EP0171144A1 - Device for handling well casings - Google Patents
Device for handling well casings Download PDFInfo
- Publication number
- EP0171144A1 EP0171144A1 EP85304072A EP85304072A EP0171144A1 EP 0171144 A1 EP0171144 A1 EP 0171144A1 EP 85304072 A EP85304072 A EP 85304072A EP 85304072 A EP85304072 A EP 85304072A EP 0171144 A1 EP0171144 A1 EP 0171144A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- casing
- load
- pressure
- bellows
- resilient means
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005553 drilling Methods 0.000 claims abstract description 10
- 238000000034 method Methods 0.000 claims description 9
- 239000000725 suspension Substances 0.000 abstract description 2
- 241000239290 Araneae Species 0.000 description 5
- 238000013022 venting Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66C—CRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
- B66C13/00—Other constructional features or details
- B66C13/04—Auxiliary devices for controlling movements of suspended loads, or preventing cable slack
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B19/00—Handling rods, casings, tubes or the like outside the borehole, e.g. in the derrick; Apparatus for feeding the rods or cables
- E21B19/02—Rod or cable suspensions
- E21B19/06—Elevators, i.e. rod- or tube-gripping devices
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B19/00—Handling rods, casings, tubes or the like outside the borehole, e.g. in the derrick; Apparatus for feeding the rods or cables
- E21B19/14—Racks, ramps, troughs or bins, for holding the lengths of rod singly or connected; Handling between storage place and borehole
- E21B19/15—Racking of rods in horizontal position; Handling between horizontal and vertical position
- E21B19/155—Handling between horizontal and vertical position
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B19/00—Handling rods, casings, tubes or the like outside the borehole, e.g. in the derrick; Apparatus for feeding the rods or cables
- E21B19/16—Connecting or disconnecting pipe couplings or joints
Definitions
- the invention relates to a device for facilitating the handling of a load and, more particularly but not exclusively, is concerned with a device for facilitating the handling of casings and similar joints used in drilling.
- the invention also relates to a drilling rig provided with a device in accordance with the invention and a method of handling a load.
- one or more casing strings are set to protect the well bore and/or the formation. Whether the crew members are running surface, intermediate, or production casing, the handling of the heavy individual casings presents special problems.
- the preferred embodiment of the present invention is directed to a device for facilitating the handling of casings and other tubular drill string members to reduce the above problems. It also has applications in the handling of other heavy materials in non-drilling operations.
- a device for facilitating the handling of a load which device comprises:
- one of said first and second members has an end wall and a side wall having at least two elongate slots therein disposed to opposite sides of said one member, and wherein the other member is provided with a bar which extends through said slots and the ends of which provide attachment points for connecting said other member to said lifting block.
- the resilient means may be hydraulic, mechanical or pneumatic.
- the resilient means could comprise a hydraulic piston and cylinder assembly disposed between the first and second members and associated with a control mechanism adapted to admit or vent hydraulic fluid from the assembly to raise or lower the load with respect to the first member.
- a hydraulic accumulator or the like is provided to introduce resilience into the system.
- the resilient means could comprise a spring which would preferably be adjustable. Whilst this would be quite acceptable for substantially uniform loads it is not particularly favoured where the load is not constant.
- the resilient means may act, in use, between the first member and the second member by compressed gas.
- the compressed gas may be contained in a piston and cylinder arrangement or in a bellows.
- means are preferably provided to adjust the gas pressure in the piston and cylinder or bellows either by the admission of gas thereto or by the venting of gas therefrom.
- the gas pressure may be set so that the load is exactly supported by the bellows or the piston and cylinder in an expanded state. Downward pressure on the load will result in the bellows or piston and cylinder contracting and the load moving downwards. This can, of course, greatly facilitate the connection of a new casing to an assembled pipe string since the weight of the new casing is counterbalanced by the gas pressure.
- a pressure relief valve may be provided which may be set to vent either at the maximum design pressure of the equipment or, at a given pressure corresponding to the load being balanced. This would normally be the case where successive loads are substantially equal.
- means may be provided to automatically adjust the pressure in the piston and cylinder or bellows to maintain the first and second members spaced apart by a given distance when the load is first lifted. Once the load is near its final position the automatic means are rendered inoperative to enable the load to be lowered by the application of downward pressure.
- the present invention also provides a method of handling a load, which method comprises the steps of:
- the resilient force which maintains the first and second members apart is preferably applied by gas pressure.
- the rig When casing is being "run", or connected in an assembled string and lowered into a hole that has already been drilled, the rig is typically configured to handle the very heavy weight of the assembled casing string 21 by suspending the travelling block 10 from the crown block (not shown) using multiple wraps of the drilling line 11 around the sheaves of the travelling block 10. On heavy strings, a large number of wraps, up to sixteen or more, may be required. From bails 12a and 12b on the travelling block is suspended an elevator 13, normally a slip elevator, sized to hoist and lower the entire weight of the assembled casing string, which weight may exceed 2,000,000 pounds (900 tonnes).
- the single joint elevator 15 is typically required to hoist and lower only approximately 100 to 20,000 pounds weight (45 to 9090 kg).
- That portion of the assembled casing string 21 which has already been assembled and lowered into the hole is suspended in a spider 16 mounted on the rig floor 17.
