pushed out of the shaft 52 by the compression spring 56 until the collar 55 abuts the support 53, so that the run-up surface 32 protrudes above the surface 15 and the skin 58 is arched up.

Die Fühlglieder 20 und 21 sind hier Hallelemente, die auf die bei einer Verschiebung jedes Füllgliedes 28 eintretende Abschwächung der Stärke des Magnetfeldes ansprechen.The sensing elements 20 and 21 here are Hall elements which respond to the weakening of the strength of the magnetic field which occurs when each filling element 28 is displaced.

Bei der Ausführungsform gemäß den Fig. 9a, 9b ist wiederum das blockförmige Fühlelement 28 mit seinem Permanentmagneten 29 vorgesehen, das um die Achse 36 in den Lagerstellen 37 des Speicherkörpers kippbar gelagert ist. In Fig. 9a ist Zwar ein weiterer Permanentmagnet 38 angedeutet, der zum Erzeugen der Aufstellkraft vorgesehen sein kann, jedoch ist bei dieser Ausführungsform dieser weitere Permanentmagnet 38 auch entbehrlich.In the embodiment according to FIGS. 9a, 9b, the block-shaped sensing element 28 is again provided with its permanent magnet 29, which is tiltably mounted about the axis 36 in the bearing points 37 of the storage body. A further permanent magnet 38 is indicated in FIG. 9a, which may be provided for generating the raising force, but this further permanent magnet 38 is also unnecessary in this embodiment.

Das auf das Fühlelement 28 ausgerichtete Fühlglied ist nämlich ein Kippelement 58, in das ein Permanentmagnet 60 baulich integriert ist, der gleich gepolt ist, wie der Permanentmagnet 29 im Fühlelement 28. Das Kippelement 58 besitzt einen hochstehenden Arm 59, der in einen optoelektronischen Sensor 63 eingreift. Das Kippelement 58 ist um eine zur Achse 36 parallele Achse 61 in einer Lagerstelle 62 kippbar gelagert.The sensing element aligned with the sensing element 28 is namely a tilting element 58, in which a permanent magnet 60 is integrated, which is polarized in the same way as the permanent magnet 29 in the sensing element 28. The tilting element 58 has an upstanding arm 59, which is integrated into an optoelectronic sensor 63 intervenes. The tilting element 58 is mounted such that it can be tilted about an axis 61 parallel to the axis 36 in a bearing 62.

Die beiden Permanentmagneten 29 und 60 ziehen einander an und wirken aufeinander derart ein, daß bei einer Kippbewegung des Fühlelements 28 (Fig. 10) des Minimalfühlers 18g auch der Permanentmagnet 60 des Kippelements 58 um die Achse 61 gekippt wird, weil sich die Magnetlinien der beiden Magnetfelder beider Magneten parallel auszurichten versuchen, wodurch der Arm 59 aus dem opto- elektronischen Sensor 63 herauskippt und dieser zum Erzeugen eines Signals angeregt wird. Infolge der Magnetwirkung zwischen den beiden Magneten 60 und 29 haben diese gemeinsam das Bestreben, sich wieder in die Lage gemäß Fig. 8a zu bewegen, wenn die Kippbelastung am Fühlelement 28 abgebaut ist. Aus diesem Grund ist ein die Aufstellkraft bewirkender Permanentmagnet 38 hier nicht erforderlich.The two permanent magnets 29 and 60 attract each other and act on one another such that when the sensing element 28 (FIG. 10) of the minimum sensor 18g is tilted, the permanent magnet 60 of the tilting element 58 is also tilted about the axis 61 because the magnetic lines of the two Attempt to align the magnetic fields of both magnets in parallel, as a result of which the arm 59 tilts out of the optoelectronic sensor 63 and the latter is excited to generate a signal. As a result of the magnetic effect between the two magnets 60 and 29, these together have the tendency to move back into the position according to FIG. 8a when the tilting load on the sensing element 28 has been reduced. For this reason, a permanent magnet 38 which causes the lifting force is not required here.

Die Ausführungsformen der Fig. Ha, 11b und 11c zeigen ein optisches Prinzip bei jeweils einem Maximalfühler 18.The embodiments of FIGS. Ha, 11b and 11c show an optical principle with one maximum sensor 18 each.

