EP0169472A2 - Hohlleiterelement für Mikrowellen - Google Patents
Hohlleiterelement für Mikrowellen Download PDFInfo
- Publication number
- EP0169472A2 EP0169472A2 EP85108839A EP85108839A EP0169472A2 EP 0169472 A2 EP0169472 A2 EP 0169472A2 EP 85108839 A EP85108839 A EP 85108839A EP 85108839 A EP85108839 A EP 85108839A EP 0169472 A2 EP0169472 A2 EP 0169472A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- wall
- waveguide
- sintered material
- gas
- waveguide element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
Definitions
- the present invention relates to a waveguide element according to the preamble of claim 1.
- the invention relates to a waveguide element for a gas-filled microwave waveguide arrangement of a predetermined nominal wavelength, which enables gas exchange between the interior of the waveguide arrangement and the external environment.
- Waveguide arrangements for large microwave powers of, for example, several 100 kW per waveguide at frequencies significantly above 300 MHz are required, for example, in plasma physics, in fusion reactors, accelerators and the like.
- the hollow conductors already have relatively small diameters, so that very high electrical field strengths occur inside the hollow conductor at high microwave powers.
- To control the high electrical field strengths it is known to use microwave waveguides with a well-insulating gas which may be under pressure to fill. Nevertheless, the high field strengths occasionally lead to internal flashovers. Such a flashover creates gaseous compounds which impair the dielectric strength of the gas inside the waveguide. In order to avoid this undesirable consequence of an internal flashover, it is necessary to continuously replace the insulating gas inside the hollow conductor.
- a cavity resonator is known from AT-PS 228 843, the jacket of which consists of at least one ferrite ring, the inner surface of which is coated with a thin silver layer.
- ferrites are generally made by a sintering process, they are not porous.
- the present invention is accordingly based on the object of specifying a waveguide element which both enables an exchange of the gas located in its interior, yet does not allow microwave energy to escape into the environment and does not significantly dampen the microwave energy which is propagating in its interior.
- the invention solves this problem in that at least part of the wall consists of a sintered material that contains pores go through from the inside to the outside of the wall of the cavity and their maximum dimensions on the inside of the wall are small compared to the nominal wavelength of the microwave waveguide arrangement.
- the present waveguide piece or element the wall of which consists entirely or partially of gas-permeable sintered material, at least on the inside electrically conductive, in particular sintered metal, enables rapid gas exchange without significantly dampening the microwave energy. At the same time, the cooling of the wall is improved.
- the waveguide element can be a waveguide piece with e.g. be rectangular, round or elliptical in cross-section and have openings and connections at its ends which correspond to those of the rest of the waveguide arrangement.
- the waveguide element can therefore have circular openings of the same diameter as the waveguides of the other hollow conductor arrangement and, in the case of rectangular waveguides, rectangular openings of the same dimensions.
- the sintered material can consist of a pure MetaLL or a MetaL alloy.
- the wall of the waveguide element can, however, also consist of sintered ceramic which is metallized on the inside. Even when using sintered metal, the inner surface of the waveguide element can be largely dampened by coating it with a highly conductive metal (metal spraying, vapor deposition or galvanizing) for the transmission of microwaves of the desired vibration pattern. The conductive coating must of course not close the openings in the pores.
- a waveguide element in the form of a waveguide section 10 which contains a waveguide section 12 with a circular wall in cross section, which includes an elongated cavity 16 open at both ends and is provided with connecting flanges 14 at the ends.
- the outside of the waveguide piece is surrounded at a distance by a gas-tight and pressure-resistant jacket 11, which is connected to the flanges 14 in a gas-tight manner.
- the jacket 11 is connected via a gas connection piece to a gas supply or gas discharge system 13, which can contain a compressed gas source or a pump and an adjustable or optionally openable or closable valve for maintaining pressure and for regulating the gas exchange from the inside of the waveguide piece to the outside.
- the wall 18 forming the waveguide section 12 consists of a sintered material 20, for. B. SintermetaLL, which has open pores 22 which go through from the inside to the outside 26 of the wall 18 as shown in Fig. 2.
- the inside of the wall can carry a layer 28 of an electrically highly conductive metal, for example silver, which leaves the openings of the pores essentially free, in comparison with the thickness of the wall, as shown in FIG. 2.
- the maximum dimensions d of the pores 22 are at least at the Inner side 24 of the wall is substantially smaller than the nominal wavelength of the microwave guide arrangement, preferably smaller than 1/100 of the nominal wavelength.