- the slips of the spider 16 grasp the uppermost member of the assembled casing string 21 below its box 22 (or female threaded end), leaving the box 22 exposed for connection with the pin 33 (or male threaded end) of the next casing 20 to be added to the assembled casing string.
- the single joint elevator 15 is displaced to the area of the next casing 20 to be added and attached thereto just below its box 24.
- the driller draws up some of the drilling line 11 so as to hoist into the mast the single joint elevator 15 and casing 20. Hoisting continues until the casing 20 is positioned vertically above the spider 16 and the exposed box 22, as depicted in Figure 3.
- This process requires the driller to then lower the casing length 20 so that the "stabber" can stab the pin 23 into the box 22 and rotate it to "make-up" the connection. Rotation and make-up is typically accomplished via use of power tongs 18, shown in Figure 4.
- the single joint elevator 15 is disengaged on the casing 20.
- the slips of the spider 16 are released, and the assembled casing string 21 is lowered into the well bore the length of the casing 20. At this point, the spider slips 16 are reset and the entire process is repeated until all of the casing lengths have been made-up.
- the device comprises a lower housing member 30 and an upper housing member 31.
- the upper housing member 31 has an end well 31a and a substantially vertical and cylindrical side wall 31b extending therebelow.
- the side wall 31b is provided with one or more elongate slots 31c.
- the lower housing member 30 comprises bars 30a and 30b which extend through the elongate slots 31c.
- the cable 14a is attached to bolts extending between the bars 30a and 30b adjacent the ends thereof.
- the bellows 40 may consist of commercially available air springs or air actuators.
- the bellows 40 Upon inflating the bellows 40 (as via an air supply (not shown) connected to air line 41), the upper housing member 31 is lifted upward and away from lower housing member 30 by the expansion of the bellows 40, as illustrated in Figure 3.
- the bellows 40 contracts, causing the upper housing member 31 to lower, as illustrated in Figure 4.
- This expansion and contraction permits the vertical position of the suspended casing 20 to be altered relative to the lower casing member 30 by manually pulling downward on the suspended casing 20 until the pin 23 is properly positioned. Rotation is permitted by a swivel (not shown) mounted between the primary elevator 13 and the single joint elevator 15.
- a conventional pneumatic supply provides a source of air for the bellows 40.
- Manually operable means (not shown) are provided to apply the bleed off air from within the bellows 40.
- An adjustable pressure relief valve is also provided, the venting pressure of which is determined by the characteristics of the particular bellows employed and the desired handling characteristics described below.
- a single casing 20 is hoisted into the mast.
- the bellows 40 is pressurized until the maximum pressure permitted by the relief valve (not shown) is attained.
- the rig hand may then manually adjust the pressure downward until the preferred pressure is reached. Because of the "lift" provided by the bellows 40, that preferred pressure will be characterized by the seemingly weightless suspension of the casing 20 above the box 22 and the relative ease with which the casing 20 may be manually lowered by the rig hand under the increased control provided by the device, so that the threads of the pin 23 and box 22 may be properly aligned and connected with damage to neither. If the weight of each casing 20 is substantially the same weight as the prior casing, the rig hand may simply adjust the adjustable pressure relief valve to vent at a pressure corresponding to the bellows being nearly fully extended with the load applied.
- means may be provided to automatically adjust the pressure in the bellows 40 according to the load.
- Such means could operate for example by admitting air to the bellows until the upper member 31 and the lower member 30 are spaced apart by a given distance. It would, of course, be necessary to render such automatic means inoperative to enable the casing to be offered up to the assembled casing string.
- the device may be incorporated in a swivel and/or in an elevator.
- the device may comprise a substantially enclosed first member having a top wall and a bottom wall attached by a side wall.
- a bellows is mounted in the first member and acts between the bottom wall of the first member and the top wall of a member which extends across the interior of the first member and is connected to lifting straps which extend downwardly from the top member through openings in the bottom wall of the first member.
- a stop may be provided to limit downward movement of the top wall and thereby prevent the bellows being crushed.
Landscapes
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mining & Mineral Resources (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Earth Drilling (AREA)
- Unwinding Webs (AREA)
- Spinning Or Twisting Of Yarns (AREA)
- Control And Other Processes For Unpacking Of Materials (AREA)
Abstract
Description
- The invention relates to a device for facilitating the handling of a load and, more particularly but not exclusively, is concerned with a device for facilitating the handling of casings and similar joints used in drilling. The invention also relates to a drilling rig provided with a device in accordance with the invention and a method of handling a load.
- In many drilling applications, and especially in deep high pressure wells, one or more casing strings are set to protect the well bore and/or the formation. Whether the crew members are running surface, intermediate, or production casing, the handling of the heavy individual casings presents special problems.
- In particular, considerable skill is needed to lower the new casing into position on the assembled casing string and to make the necessary threaded connection between the pin on the new casing and the box on the top of the assembled casing string. Thus, if the new casing is positioned too high above the box on the assembled string, the threads do not engage. On the other hand, if the pin is lowered too far, the full weight of the new casing may rest on the first thread of the assembled string and thread damage may occur. This may require removal of the damaged casing(s) and costly delays. Even if no thread damage initially occurs as a result of lowering the new casing too far the worker (the "stabber") may have difficulty in manoeuvering the casing to align it so as to make a proper threaded connection. In the event of such a misalignment, cross threading or other thread damage may occur.
- The preferred embodiment of the present invention is directed to a device for facilitating the handling of casings and other tubular drill string members to reduce the above problems. It also has applications in the handling of other heavy materials in non-drilling operations.