Gemäß Fig. 11a ist der Maximalfühler 18 durch das Fühlelement 28" gebildet, das vom federnden Ende 65 einer in nicht näher dargestellter Weise hinter der Oberfläche 15 des Speicherkörpers befestigten Blattfeder 66' gebildet wird. Das Ende 65 steht in der unbelasteten Stellung I schräg über die Oberfläche 15 vor, während es durch die Fadenwindungen 27 in die belastete Stellung 11 mit der Oberfläche 15 in etwa bündig wegdrückbar ist. Das Ende 65 besitzt eine reflektierende Oberfläche 74, die auch durch eine dort vorgesehene Spiegelfläche gebildet werden kann. Im festen Teil 3 der Vorrichtung 1 ist als Fühlglied 20" ein auf Licht ansprechendes Element, z. B. ein Fototransistor, angeordnet, dem eine Lichtquelle 72, z. B. eine Lichtdiode, beigeordnet ist. Die Lichtquelle 72 erzeugt einen Lichtstrahl 73, z. B. aus infrarotem Licht, der so gerichtet ist, daß er auf die Oberfläche 74 des Endes 65 auftrifft und in der Stellung I des Fühlelementes 28" in der Richtung 73 I reflektiert wird. Auf die Richtung 73 des reflektierten Lichtstrahls ist das Fühlglied 20" ausgerichtet. Wird hingegen das Ende 65 durch die Windungen in die Stellung II vertagert, so wird der Lichtstrahl 73 in einer Richtung 73 11 reflektiert, in der er nicht mehr auf das Fühlglied 20" trifft.According to FIG. 11 a, the maximum sensor 18 is formed by the sensing element 28 ″, which is formed by the resilient end 65 of a leaf spring 66 ′ fastened behind the surface 15 of the storage body in a manner not shown in detail. The end 65 protrudes obliquely in the unloaded position I. the surface 15, while it can be pushed away approximately flush with the surface 15 by the thread turns 27 into the loaded position 11. The end 65 has a reflecting surface 74, which can also be formed by a mirror surface provided there the device 1 is as Sensor element 20 "arranged a light-responsive element, for example a phototransistor, to which a light source 72, for example a light diode, is associated. The light source 72 generates a light beam 73, for example from infrared light, which is directed so that it strikes the surface 74 of the end 65 and is reflected in the position I of the sensing element 28 "in the direction 73 I. The sensing element 20 "is aligned with the direction 73 of the reflected light beam. If, however, the end 65 is displaced into position II by the windings, the light beam 73 is reflected in a direction 73 11 in which it is no longer directed onto the sensing element 20" meets.

Bei der Ausführungsform von Fig. 11 b ist die Lichtquelle 72 in das Fühlglied 20" baulich integriert, das somit neben der Lichtquelle auch einen Empfänger für den Lichtstrahl 73 enthält. Die Lichtquelle des Fühlgliedes 20" sendet einen Lichtstrahl 73 in etwa radial zum Speicherkörper und senkrecht zur Oberfläche 15 auf, der in der Stellung des Endes 65 in einer Richtung 73 I reflektiert wird, in welcher Richtung er nicht auf das Fühlglied 20" trifft. Wird hingegen das Ende 65 in die Stellung II verlagert, in der es mit der Oberfläche 15 annähernd fluchtet, so wird der Lichtstrahl 73 wiederum radial und senkrecht zur Oberfläche 15 in einer Richtung 73 II reflektiert, in der er voll auf das Fühlglied 20" trifft. Das Fühlelement 28", das wiederum als Maximalfühler 18 eingesetzt ist, wird somit zur Signalerzeugung in seiner zweiten Stellung II abgetastet, in der der Lichtstrahl 73 in der Richtung 73 II auf das Fühlglied 20" reflektiert wird.In the embodiment of FIG. 11 b, the light source 72 is structurally integrated in the sensing element 20 ", which thus also contains a receiver for the light beam 73 in addition to the light source. The light source of the sensing element 20" sends a light beam 73 approximately radially to the storage body and perpendicular to the surface 15, which is reflected in the position of the end 65 in a direction 73 I, in which direction it does not hit the sensing element 20 ". On the other hand, the end 65 is shifted to the position II in which it is with the surface 15 is approximately aligned, the light beam 73 is in turn reflected radially and perpendicularly to the surface 15 in a direction 73 II in which it hits the sensing element 20 ″ completely. The sensing element 28 ", which in turn is used as the maximum sensor 18, is thus scanned for signal generation in its second position II, in which the light beam 73 is reflected in the direction 73 II on the sensing element 20".