- the main part of the wall 18 can also consist of sintered ceramic, in which case the conductive layer 28 on the inside is necessary. It can also consist only of a part of the wall 18 made of porous sintered material. With a rectangular waveguide z. B. the narrow sides are made of porous sintered material.
- a practical embodiment of the waveguide element acc. Fig. 1 has the following parameters:
- the sintered part is made of stainless steel with the designation X5CrNiMo1810 ("Siperm R" (Wz), from Deutsche Titanwerke).
- the particle size range of this material is approx. 0.2 to 1.3 mm and the maximum pore size is 65 ⁇ m.
- the flanges 14 are made of copper and are used for connection to a copper waveguide system.
- the sintered material part 12 had no additional inner coating.
- the invention can also be applied to waveguide elements other than the straight waveguide piece described, e.g. Directional coupling learning, branches, cavity resonators and the like. With inhomogeneous current loading of the inner wall of the waveguide element, the use of sintered material described can be restricted to the less highly stressed wall parts.
- the system 13 can also be connected to another point in the waveguide system.
Landscapes
- Control Of Motors That Do Not Use Commutators (AREA)
- Waveguides (AREA)
- Plasma Technology (AREA)
- Particle Accelerators (AREA)
- Non-Reversible Transmitting Devices (AREA)
Abstract
Description
- Die vorliegende Erfindung betrifft ein Hohlleiterelement gemäß dem Oberbegriff des Anspruchs 1. Insbesondere betrifft die Erfindung ein Hohlleiterelement für eine gasgefüllte Mikrowellen-Hohlleiteranordnung vorgegebener NennweLLenLänge, das einen Gasaustausch zwischen dem Inneren der Hohlleiteranordnung und der äußeren Umgebung ermöglicht.
- Hohlleiteranordnungen für große Mikrowellenleistungen von beispielsweise mehreren 100 kW pro Hohlleiter bei Frequenzen bis wesentlich über 300 MHz werden z.B. in der PLasmaphysik, bei Fusionsreaktoren, BeschLeunigern und dergl. benötigt. Bei Frequenzen von etwa 100 GHz haben die HohLLeiter bereits relativ kleine Durchmesser, so daß bei hohen Mikrowellenleistungen im Inneren der Hohlleiter sehr hohe elektrische Feldstärken auftreten. Zur Beherrschung der hohen elektrischen FeLdstärken ist es bekannt, Mikrowellen-Hohlleiter mit einem gut isolierenden, gegebenenfalls unter überdruck stehenden Gas zu füllen. Trotzdem führen die hohen FeLdstärken gelegentlich zu inneren überschlägen. Bei einem solchen überschlag entstehen gasförmige Verbindungen, die die Durchschlagsfestigkeit des Gases im Inneren des Hohlleiters beeinträchtigen. Um diese unerwünschte FoLge eines inneren überschlages zu vermeiden, ist es erforderlich, das sich im Inneren des HohLLeiter befindende isolierende Gas Laufend auszutauschen.
- Es ist zwar aus der AT-PS 228 843 ein Hohlraumresonator bekannt, dessen Mantel aus mindestens einem Ferritring besteht, dessen innere Fläche mit einer dünnen SiLberschicht überzogen ist. Ferrite werden zwar im allgemeinen durch ein Sinterverfahren hergesteLLt, sie sind jedoch nicht porös.
- Aus der DE-PS 892 150 ist eine Hohlleiteranordnung (Hohlraumresonator, HohLLeiter) bekannt, dessen Gehäuse innen mit einer Art von geflochtener Hochfrequenzlitze ausgekleidet ist. SeLbst wenn diese AuskLeidung gasdurchlässig wäre, würde ein Gasaustausch zwischen dem Inneren und dem Äußeren des HohLraums durch das undurchlässige Gehäuse verhindert.
- Bisher gibt es jedenfalls noch keine Hohlleiterelemente, die einen Gasaustausch ermöglichen, ohne gleichzeitig die FortLeitung der Mikrowel lenenergie zu dämpfen oder Mikrowellenenergie nach außen durchzulassen.
- Der vorliegenden Erfindung Liegt dementsprechend die Aufgabe zugrunde, ein Hohlleiterelement anzugeben, das sowohl einen Austausch des in seinem Inneren befindlichen Gases ermöglicht, trotzdem keine MikroweLLenenergie in die Umgebung austreten Läßt und die sich in seinem Inneren ausbreitende Mikrowellenenergie nicht wesentlich dämpft.
- Die Erfindung Löst diese Aufgabe dadurch daß mindestens ein Teil der Wand aus einem Sinterwerkstoff besteht, der Poren enthält, die von der Innenseite zur Außenseite der Wand des HohLraumes durchgehen und deren maximale Abmessungen an der Innenseite der Wand klein gegen die Nenn-Wellenlänge der Mikrowellen-Hohlleiteranordnung ist.
- Das vorliegende Hohlleiterstück oder -element, dessen Wand ganz oder teilweise aus gasdurchlässigem, zumindest an der Innenseite elektrisch Leitfähigem Sinterwerkstoff, insbesondere SintermetaLL, besteht, ermöglicht einen schnellen Gasaustauch, ohne die Mikrowellenenergie nennenswert zu dämpfen. Gleichzeitig wird auch die KühLung der Wand verbessert.
- Das Hohlleiterelement kann ein Hohlleiterstück mit z.B. rechteckigem, rundem oder elliptischem Querschnitt sein und an seinen Enden öffnungen und AnschLüsse aufweisen, die denen der übrigen Hohlleiteranordnung entsprechen. Das Hohlleiterelement kann also bei einer Hohlleiteranordnung mit rundem Querschnitt kreisrunde öffnungen gleichen Durchmessers wie die Hohlleiter der übrigen HohLLeiteranordnung aufweisen und bei Rechteckhohlleitern rechteckige öffnungen gleicher Abmessungen.
- Der Sinterwerkstoff kann aus einem reinen MetaLL oder einer MetaLLegierung bestehen. Die Wand des Hohlleiterelements kann aber auch aus innen porös metallisierter Sinterkeramik bestehen. Auch bei Verwendung von SintermetaLL kann die innere Oberfläche des Hohlleiterelements durch Beschichten mit einem gut Leitendem MetaLL (Metallspritzen, Bedampfen oder galvanisches Metallisieren) für die FortLeitung von MikroweLLen gewünschter Schwingungsmuster weitgehend entdämpft werden. Die Leitfähige Beschichtung darf selbstverständlich die öffnungen der Poren nicht verschließen.
- Im folgenden wird ein Ausführungsbeispiel der Erfindung unter Bezugnahme auf die Zeichnung näher erläutert.
- Es zeigen:
- Fig. 1 einen Axialschnitt eines Mikrowellen-Hohlleiterelements mit rundem Querschnitt gemäß einer bevorzugten Ausführungsform der Erfindung, und
- Fig. 2 eine stark vergrößerte Querschnittsansicht eines TeiLes der Wand des in Fig. 1 dargestellten Hohlleiterelements in einer Ebene II-II mit einer zusätzlichen Innenbeschichtung.
- In Fig. 1 ist ein Hohlleiterelement in Form eines Hohlleiterabschnittes 10 dargestellt, der ein Hohlleiterstück 12 mit im Querschnitt kreisförmiger Wand enthält, die einen an beiden Enden offenen langgestreckten HohLraum 16 einschließt und an den Enden mit Anschlußflanschen 14 versehen ist.
- Das Hohlleiterstück ist außen mit Abstand von einem gasdichten und druckfesten Mantel 11 umgeben, der mit den FLanschen 14 gasdicht verbunden ist. Der Mantel 11 ist über einen Gasanschlußstutzen mit einem Gaszuführungs- oder GasabLeitungssystem 13 verbunden, das eine Druckgasquelle oder eine Pumpe sowie ein einstellbares oder beliebig zu öffnenden oder zu schließenden Ventil zur Druckhaltung und zur Regulierung des Gasaustausches vom Inneren des Hohlleiterstückes nach außen enthalten kann.
- Die das Hohlleiterstück 12 bildende Wand 18 besteht aus einem Sinterwerkstoff 20, z. B. SintermetaLL, der offene Poren 22 aufweist, die von der Innenseite zur Außenseite 26 der Wand 18 durchgehen wie in Fig. 2 dargestellt ist. Die Innenseite der Wand kann eine die öffnungen der Poren im wesentlichen frei Lassende, im Vergleich zur Dicke der Wand dünne Schicht 28 aus einem elektrisch gut leitenden MetaLL, z.B. Silber tragen, wie in Fig. 2 dargestellt ist. Die maximalen Abmessungen d der Poren 22 sind zumindest an der Innenseite 24 der Wand wesentlich kleiner als die Nennwellenlänge der Mikrowellenleiteranordnung, vorzugsweise kleiner als 1/100 der NennweLLenLänge.
- Der HauptteiL der Wand 18 kann auch aus Sinterkeramik bestehen, in diesem Falle ist dann die Leitfähige Schicht 28 auf der Innenseite notwendig. Es kann auch nur ein TeiL der Wand 18 aus porösem Sinterwerkstoff bestehen. Bei einem Rechteckhohlleiter können z. B. die SchmaLseiten aus porösem Sinterwerkstoff hergestellt werden.
-
- Das Sinterteil ist aus Edelstahl mit der Bezeichnung X5CrNiMo1810 ("Siperm R" (Wz), Fa. Deutsche Edelstahlwerke). Der Teilchengrößebereich dieses Materials ist ca. 0,2 bis 1,3 mm und die maximale Porengröße ist 65µm. Die FLansche 14 bestehen aus Kupfer und dienen zum Anschluß an ein aus Kupfer bestehendes Hohlleitersystem. Der Sintermaterialteil 12 hatte keine zusätzliche Innenbeschichtung.
- Die Erfindung läßt sich auch bei anderen Hohlleiterelementen als dem beschriebenen geraden Hohlleiterstück anwenden, z.B. Richtungskopp-Lern, Verzweigungen, Hohlraumresonatoren und dergl. Bei inhomogener StrombeLastung der Innenwand des Hohlleiterelements kann man die beschriebene Verwendung von Sinterwerkstoff auf die weniger hoch belasteten WandteiLe beschränken. Das System 13 kann auch an eine andere Stelle des Hohlleitersystems angeschlossen werden.
Claims (6)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3427283 | 1984-07-24 | ||
DE19843427283 DE3427283A1 (de) | 1984-07-24 | 1984-07-24 | Hohlleiterelement fuer mikrowellen |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0169472A2 true EP0169472A2 (de) | 1986-01-29 |
EP0169472A3 EP0169472A3 (de) | 1988-04-13 |
Family
ID=6241449
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP85108839A Ceased EP0169472A3 (de) | 1984-07-24 | 1985-07-15 | Hohlleiterelement für Mikrowellen |
Country Status (4)
Country | Link |
---|---|
US (1) | US4646040A (de) |
EP (1) | EP0169472A3 (de) |
JP (1) | JPS6141201A (de) |
DE (1) | DE3427283A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2214720A (en) * | 1988-02-01 | 1989-09-06 | Gore & Ass | Waveguide window |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19723462A1 (de) * | 1997-06-05 | 1998-12-10 | Thomas Dr Bluemchen | Mikrowellengassensor und Verfahren der Mikrowellenspektroskopie |
US7606592B2 (en) | 2005-09-19 | 2009-10-20 | Becker Charles D | Waveguide-based wireless distribution system and method of operation |
JP2008066159A (ja) * | 2006-09-08 | 2008-03-21 | Noritsu Koki Co Ltd | プラズマ発生装置およびそれを用いるワーク処理装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2783440A (en) * | 1955-01-26 | 1957-02-26 | Lockheed Aircraft Corp | Light weight wave guide construction |
GB1259098A (de) * | 1968-05-13 | 1972-01-05 | ||
US3906412A (en) * | 1971-07-08 | 1975-09-16 | Union Carbide Corp | AC Superconducting articles and a method for their manufacture |
US4323867A (en) * | 1980-08-27 | 1982-04-06 | The United States Of America As Represented By The Secretary Of The Navy | Fragment-tolerant transmission line |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2557261A (en) * | 1943-09-14 | 1951-06-19 | Emi Ltd | High-frequency electric transmission lines or wave guides |
DE892150C (de) * | 1943-10-20 | 1953-10-05 | Siemens Ag | Hohlraumresonator oder Hohlleiter fuer ultrakurze Wellen |
US2577146A (en) * | 1948-05-28 | 1951-12-04 | Rca Corp | Method of and system for modulating microwave energy |
AT228843B (de) * | 1960-09-07 | 1963-08-12 | Tavkoezlesi Ki | Zylindrischer Hohlraumresonator für die TEoln Schwingungsmode |
DE2907808A1 (de) * | 1979-02-28 | 1980-09-04 | Siemens Ag | Vakuumdichte, hochfrequenzdurchlaessige fensteranordnung in einer koaxialleitung, insbesondere fuer wanderfeldroehren |
-
1984
- 1984-07-24 DE DE19843427283 patent/DE3427283A1/de not_active Withdrawn
-
1985
- 1985-07-01 US US06/750,885 patent/US4646040A/en not_active Expired - Fee Related
- 1985-07-15 EP EP85108839A patent/EP0169472A3/de not_active Ceased
- 1985-07-23 JP JP16135085A patent/JPS6141201A/ja active Granted
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2783440A (en) * | 1955-01-26 | 1957-02-26 | Lockheed Aircraft Corp | Light weight wave guide construction |
GB1259098A (de) * | 1968-05-13 | 1972-01-05 | ||
US3906412A (en) * | 1971-07-08 | 1975-09-16 | Union Carbide Corp | AC Superconducting articles and a method for their manufacture |
US4323867A (en) * | 1980-08-27 | 1982-04-06 | The United States Of America As Represented By The Secretary Of The Navy | Fragment-tolerant transmission line |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2214720A (en) * | 1988-02-01 | 1989-09-06 | Gore & Ass | Waveguide window |
GB2214720B (en) * | 1988-02-01 | 1992-04-08 | Gore & Ass | Waveguides |
Also Published As
Publication number | Publication date |
---|---|
DE3427283A1 (de) | 1986-01-30 |
EP0169472A3 (de) | 1988-04-13 |
US4646040A (en) | 1987-02-24 |
JPH022323B2 (de) | 1990-01-17 |
JPS6141201A (ja) | 1986-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE4241927C2 (de) | Zur Anordnung in einem Vakuumgefäß geeignete selbsttragende isolierte Elektrodenanordnung, insbesondere Antennenspule für einen Hochfrequenz-Plasmagenerator | |
DE3915477C2 (de) | Vorrichtung zur Erzeugung eines Plasmas mit Mikrowellen | |
DE19628954B4 (de) | Vorrichtung zur Erzeugung von Plasma | |
EP2080215A1 (de) | Vorrichtung und verfahren zur lokalen erzeugung von mikrowellenplasmen | |
DE3544801C2 (de) | Elektrisches Kabel oder Leiter mit Mineralpulverisolierung | |
DE3928015A1 (de) | Dielektrisches filter | |
DE19722272A1 (de) | Vorrichtung zur Erzeugung von Plasma | |
DE69402397T2 (de) | Lineare Elektronenstrahlröhrenanordnungen | |
EP1183709A1 (de) | Linear ausgedehnte anordnung zur grossflächigen mikrowellenbehandlung und zur grossflächigen plasmaerzeugung | |
DE19928876A1 (de) | Vorrichtung zur lokalen Erzeugung eines Plasmas in einer Behandlungskammer durch Mikrowellenanregung | |
DE1030904B (de) | Mikrowellen-UEbertragungsleitung nach Art einer gedruckten Schaltung mit einem ersten streifenfoermigen Leiter, der in einem bezueglich der Wellenlaenge sehr geringen Abst and parallel zu einem zweiten durch eine dielektrische Schicht getrennten streifenfoermigen Leiter von gleicher oder groesserer Breite angeordnet ist | |
EP0169472A2 (de) | Hohlleiterelement für Mikrowellen | |
DE19652454A1 (de) | Verfahren und Vorrichtung zur Außenbeschichtung von Lampen | |
AT126295B (de) | Verfahren und Einrichtung zur Verstärkung oder Erzeugung elektrischer Wellen. | |
DE19911744C2 (de) | Baugruppe zur druckdichten Trennung eines ersten Hohlleiters von einem zweiten Hohlleiter sowie Verfahren zur Herstellung einer solchen Baugruppe | |
DE2417577C2 (de) | Hochfrequenz-Erhitzungsvorrichtung zur Erhitzung eines dielektrischen Materials von langgestreckter Form und geringen Querschnitts | |
DE2526127C3 (de) | Einrichtung zur Dämpfung von sehr kurzen Störwellen | |
DE2214522A1 (de) | Mikrowellenfenster | |
EP0963141A2 (de) | Vorrichtung zur Erzeugung von Plasma | |
DE2708271C2 (de) | Polarisationsweiche | |
DE10257370B3 (de) | Reflexionsoptimierte Antennenverkleidungen | |
DE4333441C2 (de) | Entladungsröhre | |
DE102008009624A1 (de) | Verfahren und Vorrichtung zur Reinigung der Abgase einer Prozessanlage | |
DE69719593T2 (de) | Filter | |
DE967137C (de) | Verfahren zur Herstellung einer Kathode fuer elektrische Entladungsgefaesse, bei der senkrecht zur emittierenden Oberflaeche sich erstreckende Draehte einen Vorrat an Emissionsstoffen abschliessen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): DE FR GB IT NL |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): DE FR GB IT NL |
|
17P | Request for examination filed |
Effective date: 19880613 |
|
17Q | First examination report despatched |
Effective date: 19900723 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED |
|
18R | Application refused |
Effective date: 19911115 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: SPENSBERGER, WILHELM |