- According to the present invention there is provided a device for facilitating the handling of a load, which device comprises:
- a) a first member attachable to a lifting block;
- b) a second member to which said load can be connected; and
- c) resilient means which, in use, act between said first member and said second member and which permit said load to move downwardly with respect to said first member when downward pressure is applied to said load.
- Preferably, one of said first and second members has an end wall and a side wall having at least two elongate slots therein disposed to opposite sides of said one member, and wherein the other member is provided with a bar which extends through said slots and the ends of which provide attachment points for connecting said other member to said lifting block.
- The resilient means may be hydraulic, mechanical or pneumatic.
- Thus, for example, the resilient means could comprise a hydraulic piston and cylinder assembly disposed between the first and second members and associated with a control mechanism adapted to admit or vent hydraulic fluid from the assembly to raise or lower the load with respect to the first member. In such an embodiment a hydraulic accumulator or the like is provided to introduce resilience into the system.
- Alternatively, the resilient means could comprise a spring which would preferably be adjustable. Whilst this would be quite acceptable for substantially uniform loads it is not particularly favoured where the load is not constant.
- As a further alternative the resilient means may act, in use, between the first member and the second member by compressed gas. The compressed gas may be contained in a piston and cylinder arrangement or in a bellows. In order to accommodate varying loads, means are preferably provided to adjust the gas pressure in the piston and cylinder or bellows either by the admission of gas thereto or by the venting of gas therefrom. Thus, the gas pressure may be set so that the load is exactly supported by the bellows or the piston and cylinder in an expanded state. Downward pressure on the load will result in the bellows or piston and cylinder contracting and the load moving downwards. This can, of course, greatly facilitate the connection of a new casing to an assembled pipe string since the weight of the new casing is counterbalanced by the gas pressure.
- A pressure relief valve may be provided which may be set to vent either at the maximum design pressure of the equipment or, at a given pressure corresponding to the load being balanced. This would normally be the case where successive loads are substantially equal.
- If desired, means may be provided to automatically adjust the pressure in the piston and cylinder or bellows to maintain the first and second members spaced apart by a given distance when the load is first lifted. Once the load is near its final position the automatic means are rendered inoperative to enable the load to be lowered by the application of downward pressure.
- The present invention also provides a method of handling a load, which method comprises the steps of:
- a) mounting a first member on a lifting block;
- b) connecting a load to a second member;
- c) applying a resilient force between said first and second members to maintain said first and second members apart; and
- d) applying downward pressure to said load to lower said load with respect to said first member.
- The resilient force which maintains the first and second members apart is preferably applied by gas pressure.
- For a better understanding of the invention reference will now be made, by way of example, to the accompanying drawings, in which:-
- Figure 1 is a perspective view of a portion of a typical rotary drilling rig configuration provided with one embodiment of a device in accordance with the present invention connected to a single joint elevator in preparation for lifting a casing into the mast;
- Figure 2 is a perspective view showing the casing being lifted into the mast;
- Figure 3 is a perspective view showing the casing suspended over the assembled casing string;
- Figure 4 is a perspective view showing the casing attached to the assembled casing string;
- Figure 5 is a perspective, partly sectioned view of the device shown in Figure 1;
- Figure 6 is a sectional view taken along line 6-6 of Figure 5; and
- Figure 7 is a partly sectional view taken along line 7-7 of Figure 6.
- Figures 1-4 generally depict a rotary drilling rig configuration in the process of connecting a
new casing 20 to an assembledcasing string 21. - When casing is being "run", or connected in an assembled string and lowered into a hole that has already been drilled, the rig is typically configured to handle the very heavy weight of the assembled
casing string 21 by suspending thetravelling block 10 from the crown block (not shown) using multiple wraps of the drilling line 11 around the sheaves of thetravelling block 10. On heavy strings, a large number of wraps, up to sixteen or more, may be required. Frombails 12a and 12b on the travelling block is suspended anelevator 13, normally a slip elevator, sized to hoist and lower the entire weight of the assembled casing string, which weight may exceed 2,000,000 pounds (900 tonnes). - Below the
primary elevator 13 is normally suspended by cables and a swivel (not illustrated), a smaller elevator often called the single joint elevator so named because it is sized to hoist and lower asingle casing 20. Thesingle joint elevator 15 is typically required to hoist and lower only approximately 100 to 20,000 pounds weight (45 to 9090 kg). - That portion of the assembled
casing string 21 which has already been assembled and lowered into the hole is suspended in aspider 16 mounted on therig floor 17. The slips of thespider 16 grasp the uppermost member of the assembledcasing string 21 below its box 22 (or female threaded end), leaving thebox 22 exposed for connection with the pin 33 (or male threaded end) of thenext casing 20 to be added to the assembled casing string. - As illustrated in Figures 1 and 2, the