Bei der Ausführungsform von Fig. 11c ist das Fühlelement 28" als radial in die Speicheroberfläche 15 hineinverschiebbarer Block ausgebildet, der eine schräge Auflauffläche 74' für die Fadenwindungen besitzt, wobei die Oberfläche 74' entweder spiegelnd oder mit einem spiegelnden Einsatz ausgebildet ist. Das Fühlelement 28"" gehört hier ebenfalls zu einem Maximalfühler 18. Im festen Teil 3 der Vorrichtung ist die Lichtquelle 72 angeordnet, die einen Lichstrahl 73 auf die Oberfläche 74' des Fühlelementes 28"" aussendet, der in etwa radial und senkrecht zur Oberfläche 15 verläuft. In der Stellung I des Fühlelementes 28"" in der dieses über die Oberfläche 15 vorsteht, wird der Lichtstrahl 73 in einer Richtung 73' reflektiert, in der er auf das Fühlglied 20' trifft, das wiederum eine Fotodiode oder ein auf Licht ansprechender Signalgeber ist. In der Stellung II, in der das Fühlelement 28"" in etwa mit der Oberfläche 15 fluchtet wird der reflektierte Strahl aus dem Lichtstrahl 73 in der Zeichnung nach unten versetzt und tritt in einer Richtung 73 II aus, in der er das Fühlglied 20" nicht zu treffen vermag.In the embodiment of FIG. 11c, the sensing element 28 "is designed as a block which can be moved radially into the storage surface 15 and which has an oblique run-up surface 74 'for the thread turns, the surface 74' either being reflective or with a reflective insert. The sensing element 28 "" here also belongs to a maximum sensor 18. In the fixed part 3 of the device, the light source 72 is arranged, which emits a light beam 73 onto the surface 74 'of the sensing element 28 "", which extends approximately radially and perpendicular to the surface 15. In position I of the sensing element 28 "" in which it protrudes above the surface 15, the light beam 73 is reflected in a direction 73 'in which it strikes the sensing element 20', which in turn is a photodiode or a light-sensitive signal transmitter In position II, in which the sensing element 28 "" is approximately aligned with the surface 15, the reflected beam from the light beam 73 is shown in the drawing offset downward and emerges in a direction 73 II in which he is unable to hit the sensing element 20 ".

Bei den Ausführungsformen der Fig. 11 bis 11 c kann der auf das Fühlelement gerichtete Lichtstrahl praktisch jede beliebige Richtung haben. Es ist nur dafür zu sorgen, daß der reflektierte Lichtstrahl in irgendeiner Stellung des Fühlelementes auf das Fühlglied reflektiert wird und in anderen Stellungen des Fühlelementes das Fühlglied nicht erreichen kann. Unerheblich ist dabei, in welcher Richtung relativ zur Oberfläche 15 bzw. zur Achse des Speicherkörpers das Fühlelements durch die Fadenwindungen verlagert werden kann (entweder radial oder um eine zur Speicherkörperachse parallele oder zu den Fadenwindungen parallele Kippachse), vorausgesetzt es ist sichergestellt, daß durch die Lageänderung des Fühlelementes der reflektierte Lichtstrahl ebenfalls eine Lageänderung ausführt, die das Fühlglied zur Signalerzeugung benutzen kann.In the embodiments of FIGS. 11 to 11 c, the light beam directed onto the sensing element can have practically any direction. It is only necessary to ensure that the reflected light beam is reflected on the sensing element in any position of the sensing element and cannot reach the sensing element in other positions of the sensing element. It is irrelevant in which direction relative to the surface 15 or to the axis of the storage body the sensing element can be displaced by the thread turns (either radially or about a tilt axis parallel to the storage body axis or parallel to the thread turns), provided that it is ensured that the Change in position of the sensing element, the reflected light beam also carries out a change in position, which the sensing element can use to generate signals.

Claims (26)

1. Yarn storing and feeding device (1), having a stationary, drum-shaped storage body (10, 11), onto the surface of which a yarn reserve can be wound in the yarn take-off direction and from which the yarn can be withdrawn overhead, characterized in that the size of the yarn reserve in the axial direction of the storage body can be monitored by a mechanical sensing element (28 to 28") which is mounted movable in the storage body below the surface of the latter and which can be moved by the yarn storage between a first and a second position (I, II), in the first position (1) the sensing element protruding beyond the surface (15) of the storage body (10,11), and in the second position (11) being flush with the surface (15) or being offset backwards below the latter and being loaded in a direction from the second towards the first position, and in that, at a radial distance from the surface (15) of the storage body (10, 11), a sensing component (20, 20', 21, 21', 58) which responds in contactless manner to the position of the sensing element is aligned approximately radially with the sensing element (289, 28', 28", 39, 46) and is arranged outside the storage body (10, 11).
2. Yarn storing and feeding device according to Claim 1, characterized in that the sensing element (28') consists of an electrically or magnetically conductive material, e.g. metal, and in that the sensing component (20', 21') is a proximity sensor by means of which, in the region of the sensing element (28'), a magnetic, electromagnetic or an eddy current field which may be influenced by a change in position of said sensing element (28'), can be generated.
3. Yarn storing and feeding device according to Claims 1 and 2, characterized in that the sensing element (28', 28") is an end (65, 65') of a metal leaf spring (66) arranged in the storage body, which end protrudes in the unstressed position beyond the surface (15) of the storage body.
4. Yarn storing and feeding device according to Claim 1, characterized in that a permanent magnet (29) is incorporated into the sensing element (28, 39, 46), and in that, in the case of the change in the position of the sensing element, the sensing component (20, 21, 58) responds to a change in the magnetic field strength caused by the change in the position of the permanent magnet.
5. Yarn storing and feeding device according to Claim 4, characterized in that the restoring force is only slightly greater than the force required for moving the mass of the sensing element (28) containing the permanent magnet (29) from the one into the other position.
6. Yarn storing and feeding device according to one of Claims 1 to 4, characterized in that the sensing element (28, 28', 28") is tiltable in the storage body about an axis (36, 69) approximately parallel to the yarn windings (27) in the sensing area.
7. Yarn storing and feeding device according to at least one of Claims 1 to 6, characterized in that the sensing element (28) is mounted on a bending spring (30), preferably of rubber.
8. Yarn storing and feeding device according to at least one of Claims 1 to 6, characterized in that the sensing element (28) is biased approximately tangentially to the tilting axis (36) by a tension spring (49).
9. Yarn storing and feeding device according to Claim 4, characterized in that the sensing element (28, 39, 46) is freely movable and in that the restoring force is applied by a further permanent magnet (38) fitted in the storage body.
10. Yarn storing and feeding device according to Claims 1 and 4, characterized in that the sensing element (28) has a sloping run-on surface (32) for the yarn windings (17) and can be displaced in the radial direction - relative to the axis of the storage body - against the force of a compression spring (56).
11. Yarn storing and feeding device according to Claims 1, 4 and 10, characterized in that the sensing element (39) is designed as an oval disc which is supported, in a manner which enables it to be rolled, on a guide path (43) extending in the axial direction of the storage body.
12. Yarn storing and feeding device according to Claims 1,4 and 10, characterized in that the sensing element (46) is designed as a round disc which is supported, in a manner which enables it to be rolled, on a guide path (44) having a step (45).
13. Yarn storing and feeding device according to Claims 11 and 12, characterized in that the guide path (43, 44) has stops (41, 42) against which the sensing element (39,46) is caught in both positions.