single joint elevator 15 is displaced to the area of thenext casing 20 to be added and attached thereto just below itsbox 24. By operating the drawworks (not shown), the driller draws up some of the drilling line 11 so as to hoist into the mast thesingle joint elevator 15 andcasing 20. Hoisting continues until thecasing 20 is positioned vertically above thespider 16 and the exposedbox 22, as depicted in Figure 3. This process requires the driller to then lower thecasing length 20 so that the "stabber" can stab thepin 23 into thebox 22 and rotate it to "make-up" the connection. Rotation and make-up is typically accomplished via use ofpower tongs 18, shown in Figure 4. Then thesingle joint elevator 15 is disengaged on thecasing 20. The slips of thespider 16 are released, and the assembledcasing string 21 is lowered into the well bore the length of thecasing 20. At this point, thespider slips 16 are reset and the entire process is repeated until all of the casing lengths have been made-up. - Heretofore, making the connection between the
pin 23 and thebox 22 has required considerable skill as discussed hereinbefore. However, the degree of skill required is considerably reduced by the provision ofdevice 1 which is positioned between theprimary elevator 13 and thesingle joint elevator 15. In particular thedevice 1 is suspended bycable 14a from thebell 13a ofprimary elevator 13 and has suspended below it acable 14 to which thesingle joint elevator 15 is attached. - Referring to Figures 5 to 7, the device comprises a
lower housing member 30 and anupper housing member 31. - The
upper housing member 31 has anend well 31a and a substantially vertical and cylindrical side wall 31b extending therebelow. The side wall 31b is provided with one or moreelongate slots 31c. - The
lower housing member 30 comprisesbars 30a and 30b which extend through theelongate slots 31c. Thecable 14a is attached to bolts extending between thebars 30a and 30b adjacent the ends thereof. - Attached to and positioned between the
lower housing member 30 and the underside of theend wall 31a ofupper housing member 31 is a bellows 40. The bellows 40 may consist of commercially available air springs or air actuators. Upon inflating the bellows 40 (as via an air supply (not shown) connected to air line 41), theupper housing member 31 is lifted upward and away fromlower housing member 30 by the expansion of thebellows 40, as illustrated in Figure 3. When deflated, thebellows 40 contracts, causing theupper housing member 31 to lower, as illustrated in Figure 4. This expansion and contraction, permits the vertical position of the suspendedcasing 20 to be altered relative to thelower casing member 30 by manually pulling downward on the suspendedcasing 20 until thepin 23 is properly positioned. Rotation is permitted by a swivel (not shown) mounted between theprimary elevator 13 and the singlejoint elevator 15. - A conventional pneumatic supply provides a source of air for the
bellows 40. Manually operable means (not shown) are provided to apply the bleed off air from within thebellows 40. An adjustable pressure relief valve is also provided, the venting pressure of which is determined by the characteristics of the particular bellows employed and the desired handling characteristics described below. - In operation, a
single casing 20 is hoisted into the mast. The bellows 40 is pressurized until the maximum pressure permitted by the relief valve (not shown) is attained. The rig hand may then manually adjust the pressure downward until the preferred pressure is reached. Because of the "lift" provided by thebellows 40, that preferred pressure will be characterized by the seemingly weightless suspension of thecasing 20 above thebox 22 and the relative ease with which thecasing 20 may be manually lowered by the rig hand under the increased control provided by the device, so that the threads of thepin 23 andbox 22 may be properly aligned and connected with damage to neither. If the weight of eachcasing 20 is substantially the same weight as the prior casing, the rig hand may simply adjust the adjustable pressure relief valve to vent at a pressure corresponding to the bellows being nearly fully extended with the load applied. - Various modifications to the embodiment described with reference to the drawings are envisaged, for example means may be provided to automatically adjust the pressure in the
bellows 40 according to the load. Such means could operate for example by admitting air to the bellows until theupper member 31 and thelower member 30 are spaced apart by a given distance. It would, of course, be necessary to render such automatic means inoperative to enable the casing to be offered up to the assembled casing string. - Further, although the presently preferred embodiment incorporates bellows, to the extent that other embodiments incorporate mechanical springs and penumatic or hydraulic cylinders for the same purpose, in the same way, and to accomplish the same result, they are also encompassed within the scope of this invention. When used in this invention, such mechanical springs may be adjustable or non-adjustable. And, when used in this invention, the parts of the pneumatic or hydraulic cylinder may themselves form the upper and lower members of the device.
- If desired, the device may be incorporated in a swivel and/or in an elevator.
- If desired , the device may comprise a substantially enclosed first member having a top wall and a bottom wall attached by a side wall. A bellows is mounted in the first member and acts between the bottom wall of the first member and the top wall of a member which extends across the interior of the first member and is connected to lifting straps which extend downwardly from the top member through openings in the bottom wall of the first member.
- A stop may be provided to limit downward movement of the top wall and thereby prevent the bellows being crushed.
Claims (17)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US63493484A | 1984-07-27 | 1984-07-27 | |
US634934 | 1984-07-27 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0171144A1 true EP0171144A1 (en) | 1986-02-12 |
EP0171144B1 EP0171144B1 (en) | 1989-10-18 |
Family
ID=24545744
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP85304072A Expired EP0171144B1 (en) | 1984-07-27 | 1985-06-10 | Device for handling well casings |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP0171144B1 (en) |
JP (1) | JPS6138089A (en) |
CA (1) | CA1239634A (en) |
DE (1) | DE3573820D1 (en) |
NO (1) | NO176287C (en) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998007954A1 (en) | 1996-08-23 | 1998-02-26 | Weatherford/Lamb, Inc. | Method and apparatus for connecting a first tubular to a second tubular |
WO1999034088A1 (en) * | 1997-12-24 | 1999-07-08 | Weatherford/Lamb, Inc. | Weight compensation device |
WO1999045230A1 (en) * | 1998-03-06 | 1999-09-10 | Weatherford/Lamb, Inc. | Elevator |
WO1999058810A2 (en) * | 1998-05-12 | 1999-11-18 | Weatherford/Lamb, Inc. | Apparatus and method for facilitating connection of a tubular to a string of tubulars |
WO2000011309A1 (en) * | 1998-08-24 | 2000-03-02 | Weatherford/Lamb, Inc. | Method and apparatus for connecting tubulars using a top drive |
US6039118A (en) * | 1997-05-01 | 2000-03-21 | Weatherford/Lamb, Inc. | Wellbore tool movement control and method of controlling a wellbore tool |
US6070670A (en) * | 1997-05-01 | 2000-06-06 | Weatherford/Lamb, Inc. | Movement control system for wellbore apparatus and method of controlling a wellbore tool |
WO2000039430A1 (en) * | 1998-12-24 | 2000-07-06 | Weatherford/Lamb, Inc. | Apparatus and method for facilitating the connection of tubulars using a top drive |
US6622796B1 (en) | 1998-12-24 | 2003-09-23 | Weatherford/Lamb, Inc. | Apparatus and method for facilitating the connection of tubulars using a top drive |
US6705405B1 (en) | 1998-08-24 | 2004-03-16 | Weatherford/Lamb, Inc. | Apparatus and method for connecting tubulars using a top drive |
US6722443B1 (en) | 1998-08-08 | 2004-04-20 | Weatherford/Lamb, Inc. | Connector for expandable well screen |
US6742596B2 (en) | 2001-05-17 | 2004-06-01 | Weatherford/Lamb, Inc. | Apparatus and methods for tubular makeup interlock |
US6976298B1 (en) | 1998-08-24 | 2005-12-20 | Weatherford/Lamb, Inc. | Methods and apparatus for connecting tubulars using a top drive |
US6981547B2 (en) | 2002-12-06 | 2006-01-03 | Weatherford/Lamb, Inc. | Wire lock expandable connection |
US7107663B2 (en) | 2002-09-13 | 2006-09-19 | Weatherford/Lamb, Inc. | Expandable coupling |
US7137454B2 (en) | 1998-07-22 | 2006-11-21 | Weatherford/Lamb, Inc. | Apparatus for facilitating the connection of tubulars using a top drive |
US7225523B2 (en) | 1997-03-21 | 2007-06-05 | Weatherford/Lamb, Inc. | Method for coupling and expanding tubing |
US7240928B2 (en) | 2002-09-17 | 2007-07-10 | Weatherford/Lamb, Inc. | Tubing connection arrangement |
US8100187B2 (en) | 2008-03-28 | 2012-01-24 | Frank's Casing Crew & Rental Tools, Inc. | Multipurpose tubular running tool |
US8327928B2 (en) | 2007-08-28 | 2012-12-11 | Frank's Casing Crew And Rental Tools, Inc. | External grip tubular running tool |
US8567512B2 (en) | 2003-03-05 | 2013-10-29 | Weatherford/Lamb, Inc. | Apparatus for gripping a tubular on a drilling rig |
Families Citing this family (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5390568A (en) * | 1992-03-11 | 1995-02-21 | Weatherford/Lamb, Inc. | Automatic torque wrenching machine |
US6868906B1 (en) | 1994-10-14 | 2005-03-22 | Weatherford/Lamb, Inc. | Closed-loop conveyance systems for well servicing |
US7040420B2 (en) | 1994-10-14 | 2006-05-09 | Weatherford/Lamb, Inc. | Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells |
US7036610B1 (en) | 1994-10-14 | 2006-05-02 | Weatherford / Lamb, Inc. | Apparatus and method for completing oil and gas wells |
US7013997B2 (en) | 1994-10-14 | 2006-03-21 | Weatherford/Lamb, Inc. | Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells |
US7228901B2 (en) | 1994-10-14 | 2007-06-12 | Weatherford/Lamb, Inc. | Method and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells |
US7100710B2 (en) | 1994-10-14 | 2006-09-05 | Weatherford/Lamb, Inc. | Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells |
US7108084B2 (en) | 1994-10-14 | 2006-09-19 | Weatherford/Lamb, Inc. | Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells |
US7147068B2 (en) | 1994-10-14 | 2006-12-12 | Weatherford / Lamb, Inc. | Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells |
US7509722B2 (en) | 1997-09-02 | 2009-03-31 | Weatherford/Lamb, Inc. | Positioning and spinning device |
US6536520B1 (en) | 2000-04-17 | 2003-03-25 | Weatherford/Lamb, Inc. | Top drive casing system |