14. Yarn storing and feeding device according to Claims 11 and 12, characterized in that the surface (40) of the sensing element, said surface protruding in the one position of the sensing element (39,46) beyond the surface (15) of the storage body, is structured.
15. Yarn storing and feeding device according to Claims 1 and 4, characterized in that the sensing component (20,21) is a Hall element aligned with the sensing element (28, 39, 46).
16. Yarn storing and feeding device according to at least one of Claims 1, 4 and 15, characterized in that, as sensing component (58), the switching device has a tilting element rotatable about an axis (61) parallel to the tilting axis (36) of the sensing element (28) and having an incorporated permanent magnet (60) which is of the same polarity as the permanent magnet (29) of the sensing element and which reacts to a tilting movement of the magnetic field of the sensing element (28) with a tilting movement, and which is in working connection with a switching component (63), e.g. an optoelectronic switching component.
17. Yarn storing and feeding device according to Claim 16, characterized in that the setting-up force for the sensing element (28) and a setting-up force for the tilting element (sensing component 58) are generated by the magnetic action between both permanent magnets (29, 60).
18. Yarn storing and feeding device according to Claim 4, characterized in that the sensing element (28) has the shape of a block having a wedge-shaped tip (34) and is composed of a plastic material into which the permanent magnet (29) is embedded.
19. Yarn storing and feeding device according to at least one of Claims 1 to 18, characterized in that the sensing element (28, 28', 28", 39, 46) lies in a depression (16, 52) of the storage body, which depression is matched to the shape of the sensing element or metal leaf spring (66).
20. Yarn storing and feeding device according to at least one of Claims 1 to 19, characterized in that the depression (52) is covered in sealed manner by a thin skin (58), optionally of nonresilient plastic, which skin is arched in the one position of the sensing element (28) and flush with the surface (15) of the storage body in the other position.
21. Yarn storing and feeding device according to at least one of Claims 1 to 20, characterized in that two sensing elements (28, 28', 28", 39, 46) which monitor the minimum and the maximum size of the yarn storage are arranged one behind the other in the axial direction of the storage body.
22. Yarn storing and feeding device according to Claims 3 and 21, characterized in that the two sensing elements (28', 28") are formed by the two ends (65, 65') of the metal leaf spring (66), which is bent approximately in a U-shape with outward- turned limb ends.
23. Yarn storing and feeding device according to Claim 1 and at least one of Claims 3, 6, 7, 8, 10, 11, 12, 13, 19, 21, 22, characterized in that the sensing element (28"', 28"") is designed to be light-reflecting or with a light-reflecting surface (74), and in that the sensing component (20", 20"') is an optical or optoelectronic receiver which is aligned with the direction of a light beam (73I, 73II) reflected by the sensing element (28"', 28"").
24. Yarn storing and feeding device according to Claim 23, characterized in that the sensing component (20", 20"') designed as receiver is aligned with one direction of the reflected light beam (73i, 7311) which the latter adopts during the change in the position of the sensing element (28"', 28"") between the two positions I, II.
25. Yarn storing and feeding device according to Claims 23 and 24, characterized in that the receiver is aligned with the direction of the light beam (73I, 7311) reflected by the sensing element (28"', 28"") in the one or in the other position (I or II) of the sensing element.
26. Yarn storing and feeding device according to Claims 23 to 25, characterized in that a light source (72) preferably an infrared light source, arranged in fixed manner outside the storage body, is provided, the light beam (23) of which is targeted on the sensing element (28"', 28"").
EP85105703A 1984-08-16 1985-05-09 Yarn storage feeder Expired EP0171516B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 85106977 CN1009912B (en) 1985-05-09 1985-09-14 Yarn accumulation and feeding apparatus