US7188687B2 (en) | 1998-12-22 | 2007-03-13 | Weatherford/Lamb, Inc. | Downhole filter |
CA2356194C (en) | 1998-12-22 | 2007-02-27 | Weatherford/Lamb, Inc. | Procedures and equipment for profiling and jointing of pipes |
US7311148B2 (en) | 1999-02-25 | 2007-12-25 | Weatherford/Lamb, Inc. | Methods and apparatus for wellbore construction and completion |
US6896075B2 (en) | 2002-10-11 | 2005-05-24 | Weatherford/Lamb, Inc. | Apparatus and methods for drilling with casing |
US6857487B2 (en) | 2002-12-30 | 2005-02-22 | Weatherford/Lamb, Inc. | Drilling with concentric strings of casing |
CA2393754C (en) | 1999-12-22 | 2009-10-20 | Weatherford/Lamb, Inc. | Drilling bit for drilling while running casing |
US7334650B2 (en) | 2000-04-13 | 2008-02-26 | Weatherford/Lamb, Inc. | Apparatus and methods for drilling a wellbore using casing |
US7325610B2 (en) | 2000-04-17 | 2008-02-05 | Weatherford/Lamb, Inc. | Methods and apparatus for handling and drilling with tubulars or casing |
GB0010378D0 (en) | 2000-04-28 | 2000-06-14 | Bbl Downhole Tools Ltd | Expandable apparatus for drift and reaming a borehole |
GB2365463B (en) | 2000-08-01 | 2005-02-16 | Renovus Ltd | Drilling method |
GB0206227D0 (en) | 2002-03-16 | 2002-05-01 | Weatherford Lamb | Bore-lining and drilling |
GB0215668D0 (en) | 2002-07-06 | 2002-08-14 | Weatherford Lamb | Coupling tubulars |
US6994176B2 (en) | 2002-07-29 | 2006-02-07 | Weatherford/Lamb, Inc. | Adjustable rotating guides for spider or elevator |
US6899186B2 (en) | 2002-12-13 | 2005-05-31 | Weatherford/Lamb, Inc. | Apparatus and method of drilling with casing |
GB0222321D0 (en) | 2002-09-25 | 2002-10-30 | Weatherford Lamb | Expandable connection |
US7303022B2 (en) | 2002-10-11 | 2007-12-04 | Weatherford/Lamb, Inc. | Wired casing |
US7128154B2 (en) | 2003-01-30 | 2006-10-31 | Weatherford/Lamb, Inc. | Single-direction cementing plug |
USRE42877E1 (en) | 2003-02-07 | 2011-11-01 | Weatherford/Lamb, Inc. | Methods and apparatus for wellbore construction and completion |
GB2414502B (en) | 2003-02-27 | 2007-10-17 | Weatherford Lamb | Drill shoe |
WO2004079147A2 (en) | 2003-03-05 | 2004-09-16 | Weatherford/Lamb, Inc. | Method and apparatus for drilling with casing |
WO2004079151A2 (en) | 2003-03-05 | 2004-09-16 | Weatherford/Lamb, Inc. | Drilling with casing latch |
WO2004079153A2 (en) | 2003-03-05 | 2004-09-16 | Weatherford/Lamb Inc. | Casing running and drilling system |
GB2415724B (en) | 2003-03-05 | 2007-05-30 | Weatherford Lamb | Full bore lined wellbores |
WO2004090279A1 (en) | 2003-04-04 | 2004-10-21 | Weatherford/Lamb, Inc. | Method and apparatus for handling wellbore tubulars |
US7887103B2 (en) | 2003-05-22 | 2011-02-15 | Watherford/Lamb, Inc. | Energizing seal for expandable connections |
GB0311721D0 (en) | 2003-05-22 | 2003-06-25 | Weatherford Lamb | Tubing connector |
US7650944B1 (en) | 2003-07-11 | 2010-01-26 | Weatherford/Lamb, Inc. | Vessel for well intervention |
US7264067B2 (en) | 2003-10-03 | 2007-09-04 | Weatherford/Lamb, Inc. | Method of drilling and completing multiple wellbores inside a single caisson |
US7284617B2 (en) | 2004-05-20 | 2007-10-23 | Weatherford/Lamb, Inc. | Casing running head |
EP1619349B1 (en) | 2004-07-20 | 2008-04-23 | Weatherford/Lamb, Inc. | Top drive for connecting casing |
CA2514136C (en) | 2004-07-30 | 2011-09-13 | Weatherford/Lamb, Inc. | Apparatus and methods of setting and retrieving casing with drilling latch and bottom hole assembly |
US7694744B2 (en) | 2005-01-12 | 2010-04-13 | Weatherford/Lamb, Inc. | One-position fill-up and circulating tool and method |
CA2533115C (en) | 2005-01-18 | 2010-06-08 | Weatherford/Lamb, Inc. | Top drive torque booster |
GB2437647B (en) | 2006-04-27 | 2011-02-09 | Weatherford Lamb | Torque sub for use with top drive |
US7882902B2 (en) | 2006-11-17 | 2011-02-08 | Weatherford/Lamb, Inc. | Top drive interlock |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1454194A (en) * | 1921-08-29 | 1923-05-08 | Houston Pump & Supply Company | Elevator |
US1842638A (en) * | 1930-09-29 | 1932-01-26 | Wilson B Wigle | Elevating apparatus |
US2622916A (en) * | 1949-05-31 | 1952-12-23 | Libin Leslie | Hoisting plug for drills |
FR1145717A (en) * | 1956-01-07 | 1957-10-29 | Sovel Soc | Vehicle vacuuming liquid or semi-liquid materials such as sludge |
FR1497666A (en) * | 1966-09-02 | 1967-10-13 | Mecanique F Lavaur Atel | Hydraulic lifting hook |
US3351372A (en) * | 1966-05-02 | 1967-11-07 | Dresser Ind | Split hook hoisting apparatus |
WO1981001402A1 (en) * | 1979-11-17 | 1981-05-28 | Caley Hydraulics Ltd | Heave compensator |
-
1985
- 1985-04-02 CA CA000478177A patent/CA1239634A/en not_active Expired
- 1985-05-20 JP JP10807885A patent/JPS6138089A/en active Pending
- 1985-06-10 NO NO852336A patent/NO176287C/en not_active IP Right Cessation