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
SE8404112A SE8404112D0 (en) 1984-08-16 1984-08-16 YARN STORE SENSING MEANS IN A YARN STORING AND FEEDING DEVICE, PARTICULARLY FOR WEAVING MACHINES
SE8404112 1984-08-16
SE8404179A SE8404179D0 (en) 1984-08-22 1984-08-22 YARN STORE SENSING MEANS IN A YARN STORING AND FEEDING DEVICE, PARTICULARLY FOR WEAVING MACHINES
SE8404179 1984-08-22
DE3434257 1984-09-18
DE19843434257 DE3434257A1 (en) 1984-08-16 1984-09-18 Yarn storage and delivery apparatus

Publications (3)

Publication Number Publication Date
EP0171516A2 EP0171516A2 (en) 1986-02-19
EP0171516A3 EP0171516A3 (en) 1987-02-25
EP0171516B1 true EP0171516B1 (en) 1989-03-08

Family

ID=27192346

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85105703A Expired EP0171516B1 (en) 1984-08-16 1985-05-09 Yarn storage feeder

Country Status (2)

Country Link
US (1) US4676442A (en)
EP (1) EP0171516B1 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1217339B (en) * 1988-02-11 1990-03-22 Roy Electrotex Spa WIRE FEEDER FOR TEXTILE MACHINES
SE8800839D0 (en) * 1988-03-09 1988-03-09 Iro Ab PROCEDURE AND DEVICE FOR SPEED CONTROL OF A FOURNISSOR FOR THE INTERMEDIATE STORAGE OF YARN, WIRE OR CLEAR
DE3900507A1 (en) * 1989-01-10 1990-07-12 Rieter Ag Maschf METHOD AND DEVICE FOR CARRYING OUT A BLOCK CHANGE IN A RING SPINNING MACHINE
US5377922A (en) * 1990-06-06 1995-01-03 Iro Ab Sensing and/or analysis system for thread feeder
US5211347A (en) * 1990-06-29 1993-05-18 Sobrevin Societe De Brevets Industriels-Etablissement Thread feed device
IT1267379B1 (en) * 1994-02-15 1997-02-05 Lgl Electronics Spa DEVICE FOR MEASURING WEFT RESERVE AND SIGNALING WEFT BREAKAGE ON WEFT FEEDER EQUIPMENT FOR
IT1267157B1 (en) 1994-11-22 1997-01-28 Lgl Electronics Spa PERFECTED DEVICE AND METHOD FOR SURVEILLANCE OF YARN RESERVE IN WEFT FEEDING APPLIANCES.
KR100305117B1 (en) * 1996-03-26 2001-12-12 브롬 스티그-아르네 Proximity sensor and yarn feeder with a proximity sensor
CN1173154C (en) * 1996-05-23 2004-10-27 Iro有限公司 Method of controlling digital sensor and corresponding digital sensor
DE19639036A1 (en) * 1996-09-23 1998-03-26 Iro Ab Thread delivery device
WO1998046511A1 (en) * 1997-04-17 1998-10-22 Giuseppe Vischiani Device for controlling the accumulation and supply of yarn to textile machines
US5860298A (en) * 1997-05-23 1999-01-19 Jen Hui Chen Thread feeder with thread-twisting preventive device for knitting machines
DE10054103A1 (en) * 2000-10-31 2002-05-08 Iro Patent Ag Baar Yarn feeder
RU2206489C1 (en) * 2001-11-29 2003-06-20 Открытое акционерное общество "Всероссийский научно-исследовательский институт текстильного и легкого машиностроения" Filling thread accumulator control device
DE10246075A1 (en) * 2002-10-02 2004-04-22 Heidelberger Druckmaschinen Ag Wire spool and residual wire detection method
ITTO20040176A1 (en) * 2004-03-17 2004-06-17 Lgl Electronics Spa WEFT FEEDER FOR WEAVING FRAMES WITH STOCK DETECTION DEVICE
SE0401064D0 (en) * 2004-04-21 2004-04-21 Iropa Ag yarn feeders
ITTO20050810A1 (en) * 2005-11-18 2007-05-19 Lgl Electronics Spa STOCK DETECTOR STOCK FOR PLOT FEEDERS
JP2011184181A (en) * 2010-03-11 2011-09-22 Murata Machinery Ltd Yarn winding machine
US9809416B1 (en) 2012-12-15 2017-11-07 Southwire Company, Llc Cable reel length calculator