- 1985-06-10 EP EP85304072A patent/EP0171144B1/en not_active Expired
- 1985-06-10 DE DE8585304072T patent/DE3573820D1/en not_active Expired
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1454194A (en) * | 1921-08-29 | 1923-05-08 | Houston Pump & Supply Company | Elevator |
US1842638A (en) * | 1930-09-29 | 1932-01-26 | Wilson B Wigle | Elevating apparatus |
US2622916A (en) * | 1949-05-31 | 1952-12-23 | Libin Leslie | Hoisting plug for drills |
FR1145717A (en) * | 1956-01-07 | 1957-10-29 | Sovel Soc | Vehicle vacuuming liquid or semi-liquid materials such as sludge |
US3351372A (en) * | 1966-05-02 | 1967-11-07 | Dresser Ind | Split hook hoisting apparatus |
FR1497666A (en) * | 1966-09-02 | 1967-10-13 | Mecanique F Lavaur Atel | Hydraulic lifting hook |
WO1981001402A1 (en) * | 1979-11-17 | 1981-05-28 | Caley Hydraulics Ltd | Heave compensator |
Cited By (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU727203B2 (en) * | 1996-08-23 | 2000-12-07 | Weatherford Technology Holdings, Llc | Method and apparatus for connecting a first tubular to a second tubular |
US5850877A (en) * | 1996-08-23 | 1998-12-22 | Weatherford/Lamb, Inc. | Joint compensator |
WO1998007954A1 (en) | 1996-08-23 | 1998-02-26 | Weatherford/Lamb, Inc. | Method and apparatus for connecting a first tubular to a second tubular |
US6000472A (en) * | 1996-08-23 | 1999-12-14 | Weatherford/Lamb, Inc. | Wellbore tubular compensator system |
US6056060A (en) * | 1996-08-23 | 2000-05-02 | Weatherford/Lamb, Inc. | Compensator system for wellbore tubulars |
US7225523B2 (en) | 1997-03-21 | 2007-06-05 | Weatherford/Lamb, Inc. | Method for coupling and expanding tubing |
US6039118A (en) * | 1997-05-01 | 2000-03-21 | Weatherford/Lamb, Inc. | Wellbore tool movement control and method of controlling a wellbore tool |
US6070670A (en) * | 1997-05-01 | 2000-06-06 | Weatherford/Lamb, Inc. | Movement control system for wellbore apparatus and method of controlling a wellbore tool |
WO1999034088A1 (en) * | 1997-12-24 | 1999-07-08 | Weatherford/Lamb, Inc. | Weight compensation device |
AU741280B2 (en) * | 1997-12-24 | 2001-11-29 | Weatherford Technology Holdings, Llc | Weight compensation device |
WO1999045230A1 (en) * | 1998-03-06 | 1999-09-10 | Weatherford/Lamb, Inc. | Elevator |
US6073699A (en) * | 1998-03-06 | 2000-06-13 | Weatherford/Lamb, Inc. | Single joint elevator |
WO1999058810A2 (en) * | 1998-05-12 | 1999-11-18 | Weatherford/Lamb, Inc. | Apparatus and method for facilitating connection of a tubular to a string of tubulars |
WO1999058810A3 (en) * | 1998-05-12 | 2000-01-06 | Weatherford Lamb | Apparatus and method for facilitating connection of a tubular to a string of tubulars |
US7137454B2 (en) | 1998-07-22 | 2006-11-21 | Weatherford/Lamb, Inc. | Apparatus for facilitating the connection of tubulars using a top drive |
US7140446B2 (en) | 1998-08-08 | 2006-11-28 | Weatherford/ Lamb, Inc. | Connector for expandable well screen |
US6896057B2 (en) | 1998-08-08 | 2005-05-24 | Weatherford/Lamb, Inc. | Connector for expandable well screen |
US6722443B1 (en) | 1998-08-08 | 2004-04-20 | Weatherford/Lamb, Inc. | Connector for expandable well screen |
US6705405B1 (en) | 1998-08-24 | 2004-03-16 | Weatherford/Lamb, Inc. | Apparatus and method for connecting tubulars using a top drive |
US6688398B2 (en) | 1998-08-24 | 2004-02-10 | Weatherford/Lamb, Inc. | Method and apparatus for connecting tubulars using a top drive |
WO2000011309A1 (en) * | 1998-08-24 | 2000-03-02 | Weatherford/Lamb, Inc. | Method and apparatus for connecting tubulars using a top drive |
US6527047B1 (en) | 1998-08-24 | 2003-03-04 | Weatherford/Lamb, Inc. | Method and apparatus for connecting tubulars using a top drive |
US7021374B2 (en) | 1998-08-24 | 2006-04-04 | Weatherford/Lamb, Inc. | Method and apparatus for connecting tubulars using a top drive |
US6976298B1 (en) | 1998-08-24 | 2005-12-20 | Weatherford/Lamb, Inc. | Methods and apparatus for connecting tubulars using a top drive |
US6622796B1 (en) | 1998-12-24 | 2003-09-23 | Weatherford/Lamb, Inc. | Apparatus and method for facilitating the connection of tubulars using a top drive |
US7004259B2 (en) | 1998-12-24 | 2006-02-28 | Weatherford/Lamb, Inc. | Apparatus and method for facilitating the connection of tubulars using a top drive |
WO2000039430A1 (en) * | 1998-12-24 | 2000-07-06 | Weatherford/Lamb, Inc. | Apparatus and method for facilitating the connection of tubulars using a top drive |
US6725938B1 (en) | 1998-12-24 | 2004-04-27 | Weatherford/Lamb, Inc. | Apparatus and method for facilitating the connection of tubulars using a top drive |
US6742596B2 (en) | 2001-05-17 | 2004-06-01 | Weatherford/Lamb, Inc. | Apparatus and methods for tubular makeup interlock |
US8517090B2 (en) | 2001-05-17 | 2013-08-27 | Weatherford/Lamb, Inc. | Apparatus and methods for tubular makeup interlock |