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1285954A (en) * 1961-01-16 1962-03-02 Improvements to winding equipment for electric wires and cables
CH394899A (en) * 1961-10-31 1965-06-30 Sobrevin Soc De Brevets Ind Et Apparatus for regulating the tension at the exit of a thread as it passes from its unwinding to its winding
US3490710A (en) * 1967-07-31 1970-01-20 Fouquet Werk Frauz & Planck Automatic thread delivery device for textile machines
SE314157B (en) * 1967-10-20 1969-09-01 K Rosen
DE1928040B2 (en) * 1969-06-02 1975-03-13 Karl 8330 Eggenfelden Tannert Jun. Yarn feeding and storage device for textile machines
CH542778A (en) * 1971-09-29 1973-10-15 Sulzer Ag Thread reservoir - eg for shuttleless loom, has stationary, cone-ended drum
US3776480A (en) * 1972-04-05 1973-12-04 Lawson Hemphill Yarn handling apparatus
US3796386A (en) * 1973-04-11 1974-03-12 K Tannert Thread feeder for textile machines
DE2553935A1 (en) * 1975-12-01 1977-06-08 Iro Ab THREAD STORAGE AND DELIVERY DEVICE
DE2743749C3 (en) * 1977-09-29 1984-10-11 SIPRA Patententwicklungs-und Beteiligungsgesellschaft mbH, 7000 Stuttgart Yarn storage and delivery device for textile machines
SE408890B (en) * 1977-11-14 1979-07-16 Aros Electronics Ab KIT AND CONTROL SYSTEM KIT AND DEVICE
US4226379A (en) * 1979-12-06 1980-10-07 Leesona Corporation Loom storage feeder improvement
CH647999A5 (en) * 1980-06-17 1985-02-28 Rueti Ag Maschf THREAD DELIVERY DEVICE FOR TEXTILE MACHINES AND METHOD FOR OPERATING THE THREAD DELIVERY DEVICE.
JP3760027B2 (en) * 1997-06-12 2006-03-29 株式会社ナムコ Information storage medium and game device

Also Published As

Publication number Publication date
US4676442A (en) 1987-06-30
EP0171516A2 (en) 1986-02-19
EP0171516A3 (en) 1987-02-25

Similar Documents

Publication Publication Date Title
EP0171516B1 (en) Yarn storage feeder
DE69718447T2 (en) TOOTHBRUSH WITH A BRUSH HOLDER MOVABLE AGAINST SPRING FORCE
EP1646844A2 (en) Contactless scanning by means of a magnetoresistive sensor
DD282482A5 (en) THREAD DELIVERY DEVICE FOR TEXTILE MACHINES HAVING DIFFERENT THREAD CONSUMPTION, ESPECIALLY KNITTING AND ACTUATING MACHINES
EP0157343A2 (en) Sheet feeder for paper-processing machines including a separating device adjustable to different sheet thicknesses
CH391608A (en) Thread monitors for textile machines
DE69510159T2 (en) Device and method for monitoring the thread reserve in weft feeders
EP0464444B1 (en) Weft feeder
EP0837829B1 (en) Optoelectronic sensor and weft yarn measurement and feeding equipment
DE4141207A1 (en) DEVICE FOR DETERMINING A REMAINING QUANTITY OF A SPOOL THREAD WINDED ABOUT A SPOOL CORE
DE2817185B2 (en) Pile warp thread unwinding device for a terry loom
EP0658507A1 (en) Method for detecting a yarn store in a yarn storage and feed device, and yarn storage and feed device
CH648118A5 (en) DEVICE FOR MEASURING THE LENGTH OF AN ENDLESS MATERIAL REELED ON A REEL.
DE3241362A1 (en) Thread tension regulator
EP0659919A1 (en) Weft thread brake for a loom
DE3717912C2 (en) Location indicator
DE2908137A1 (en) SEWING MACHINE
DE2843105C2 (en) Position sensor for generating pulses for the drive devices of an electronically controlled pattern sewing machine
DE3434257A1 (en) Yarn storage and delivery apparatus
DE3702049C2 (en)
EP1040069B1 (en) Thread delivery device
DE2420959C2 (en) Flat knitting machine with V-shaped needle bed arrangement
EP0790208B1 (en) Device for deflecting a yarn
EP0918476B1 (en) Device for setting rivets, buttons or the like
DE4128105A1 (en) EDGE KEY

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

RBV Designated contracting states (corrected)

Designated state(s): BE CH DE FR GB IT LI SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE CH DE FR GB IT LI SE

17P Request for examination filed

Effective date: 19870518

17Q First examination report despatched

Effective date: 19880115

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE FR GB IT LI SE

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3568564

Country of ref document: DE

Date of ref document: 19890413

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 85105703.4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960422

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19970509

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970509

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010518

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20010521

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020510

EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030131

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20030530

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030627

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20040524

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041201

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

BE20 Be: patent expired

Owner name: A.B. *IRO

Effective date: 20050509

BE20 Be: patent expired

Owner name: A.B. *IRO

Effective date: 20050509