US7107663B2 (en) | 2002-09-13 | 2006-09-19 | Weatherford/Lamb, Inc. | Expandable coupling |
US8136216B2 (en) | 2002-09-17 | 2012-03-20 | Weatherford/Lamb, Inc. | Method of coupling expandable tubing sections |
US7240928B2 (en) | 2002-09-17 | 2007-07-10 | Weatherford/Lamb, Inc. | Tubing connection arrangement |
US6981547B2 (en) | 2002-12-06 | 2006-01-03 | Weatherford/Lamb, Inc. | Wire lock expandable connection |
US8567512B2 (en) | 2003-03-05 | 2013-10-29 | Weatherford/Lamb, Inc. | Apparatus for gripping a tubular on a drilling rig |
US10138690B2 (en) | 2003-03-05 | 2018-11-27 | Weatherford Technology Holdings, Llc | Apparatus for gripping a tubular on a drilling rig |
US8327928B2 (en) | 2007-08-28 | 2012-12-11 | Frank's Casing Crew And Rental Tools, Inc. | External grip tubular running tool |
US9488017B2 (en) | 2007-08-28 | 2016-11-08 | Frank's International, Llc | External grip tubular running tool |
US8100187B2 (en) | 2008-03-28 | 2012-01-24 | Frank's Casing Crew & Rental Tools, Inc. | Multipurpose tubular running tool |
Also Published As
Publication number | Publication date |
---|---|
JPS6138089A (en) | 1986-02-24 |
CA1239634A (en) | 1988-07-26 |
NO852336L (en) | 1986-01-28 |
NO176287B (en) | 1994-11-28 |
NO176287C (en) | 1995-03-08 |
DE3573820D1 (en) | 1989-11-23 |
EP0171144B1 (en) | 1989-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0171144B1 (en) | Device for handling well casings | |
EP1253282B1 (en) | Elevator with a bearing | |
US6000472A (en) | Wellbore tubular compensator system | |
EP2066865B1 (en) | Light-weight single joint manipulator arm | |
EP1354122B1 (en) | Collar load support system and method | |
RU2470137C2 (en) | Device and method for handling tube elements | |
US6691801B2 (en) | Load compensator for a pipe running tool | |
AU2012248862B2 (en) | Backup heave compensation system and lifting arrangement for a floating drilling vessel | |
US5503234A (en) | 2×4 drilling and hoisting system | |
US5595248A (en) | Pipe alignment apparatus | |
EP1896687B1 (en) | Pipe running tool having internal gripper | |
WO1993018276A1 (en) | Automatic torque wrenching machine | |
CA1185228A (en) | Well pipe jack | |
US7124828B2 (en) | Apparatus for retaining two strings of tubulars | |
CA2316307C (en) | Weight compensation device | |
US20120085550A1 (en) | Method and apparatus for stabbing tubular goods | |
US7331384B2 (en) | Stabberless pipe handling system | |
CA2586347C (en) | Elevators | |
GB2588210A (en) | Apparatus for and method of moving a suspended object around a drill floor of a drilling rig |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): DE FR GB IT NL |
|
17P | Request for examination filed |
Effective date: 19860319 |
|
17Q | First examination report despatched |
Effective date: 19870505 |
|
D17Q | First examination report despatched (deleted) | ||
ITF | It: translation for a ep patent filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT NL |
|
REF | Corresponds to: |
Ref document number: 3573820 Country of ref document: DE Date of ref document: 19891123 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
ITTA | It: last paid annual fee | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP |
|
ITPR | It: changes in ownership of a european patent |
Owner name: FUSIONI;WEATHERFORD - PETCO INC. |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E |
|
NLS | Nl: assignments of ep-patents |
Owner name: WEATHERFORD-PETCO, INC. TE HOUSTON, TEXAS, VER. ST |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP Ref country code: FR Ref legal event code: CD |
|
ITPR | It: changes in ownership of a european patent |
Owner name: FUSIONI;WEATHERFORD - PETCO INC. ( SOCIETA' DEL DE |
|
NLS | Nl: assignments of ep-patents |
Owner name: WEATHERFORD-PETCO, INC. (A DELAWARE CORPORATION) T |
|
NLT1 | Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1 |
Owner name: WEATHERFORD U.S., INC. (A DELAWARE CORPORATION) TE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E |
|
NLS | Nl: assignments of ep-patents |
Owner name: . WEATHERFORD/LAMB, INC. |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20030604 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20030610 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20030618 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20030630 Year of fee payment: 19 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040610 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050101 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050101 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20040610 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050228 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20050101 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |