EP0165893B1 - Brightness control device for a fluorescent lamp - Google Patents
Brightness control device for a fluorescent lamp Download PDFInfo
- Publication number
- EP0165893B1 EP0165893B1 EP85810080A EP85810080A EP0165893B1 EP 0165893 B1 EP0165893 B1 EP 0165893B1 EP 85810080 A EP85810080 A EP 85810080A EP 85810080 A EP85810080 A EP 85810080A EP 0165893 B1 EP0165893 B1 EP 0165893B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- fluorescent lamp
- voltage
- capacitor
- circuit
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B41/00—Circuit arrangements or apparatus for igniting or operating discharge lamps
- H05B41/14—Circuit arrangements
- H05B41/36—Controlling
- H05B41/38—Controlling the intensity of light
- H05B41/39—Controlling the intensity of light continuously
- H05B41/392—Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor
- H05B41/3921—Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor with possibility of light intensity variations
- H05B41/3924—Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor with possibility of light intensity variations by phase control, e.g. using a triac
Definitions
- the invention relates to a device for controlling the brightness of fluorescent lamps according to the preamble of patent claim 1.
- control devices of this type are known, but they are disadvantageous because they do not or only with complex auxiliary circuits for controlling the brightness of fluorescent lamps with high ignition voltage and poor control properties, such as the so-called slimline tubes with a diameter of 26 mm can be used, and because they only allow a limited control range with insufficiently low minimum brightness.
- a control of the brightness is not possible by means of a phase cut of the supplying alternating current if the glow cathodes of the fluorescent lamps are preheated by a heating transformer since the lamps do not ignite.
- a heating transformer is dispensed with and a conventional glow starter device is provided for it, the lamps can be ignited at full control. With additional circuit measures in the phase gating device, a control range down to about 20% can be achieved.
- the permissible control range is limited to around 50%.
- a device has also become known in which, on the one hand, an uncontrolled current is continuously fed to the hot cathodes of the fluorescent lamps for their heating, so that there is no fear of the lamps being destroyed.
- the supply current of the lamps is controlled by means of phase gating, with a low, higher-frequency energy being continuously supplied in parallel with the lamps for igniting and re-igniting the lamps in the current which is incomplete due to the phase gating control.
- phase gating As a result of this higher-frequency energy, there is minimal brightness when the phase gating device is fully controlled.
- the phase gating device is fully controlled, full light is achieved. Since a certain minimum higher-frequency energy must now be supplied to the lamps for a reliable ignition of the lamps on the one hand and a stable burning of the lamps in the controlled state on the other hand, the achievable control range is limited to approximately 4% (1:25).
- the device according to the invention has the features stated in the characterizing part of patent claim 1.
- the duration of the feeding of the higher-frequency energy can be shortened considerably. This means that a minimum brightness of well under 1% can be achieved. If the power of the damped ignition pulse oscillation triggered by the trigger circuit is reduced in a suitable manner when the phase gating is controlled back, the control range can be expanded to a minimum brightness of less than 0.01%. Although the ignition of the fluorescent lamp is guaranteed regardless of the time of the phase control, its emissivity remains unchanged in any state of the brightness control, because the hot cathodes of the lamp are continuously fed via an uncontrolled power supply, in particular a heating transformer.
- Fig. 1 is by dash-dotted lines limits the circuit diagram of an exemplary embodiment of the control device 1 according to the invention.
- the control device 1 has various connecting terminals, namely a connecting terminal 2 for connecting the phase conductor L1 of an AC network, a connecting terminal 3 for connecting the neutral conductor N of the AC network, a connecting terminal 4 for connecting the earth conductor E of the AC network and a connecting terminal 5 for connecting the controlled output of a phase gating device 6 shown only schematically, which in turn is connected to the phase conductor L1 and the neutral conductor N of the alternating current network and is of a conventional type which is not explained in detail here.
- the control device 1 has further connection terminals on the load side, namely two connection terminals 7 for connecting a current-limiting ballast 8, usually a choke, and two pairs of connection terminals 9 and 10, which are provided for this purpose, each with a glow cathode filament 11 or 12 of a fluorescent lamp 13 to become.
- connection terminals 9 and 10 For permanent and uncontrolled heating of the hot cathode filament 11, 12 there is a secondary winding 14 and 15, respectively, of a heating transformer 16 at the paired connection terminals 9 and 10, the primary winding 17 of which, accordingly, with the connection terminals 2 and 3 for the phase conductor L1 and the neutral conductor N of the AC network connected is.
- the heating transformer 16 could also be arranged outside the control device 1 with dash-dotted lines, as is shown for the phase gating device 6 and the ballast 8.
- One of each pair of connecting terminals 9, 10 also serves to supply the connected fluorescent lamp 13 with the fuel supply current of the AC network during the phase gating periods. Accordingly, one of the connection terminals 9 is essentially connected to the connection terminal 5 via the connection terminals 7 for the ballast 8, and one of the connection terminals 10 is essentially connected to the connection terminal 3.
- a first trigger circuit 18 is connected, which consists of the series connection of a resistor 19, a first capacitor 20 and a second capacitor 21 and one at the connection point of the two capacitors 20 , 21 connected trigger diode 22.
- the control device 1 shown also contains a further capacitor 27, which can be charged with respect to the connected neutral conductor N by a resistor 28 connected to the connected phase conductor L1 of the AC network via the connection terminal 2, and which via a primary winding 29 of a pulse transformer by means of the switching path of a electronic switch 30, preferably a triac, can be discharged.
- the trigger diode 22 belonging to the trigger circuits 18 and 23 is connected to the control electrode of the triac 30.
- the capacitor 27 and the primary winding 29 of the pulse transformer form a damped oscillating circuit 31.
- the damped oscillation which is excited when the triac 30 is closed by the discharge current of the capacitor 27 which flows through the primary winding 29 has here a frequency that is significantly greater than the frequency of the AC network and that is, for example, above 20 kHz.
- Two separate secondary windings 32 and 33 of the pulse transformer mentioned with the primary winding 29 are connected into the feed lines of the fluorescent lamp 13. They are connected to one another at their ends facing away from the fluorescent lamp 13 by a bypass capacitor 34, so that the fluorescent lamp 13, the two secondary windings 32 and 33 of the pulse transformer and the bypass capacitor 34 form a closed ignition circuit, as will be explained below.
- the phase gating device 6 supplies a voltage UPA to the connecting terminal 5 of the control device 1, the course of which is shown in FIG. 2a in the period of a half-wave between the specified times t o and t 6 for three different settings of the phase gating device.
- the phase gating takes place at a time t 3 (relatively large current flow angle).
- the phase gating takes place at a later point in time t 4 (smaller current flow angle).
- the phase gating takes place at a time t 5 shortly before the zero crossing of the voltage at time t 6 (very small current flow angle).
- the voltage still present in the periods t o to t 2 or t o to t comes from the current still flowing when the fluorescent lamp is on and disappears at the zero crossing of the current (time t or t 2 ) with a steep flank this edge with a decreasing current flow angle to the zero crossing t o shifts.
- the voltage UPA then has a vertical flank 35, 36 or 37 at the times t 3 , t 4 or t 5 set in the phase gating device 6.
- the occurrence of the edge 35 or 36 for example, generates a control pulse on the control electrode of the triac 30 via the trigger circuit 18. Since at the beginning of the relevant half-wave of the AC line voltage Uu, the capacitor 27 is charged via the resistor connected to the connection terminal 2, the voltage U c of the capacitor 27 is also above the triac 30, so that the latter is turned on by the control pulse of the trigger diode 22 is switched. As a result, the capacitor 27 can discharge via the primary winding 29 of the pulse transformer, which is now connected in parallel with it.
- the higher-frequency, damped voltage generated by the oscillating circuit 31 into the ignition circuit is closed via the secondary windings 32 and 33, the fluorescent lamp 13 and the capacitor 34.
- the ignition voltage applied to the fluorescent lamp 13 is thus kept away from the ballast.
- the frequency of the damped oscillation excited in the oscillating circuit 31 is approximately 30 kHz and the duration of the oscillation is approximately 0.5 ms.
- the oscillation train of the damped ones produced Vibration very powerful, including the ignition pulse applied to the fluorescent lamp 13 and transformed to a voltage of approximately 1000 V.
- the latter can also have only a single secondary winding.
- the division shown in FIG. 1 into two identical secondary windings 32, 33 with an additive winding sense has the advantage that the high transformed ignition voltage of the resonant circuit 31 is halved against the potential of the neutral conductor N or against the earth potential.
- the voltage stress on the heating transformer 16 is also reduced by half due to the above-mentioned division relative to the earth potential.
- FIG. 2b shows the time profiles of the two voltages u L1 and u c in a half wave, which corresponds to that of the diagram of FIG. 2a between the times t o and t 6 .
- 2b shows the values of the voltages u c at the capacitor 27 in the phase gating times t 3 , t 4 and t 5 of FIG.
- the mains AC voltage present at the connecting terminal 5 is no longer sufficient to maintain a combustion current in the ignited fluorescent lamp 13, the decaying effect causes over the secondary winding 32, 33 of the pulse transformer fed in higher-frequency ignition oscillation a short further burning of the fluorescent lamp 13, so that a low light brightness is maintained. Since, according to the diagram in FIG. 2b, with a further reduction in the phase gating angle , that is to say a further approximation of the phase gating to the zero crossing of the mains voltage UL1 , the voltage at the capacitor 27 decreases and thus the power of the higher-frequency oscillation supplied to the fluorescent lamp decreases, a further reduction in brightness. This makes it possible to continuously achieve a minimum brightness of less than 0.01%.
- the ignition torque shifts forward.
- the voltage u c across the capacitor 27 is greater. This has the advantageous consequence that the fluorescent lamp 13 burns stably when the higher light level is set.
- the second trigger circuit 23 takes advantage of the voltage across the two feed lines of the fluorescent lamp 13 or the voltage across the bypass capacitor 34.
- the operating voltage of the fluorescent lamp is essentially at the capacitor 34, which is considerably lower than the mains voltage UL1 .
- the voltage divider with the resistor 24 and the capacitor 25 of the trigger circuit 23 is dimensioned such that in this case the divided operating voltage of the fluorescent lamp 13 applied to the trigger diode 22 via the resistor 26 does not reach the trigger voltage of the diode 22.
- the voltage across the bypass capacitor 34 is identical to the mains voltage U L1 ' when the phase gating device 6 is fully activated. Since this voltage is significantly higher than the burning voltage of the fluorescent lamp, it is sufficient voltage on capacitor 25 to trigger periodic switch-on of triac 30 via trigger diode 22 until fluorescent lamp 13 has ignited due to the damped vibrations generated thereby. As soon as the fluorescent lamp burns, the second trigger circuit 23 becomes inactive due to a lack of sufficient trigger voltage. It should also be noted here that when the triac 30 is switched on, which, according to the diagram in FIG. 2b, is slightly earlier than the time t 3 or should be by appropriate selection of the values of the components of the trigger circuit 23, the voltage Uc at the capacitor 27 is sufficiently large in spite of lag to generate a powerful ignition pulse.
- the voltage divider composed of the capacitors 20 and 21 essentially determines the minimum voltage reaching the trigger diode 22 for its control. At times when the voltage UPA applied to the trigger circuit 18 is so high that the trigger diode 22 could be damaged, the resistor 19 limits the current flowing through the capacitors 20 and 21, so that the control voltage at the trigger diode 22 is safe Value is limited.
- FIG. 3 schematically shows the part of the control device 1 of FIG. 1 that has been changed for this case.
- the part shown again shows the fluorescent lamp 13 with hot cathode filaments 11 and 12, which are fed with heating current via connecting terminals 9 and 10, respectively, from the secondary windings 14 and 15 of the heating transformer 16 of FIG. 1. Furthermore, the ballast 8 connected via the connection terminals 7 to the phase-controlled mains supply line is shown in accordance with FIG. 1.
- the primary transformer 29, which belongs to the resonant circuit 31 of FIG. 1, has a single secondary winding 38, which is connected on the one hand to the neutral line connected to the connecting terminal 3 for the neutral conductor N (FIG. 1) and on the other hand via a capacitor 39 to the neutral line this neutral line lying hot cathode coil 11 or is connected to one of the terminals 9.
- the Ueber shown in Fig. 1 bridge capacitor 34 is of course omitted.
- the remaining circuit parts of FIG. 1 are essentially unchanged (not shown in FIG. 3).
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Circuit Arrangements For Discharge Lamps (AREA)
Abstract
Description
Die Erfindung bezieht sich auf eine Einrichtung zur Steuerung der Helligkeit von Leuchtstofflampen gemäss dem Oberbegriff des Patentanspruchs 1.The invention relates to a device for controlling the brightness of fluorescent lamps according to the preamble of
Es sind zahlreiche Steuerungseinrichtungen dieser Art bekannt, die jedoch deshalb nachteilig sind, weil sie sich zur Steuerung der Helligkeit von Leuchtstofflampen mit hoher Zündspannung und schlechten Steuereigenschaften, wie beispielsweise den sogenannten Slimline-Röhren mit einem Durchmesser von 26 mm, nicht oder nur mit aufwendigen Hilfsschaltungen verwenden lassen, und weil sie nur einen beschränkten Steuerbereich mit nicht ausreichend tiefer Minimalhelligkeit zulassen.Numerous control devices of this type are known, but they are disadvantageous because they do not or only with complex auxiliary circuits for controlling the brightness of fluorescent lamps with high ignition voltage and poor control properties, such as the so-called slimline tubes with a diameter of 26 mm can be used, and because they only allow a limited control range with insufficiently low minimum brightness.
Mittels Phasenanschnitts des speisenden Netzwechselstroms ist eine Steuerung der Helligkeit nicht möglich, wenn die Glühkathoden der Leuchtstofflampen durch einen Heiztransformator vorgeheizt werden, da die Lampen nicht zünden. Wenn jedoch auf einen Heiztransformator verzichtet wird und dafür ein konventionelles Glimmstartergerät vorgesehen wird, ist eine Zündung der Lampen bei Vollaussteuerung möglich. Mit zusätzlichen Schaltungsmassnahmen im Phasenanschnittgerät ist ein Steuerbereich bis auf etwa 20% hinunter realisierbar. Da bei Unterschreiten eines bestimmten Lampenstromes die Glühkathoden der Lampen jedoch zu wenig geheizt werden, so dass ihre Emissionsfähigkeit stark sinkt, und damit die Lampen bereits nach wenigen Betriebsstunden zufolge Zerstörung unbrauchbar werden, ist der zulässige Steuerbereich auf etwa 50 % beschränkt.A control of the brightness is not possible by means of a phase cut of the supplying alternating current if the glow cathodes of the fluorescent lamps are preheated by a heating transformer since the lamps do not ignite. However, if a heating transformer is dispensed with and a conventional glow starter device is provided for it, the lamps can be ignited at full control. With additional circuit measures in the phase gating device, a control range down to about 20% can be achieved. However, since the glow cathodes of the lamps are not heated enough when the lamp current falls below a certain value, so that their emissivity drops sharply and the lamps become unusable after only a few hours of operation following destruction, the permissible control range is limited to around 50%.
Es ist auch bekannt, Leuchtstofflampen mit einem Wechselstrom höherer Frequenz zu speisen, das heisst mit einer oberhalb 20 kHz liegenden Frequenz. Mittels eines elektronischen Vorschaltgeräts wird hierbei die höherfrequente Speisespannung bzw. der höherfrequente Speisestrom zur Steuerung der Helligkeit verändert. Eine ungesteuerte Stromversorgung zur Heizung der Glühkathoden ist hierbei nicht erforderlich. Da durch die vorgeschaltete, mittels Phasenanschnitts oder eines Regeltransformators vorgenommene Spannungs- bzw. Stromsteuerung die abgegebene Leistung des elektronischen Vorschaltgeräts stark reduziert wird und dadurch die aus der gleichen Quelle gespiesene Glühkathodenheizung ungenügend wird, ist der erzielbare Steuerbereich auf etwa 10 % begrenzt.It is also known to feed fluorescent lamps with an alternating current of higher frequency, that is to say with a frequency above 20 kHz. By means of an electronic ballast, the higher-frequency supply voltage or the higher-frequency supply current is changed to control the brightness. An uncontrolled power supply for heating the hot cathode is not necessary. Since the output power of the electronic ballast is greatly reduced by the upstream voltage or current control carried out by means of phase angle control or a regulating transformer and the hot cathode heating supplied from the same source is thereby insufficient, the achievable control range is limited to approximately 10%.
Es ist ferner eine Einrichtung bekannt geworden, bei welcher einerseits den Glühkathoden der Leuchtstofflampen zu ihrer Heizung dauernd ein ungesteuerter Strom zugeführt wird, so dass eine Zerstörung der Lampen nicht zu befürchten ist. Andererseits wird der Speisestrom der Lampen mittels Phasenanschnitts gesteuert, wobei zum Zünden und zum Wiederzünden der Lampen bei dem zufolge der Phasenanschnittsteuerung lückenhaften Strom parallel zu den Lampen eine geringe höherfrequence Energie dauernd zugeführt wird. Zufolge dieser höherfrequenten Energie ergibt sich eine minimale Helligkeit, wenn das Phasenanschnittgerät vollständig zurückgesteuert ist. Bei Vollaussteuerung des Phasenanschnittgeräts wird volles Licht erreicht. Da nun für ein sicheres Zünden der Lampen einerseits und ein stabiles Brennen der Lampen im gesteuerten Zustand andererseits eine bestimmte minimale höherfrequente Energie den Lampen zugeführt werden muss, ist der erzielbare Steuerbereich auf etwa 4 % (1 : 25) beschränkt.A device has also become known in which, on the one hand, an uncontrolled current is continuously fed to the hot cathodes of the fluorescent lamps for their heating, so that there is no fear of the lamps being destroyed. On the other hand, the supply current of the lamps is controlled by means of phase gating, with a low, higher-frequency energy being continuously supplied in parallel with the lamps for igniting and re-igniting the lamps in the current which is incomplete due to the phase gating control. As a result of this higher-frequency energy, there is minimal brightness when the phase gating device is fully controlled. When the phase gating device is fully controlled, full light is achieved. Since a certain minimum higher-frequency energy must now be supplied to the lamps for a reliable ignition of the lamps on the one hand and a stable burning of the lamps in the controlled state on the other hand, the achievable control range is limited to approximately 4% (1:25).
Es hat sich jedoch gezeigt, dass es in zahlreichen Fällen erwünscht ist, eine wesentlich kleinere steuerbare Minimalhelligkeit zu erreichen, was mit den bekannten Einrichtungen nicht möglich ist.However, it has been shown that it is desirable in numerous cases to achieve a significantly smaller controllable minimum brightness, which is not possible with the known devices.
Aufgabe der vorliegenden Erfindung ist deshalb, eine Vorrichtung der eingangs genannten Art zu schaffen, mit welcher die Helligkeit der Leuchtstofflampen ohne Beeinträchtigung der Emissionsfähigkeit ihrer Glühkathoden in einem Bereich von vollem Licht bis zu einer wesentlich unterhalb von 4% liegenden Minimalhelligkeit kontinuierlich steuerbar ist.It is therefore an object of the present invention to provide a device of the type mentioned at the outset with which the brightness of the fluorescent lamps can be continuously controlled in a range from full light to a minimum brightness which is substantially below 4% without impairing the emissivity of their hot cathodes.
Zur Lösung dieser Aufgabe weist die Einrichtung gemäss der Erfindung die im kennzeichnenden Teil des Patentanspruchs 1 angeführten Merkmale auf.To achieve this object, the device according to the invention has the features stated in the characterizing part of
Dadurch, dass bei der erfindungsgemässen Einrichtung der Leuchtstofflampe eine höherfrequente Zündenergie hoher Leistung, jedoch nur im Anschnittzeitpunkt jeder Halbwelle der Netzwechselspannung zugeführt wird, kann die Zeifdauer der Einspeisung der höherfrequenten Energie erheblich verkürzt werden. Dadurch kann eine Minimalhelligkeit von weit unter 1 % erzielt werden. Wenn beim Zurucksteuern des Phasenanschnitts gleichzeitig die Leistung der durch die Triggerschaltung ausgelösten, gedämpften Zündimpulsschwingung in geeigneter Weise reduziert wird, kann der Steuerbereich bis zu einer Minimalhelligkeit von unter 0,01 % erweitert werden. Obwohl die Zündung der Leuchtstofflampe unabhängig vom Zeitpunk des Phasenanschnitts gewährleistet ist, bleibt ihre Emissionsfähigkeit in jedem Zustand der Helligkeitssteuerung unverändert, weil die Glühkathoden der Lampe über eine ungesteuerte Stromversorgung, insbesondere einen Heiztransformator, dauernd gespeist werden.The fact that in the inventive device of the fluorescent lamp a higher-frequency ignition energy of high power, but only at the cut-in time of each half-wave of the AC mains voltage, the duration of the feeding of the higher-frequency energy can be shortened considerably. This means that a minimum brightness of well under 1% can be achieved. If the power of the damped ignition pulse oscillation triggered by the trigger circuit is reduced in a suitable manner when the phase gating is controlled back, the control range can be expanded to a minimum brightness of less than 0.01%. Although the ignition of the fluorescent lamp is guaranteed regardless of the time of the phase control, its emissivity remains unchanged in any state of the brightness control, because the hot cathodes of the lamp are continuously fed via an uncontrolled power supply, in particular a heating transformer.
Ausführungsbeispiele des Erfindungsgegenstandes werden nachstehend anhand der Zeichnung erläutert. Es zeigen :
- Fig. 1 ein Schaltungsschema einer erfindungsgemässen Einrichtung zusammen mit einem Phasenanschnittgerät, einem Vorschaltgerät und einer Leuchtstofflampe,
- Fig. 2a und 2b Diagramme des zeitlichen Verlaufs verschiedener Spannungen im Schaltungsschema der Fig. 1, und
- Fig. 3 ein Teil des Schaltungsschemas der Fig. 1 in einer Ausführungsvariante.
- 1 shows a circuit diagram of a device according to the invention together with a phase gating device, a ballast and a fluorescent lamp,
- 2a and 2b diagrams of the time course of different voltages in the circuit diagram of Fig. 1, and
- Fig. 3 shows a part of the circuit diagram of Fig. 1 in an embodiment.
In Fig. 1 ist durch strichpunktierte Linien begrenzt das Schaltungsschema eines Ausführungsbeispiels der erfindungsgemässen Steuereinrichtung 1 dargestellt. Die Steuereinrichtung 1 hat verschiedene Anschlussklemmen, nämlich speiseseitig eine Anschlussklemme 2 zum Anschliessen des Phasenleiters L1 eines Wechselstromnetzes, eine Anschlussklemme 3 zum Anschliessen des Nullleiters N des Wechselstromnetzes, eine Anschlussklemme 4 zum Anschliessen des Erdleiters E des Wechselstromnetzes sowie eine Anschlussklemme 5 zum Anschliessen des gesteuerten Ausgangs eines nur schematisch dargestellten Phasenanschnittgeräts 6, das seinerseits an den Phasenleiter L1 und den Nulleiter N des Wechselstromnetzes angeschlossen ist und von üblicher, hier nicht näher erläuterter Bauart ist. Die Steuereinrichtung 1 hat lastseitig weitere Anschlussklemmen, nämlich zwei Anschlussklemmen 7 zum reihenmässigen Anschliessen eines strombegrenzenden Vorschaltgeräts 8, üblicherweise einer Drossel, und zwei Paare von Anschlussklemmen 9 und 10, die dafür vorgesehen sind, mit je einem Glühkathodenwendel 11 bzw. 12 einer Leuchtstofflampe 13 verbunden zu werden.In Fig. 1 is by dash-dotted lines limits the circuit diagram of an exemplary embodiment of the
Zur dauernden und ungesteuerten Heizung der Glühkathodenwendel 11, 12 liegt an den paarweisen Anschlussklemmen 9 und 10 je eine Sekundärwicklung 14 bzw. 15 eines Heiztransformators 16, dessen Primärwicklung 17 demnach mit den Anschlussklemmen 2 und 3 für den Phasenleiter L1 bzw. den Nulleiter N des Wechselstromnetzes verbunden ist. Es ist ersichtlich, dass der Heiztransformator 16 auch ausserhalb der strichpunktiert umrandeten Steuereinrichtung 1 angeordnet werden könnte, wie dies für das Phasenanschnittgerät 6 und das Vorschaltgerät 8 dargestellt ist. Je eine der Paarweisen Anschlussklemmen 9, 10 dient ferner dazu, die angeschlossene Leuchtstofflampe 13 während den Phasenanschnittperioden mit dem Brennspeisestrom des Wechselstromnetzes zu versorgen. Demnach ist eine der Anschlussklemmen 9 über die Anschlussklemmen 7 für das Vorschaltgerät 8 im wesentlichen mit der Anschlussklemme 5, und eine der Anschlussklemmen 10 im wesentlichen mit der Anschlussklemme 3 verbunden.For permanent and uncontrolled heating of the
Zwischen den gesteuerten Ausgang des angeschlossenen Phasenanschnittgeräts 6 und den angeschlossenen Nulleiter N des Wechselstromnetzes, ist eine erste Triggerschaltung 18 geschaltet, welche aus der Reihenschaltung eines Widerstands 19, eines ersten Kondensators 20 und eines zweiten Kondensators 21 sowie aus einer an den Verbindungspunkt der beiden Kondensatoren 20, 21 angeschlossenen Triggerdiode 22 besteht. Eine zweite Triggerschaltung 23, welche zwischen den Ausgang des angeschlossenen Vorschaltgeräts 8 und den angeschlossenen Nulleiter N des Wechselstromnetzes geschaltet ist, weist die Reihenschaltung eines Widerstands 24 und eines Kondensators 25 sowie einen Widerstand 26 auf, der den Verbindungspunkt des Widerstands 24 und des Kondensators 25 mit der bereits erwähnten Triggerdiode 22 verbindet.Between the controlled output of the connected
Die dargestellte Steuereinrichtung 1 enthält zudem einen weiteren Kondensator 27, welcher durch einen mit dem angeschlossenen Phasenleiter L1 des Wechselstromnetzes über die Anschlussklemme 2 in Verbindung stehenden Widerstand 28 gegenüber dem angeschlossenen Nullleiter N aufladbar ist, und welcher über eine Primärwicklung 29 eines Impulstransformators mittels der Schaltstrecke eines elektronischen Schalters 30, vorzugsweise eines Triac, entladbar ist. An die Steuerelektrode des Triac 30 ist die zu den Triggerschaltungen 18 und 23 gehörige Triggerdiode 22 angeschlossen. Wenn sich der Triac 30 im leitenden Zustand befindet, bilden der Kondensator 27 und die Primärwicklung 29 des Impulstransformators einen gedämpften Schwingkreis 31. Die beim Schliessen des Triac 30 durch den Entladungsstrom des Kondensators 27, welcher durch die Primärwicklung 29 fliesst, angeregte gedämpfte Schwingung hat hierbei eine Frequenz, die wesentlich grösser ist als die Frequenz des Wechselstromnetzes und die beispielsweise oberhalb von 20 kHz liegt.The
Zwei getrennte Sekundärwicklungen 32 und 33 des genannten Impulstransformators mit der Primärwicklung 29 sind in die Speisezuleitungen der Leuchtstofflampe 13 geschaltet. Sie sind an ihren von der Leuchtstofflampe 13 abgewandten Enden durch einen Ueberbrückungskondensator 34 miteinander verbunden, so dass die Leuchtstofflampe 13, die beiden Sekundärwicklungen 32 und 33 des Impulstransformators und der Ueberbrückungskondensator 34 einen geschlossenen Zündstromkreis bilden, wie dies nachstehend noch erläutert wird.Two separate
Die Arbeitsweise der in Fig. 1 dargestellten Einrichtung 1 im Zusammenhang mit den ebenfalls dargestellten äusseren Bauteilen 6, 8 und 13 sowie dem Wechselstromnetz ist die folgende.The operation of the
Das Phasenanschnittgerät 6 gibt an die Anschlussklemme 5 der Steuereinrichtung 1 in an sich bekannter Weise eine Spannung UPA, deren zeitlicher Verlauf in Fig. 2a im Zeitraum einer Halbwelle zwischen den angegebenen Zeitpunkten to und t6 für drei verschiedene Einstellungen des Phasenanschnittgeräts dargestellt ist. Im einen Fall, der mit einer ausgezogenen Linie des Spannungsverlaufs dargestellt ist, erfolgt der Phasenanschnitt in einem Zeitpunkt t3 (relativ grosser Stromflusswinkel). In einem weiteren Fall, der mit einer strichpunktierten Linie des Spannungsverlaufs dargestellt ist, erfolgt der Phasenanschnitt in einem späteren Zeitpunkt t4 (kleinerer Stromflusswinkel). In einem letzten Fall, der mit einer gestrichelten Linie des Spannungsverlaufs dargestellt ist, erfolgt der Phasenanschnitt in einem Zeitpunkt t5 kurz vor dem Nulldurchgang der Spannung im Zeitpunkt t6 (sehr kleiner Stromflusswinkel). Die in den Zeitabschnitten to bis t2 bzw. to bis t, noch anstehende Spannung rührt von dem bei brennender Leuchtstofflampe noch fliessenden Strom her und verschwindet im Nulldurchgang des Stroms (Zeitpunkt t, bzw. t2) mit steiler Flanke, wobei sich diese Flanke mit kleiner werdendem Stromflusswinkel zum Nulldurchgang to verschiebt.The
Die Spannung UPA weist danach in den im Phasenanschnittgerät 6 eingestellten Zeitpunkten t3, t4 oder t5 eine senkrechte Flanke 35, 36 bzw.37 auf. In der Steuereinrichtung 1 (Fig. 1) erzeugt das Auftreten beispielsweise der Flanke 35 oder 36 über die Triggerschaltung 18 an der Steuerelektrode des Triac 30 einen Steuerimpuls. Da mit Beginn der betreffenden Halbwelle der Netzwechselspannung Uu der Kondensator 27 über den mit der Anschlussklemme 2 verbundenen Widerstand aufgeladen wird, liegt die Spannung Uc des Kondensators 27 auch über dem Triac 30, so dass dieser durch den Steuerimpuls der Triggerdiode 22 in den leitenden Zustand geschaltet wird. Dadurch kann sich der Kondensator 27 über die nunmehr zu ihm parallel geschaltete Primärwicklung 29 des Impulstransformators entladen. In dem durch die Induktivität der Primärwicklung 29 und die Kapazität des Kondensators 27 gebildeten Parallelschwingkreis wird eine gedämpfte Schwingung erzeugt, deren erste Spannungs- und Stromamplituden relativ hoch sind. Entsprechend leistungsstarke, zeitlich abgeschwächte Schwingungen treten mit additiver Polarität an den Sekundärwicklungen 32 und 33 des Impulstransformators auf, so dass der über das Vorschaltgerät 8 an der Leuchtstofflampe 13 liegenden Speisespannung die transformierte Spannung des Schwingkreises 31 überlagert wird und die Leuchtstofflampe 13 sicher zündet. Nach erfolgter Zündung beginnt, immer innerhalb derselben Halbwelle der Netzwechselspannung und gespiesen aus dem Phasenanschnittgerät 6 sowie begrenzt durch das Vorschaltgerät 8, der reguläre Lampenstrom zu fliessen, bis der natürliche nächste Nulldurchgang des Netzwechselstroms erreicht wird. Nach einer durch die Einstellung des Phasenanschnittgeräts 6 bestimmten Pause (Fig. 2a) läuft in der nächsten Halbwelle der Netzwechselspannung der nämliche Vorgang mit umgekehrter Polarität ab.The voltage UPA then has a
Wie bereits erwähnt, ist mit der in Fig. 1 dargestellten Reiheneinspeisung der vom Schwingkreis 31 erzeugten höherfrequenten, gedämpften Spannung in den Zündstromkreis dieser über die Sekundärwicklungen 32 und 33, die Leuchtstofflampe 13 und den Kondensator 34 geschlossen. Somit wird die an die Leuchtstofflampe 13 angelegte Zündspannung vom Vorschaltgerät ferngehalten. In einem typischen Beispiel beträgt die Frequenz der im Schwingkreis 31 angeregten gedämpften Schwingung etwa 30 kHz und die Dauer der Schwingung etwa 0,5 ms. Da im Zeitpunkt der Triggerung des Triac 30 die Spannung uc am Kondensator 27 des Schwingkreises 31 etwa 150 V beträgt und durch die Zuschaltung der Primärwicklung 29 parallel zum Kondensator 27 ein Strom von höher als 0,5 A fliesst, ist der Schwingungszug der erzeugten gedämpften Schwingung sehr leistungsstark, also auch der an die Leuchtstofflampe 13 angelegte, auf eine Spannung von etwa 1000 V transformierte Zündimpuls.As already mentioned, with the series feed shown in FIG. 1, the higher-frequency, damped voltage generated by the oscillating
Statt zweier getrennter Sekundärwicklungen 32, 33 des Impulstransformators kann dieser auch nur eine einzige Sekundärwicklung aufweisen. Durch die in Fig. 1 dargestellte Aufteilung in zwei gleiche Sekundärwicklungen 32, 33 mit additivem Wicklungssinn wird aber der Vorteil erzielt, dass die hohe transformierte Zündspannung des Schwingkreises 31 gegen das Potential des Nulleiters N bzw. gegen das Erdpotential halbiert wird. Auch die Spannungsbeanspruchung am Heiztransformator 16 wird durch die genannte Aufteilung gegenüber dem Erdpotential auf die Hälfte reduziert.Instead of two separate
Neben dem vorgängig beschriebenen Betriebszustand, in welchem gemäss dem Diagramm der Fig. 2a die Flanke 35 oder 36 der angeschnittenen Halbwelle entsprechend der jeweiligen Einstellung des Phasenanschnittgeräts 6 (Fig. 1) an irgend einer mittleren Stelle t3 bzw. t4 zwischen den bciden aufeinanderfolgenden Nulldurchgängen der Netzspannung UL1 liegt, jedoch nicht in unmittelbarer Nähe eines dieser Nulldurchgänge, sind noch die Betriebszustände in Betracht zu ziehen, die vorliegen, wenn der Stromflusswinkel sehr klein ist (Zurücksteuern des Phasenanschnittgeräts 3 auf den Zeitpunkt t5 in Fig: 2a) oder maximal ist (Vollsteuerung des Phasenanschnittgeräts).In addition to the previously described operating state, in which, according to the diagram in FIG. 2a, the
Inbezug auf den erstgenannten Fall eines sehr kleinen eingestellten Stromflusswinkels ist zu berücksichtigen, dass die am Kondensator 27 liegende, über den Widerstand 28 zugeführte Spannung uc gegenüber der vom Phasenleiter L1 des Wechselstromnetzes geführten Netzspannung UL1' aus welcher die Kondensatorspannung uc abgeleitet ist, nacheilend phasenverschoben ist. Im Diagramm der Fig. 2b sind die zeitlichen Verläufe der beiden Spannungen uL1 und uc in einer Halbwelle dargestellt, welche derjenigen des Diagramms der Fig. 2a zwischen den Zeitpunkten to und t6 entspricht. In der Fig. 2b sind die Werte der in den Phasenanschnitt-Zeitpunkten t3, t4 und t5 der Fig. 2a am Kondensator 27 liegenden Spannungen uc vor der Triggerung bzw. Entladung des Kondensators 27 durch die Primärwicklung 29 angedeutet. Daraus ist ersichtlich dass die Spannung uc im Zeitpunkt t5 kurz vor dem Nulldurchgang der Netzspannung UL1 im Zeitpunkt t5 noch verhältnismässig gross ist, so dass auch dann, wenn das Phasenanschnittgerät 6 praktisch vollständig zurückgesteuert wird (Zeitpunkt t5 mit Flanke 37 in Fig. 2a), eine für die Zündung der Leuchtstofflampe 13 ausreichende Zündimpulsleistung erzeugt wird. Mit anderen Worten kann mit der vorliegenden Steuereinrichtung 1 auch dann eine sichere Zündung der Leuchtstofflampe 13 erzielt werden, wenn mit dem Phasenanschnittgerät 6 ein sehr kleiner Stromflusswinkel, d. h. eine sehr geringe Helligkeit von wesentlich unter 1 %, eingestellt wird.With regard to the first-mentioned case of a very small set current flow angle, it must be taken into account that the voltage u c applied to the
Wenn bei solchen Verhältnissen eines sehr kleinen eingestellten Stromflusswinkels die an der Anschlussklemme 5 anstehende Netzwechselspannung nicht mehr ausreicht, um in der gezündeten Leuchtstofflampe 13 einen Brennstrom aufrecht zu erhalten, bewirkt die abklingende, über die Sekundärwicklung 32, 33 des Impulstransformators eingespeiste höherfrequente Zündschwingung ein kurzes Weiterbrennen der Leuchtstofflampe 13, so dass eine geringe Lichthelligkeit aufrechterhalten bleibt. Da gemäss dem Diagramm der Fig. 2b mit einer weiteren Verkleinerung des Phasenanschnittwinkels, das heisst einer weiteren Annäherung des Phasenanschnitts an den Nulldurchgang der Netzspannung UL1, die am Kondensator 27 liegende Spannung abnimmtt und somit die Leistung der der Leuchtstofflampe zugeführten höherfrequenten Schwingung abnimmt, erfolgt eine weitere Reduktion der Helligkeit. Dadurch wird es möglich, kontinuierlich eine Minimalhelligkeit von weniger als 0,01 % zu erreichen.If, under such conditions of a very small set current flow angle, the mains AC voltage present at the connecting
Wenn die Leuchtstofflampe aus dem Zustand geringer Helligkeit in einen Zustand grösserer Helligkeit gesteuert wird, indem mit dem Phasenanschnittgerät 6 ein grösserer Stromflusswinkel gemäss einer Verschiebung vom Zeitpunkt ts zwm Zeitpunkt t4 eingestellt wird, verschiebt sich der Zündmoment nach vorne. Damit wird aber gemäss dem Diagramm der Fig. 2b die am Kondensator 27 liegende Spannung uc grösser. Dies hat die vorteilhafte Folge, dass die Leuchtstofflampe 13 bei eingestelltem höheren Lichtniveau stabil brennt. Durch eine geeignete Wahl der Werte des Widerstands 28 und des Kondensators 27 kann somit eine optimale Phasenverschiebung der am Kondensator 27 liegenden Spannung uc gegenüber der Netzwechselspannung UL1 erhalten werden, wodurch ein stabiles Brennen der Leuchtstofflampe und ein grosser Steuerbereich für deren Helligkeit erzielt wird.If the fluorescent lamp is controlled from the low brightness state to a higher brightness state by setting a larger current flow angle according to a shift from the time t s to the time t 4 with the
Inbezug auf den zweiten Fall eines maximalen eingestellten Stromflusswinkels, der auch vorliegt, wenn das Phasenanschnittgerät 6 überbrückt wird, liegt an der Anschlussklemme 5 der Steuereinrichtung 1 eine reine Sinusspannung an, da sich die Zeitpunkte t2 und t3 im Diagramm der Fig. 2a einander bis zur Deckung der beiden Flanken annähern. In diesem Fall ist die steile Anschnitttlanke 35 für die Triggerung der Zündschwingung durch die Triggerschaltung 18 und den Triac 30 nicht mehr vorhanden, so dass die Leuchtstofflampe 13 an sich nicht gezündet wird.With regard to the second case of a maximum set current flow angle, which is also present when the
Um auch bei einer solchen am Phasenanschnittgerät 6 eingestellten Vollaussteuerung ein sicheres Zünden der Leuchtstofflampe 13 zu erzielen, ist die zweite Triggerschaltung 23 vorgesehen, welche sich die über den beiden Speiseleitungen der Leuchtstofflampe 13 bzw. die am Ueberbrückungskondensator 34 liegende Spannung zunutze macht. Im Normalbetrieb liegt am Kondensator 34 im wesentlichen die Brennspannung der Leuchtstofflampe, welche erheblich kleiner als die Netzspannung UL1 ist. Der Spannungsteiler mit dem Widerstand 24 und dem Kondensator 25 der Triggerschaltung 23 ist so dimensioniert, dass in diesem Fall die über den Widerstand 26 an der Triggerdiode 22 anliegende, geteilte Brennspannung der Leuchtstofflampe 13 die Triggerspannung der Diode 22 nicht erreicht.In order to achieve a reliable ignition of the
Wenn aber die Leuchtstofflampe 13 nicht brennt, das heisst durch das Vorschaltgerät 8 kein Strom fliesst, ist die am Ueberbrückungskondensator 34 liegende Spannung bei voll ausgesteuertem Phasenanschnittgerät 6 identisch der Netzspannung UL1' Da diese Spannung wesentlich höher als die Brennspannung der Leuchtstofflampe ist, reicht die am Kondensator 25 liegende Spannung aus, um über die Triggerdiode 22 periodische Einschaltungen des Triac 30 auszulösen, bis aufgrund der dadurch erzeugten gedämpften Schwingungen die Leuchtstofflampe 13 gezündet hat. Sobald die Leuchtstofflampe brennt, wird die zweite Triggerschaltung 23 mangels ausreichender Triggerspannung inaktiv. Hierbei ist noch zu bemerken, dass im Zeitpunkt der Einschaltung des Triac 30, der gemäss dem Diagramm der Fig. 2b etwas vor dem Zeitpunkt t3 liegt bzw. durch entsprechende Wahl der Werte der Bauelemente der Triggerschaltung 23 liegen soll, die Spannung Uc am Kondensator 27 trotz Nacheilung ausreichend gross ist, um einen leistungsstarken Zündimpuls zu erzeugen.If, however, the
In der Triggerschaltung 18 bestimmt der sich aus den Kondensatoren 20 und 21 zusammensetzende Spannungsteiler im wesentlichen die an die Triggerdiode 22 gelangende Minimalspannung zu deren Steuerung. In Zeitpunkten, in welchen die an der Triggerschaltung 18 anliegende Spannung UPA so hoch ist, dass die Triggerdiode 22 Schaden nehmen könnte, begrenzt der Widerstand 19 den durch die Kondensatoren 20 und 21 fliessenden Strom, so dass die Steuerspannung an der Triggerdiode 22 auf einen sicheren Wert begrenzt wird.In the
Die in Fig. 1 dargestellte Einspeisung der höherfrequenten Zündenergie über die Sekundärwicklungen 32 und 33 in Reihe zum die Leuchtstofflampe 13 speisenden Wechselstromnetz hat an sich den Nachteil, dass die Sekundärwicklungen 32, 33 für den vollen Lampenstrom dimensioniert werden müssen. Statt dieser Reiheneinspeisung ist auch eine Parallelankopplung des Ausgangs des Schwingkreises 31 an den Stromkreis der Leuchtstofflampe 13 möglich. In Fig. 3 ist der für diesen Fall geänderte Teil der Steuereinrichtung 1 der Fig. 1 schematisch dargestellt.The feeding of the higher-frequency ignition energy shown in FIG. 1 via the
Der dargestellte Teil zeigt wiederum die Leuchtstofflampe 13 mit Glühkathodenwendeln 11 und 12, welche über Anschlussklemmen 9 bzw 10 von den Sekundärwicklungen 14 und 15 des Heiztransformators 16 der Fig. 1 mit Heizstrom gespeist sind. Ferner ist das über die Anschlussklemmen 7 in die phasenanschnittgesteuerte Netzspeiseleitung geschaltete Vorschaltgerät 8 in Uebereinstimmung mit Fig. 1 dargestellt.The part shown again shows the
Der die zum Schwingkreis 31 der Fig. 1 gehörende Primärwicklung 29 aufweisende Impulstransformator hat eine einzige Sekundärwicklung 38, welche einerseits an die mit der Anschlussklemme 3 für den Nulleiter N (Fig. 1) verbundene Nulleitung angeschlossen und andererseits über einen Kondensator 39 mit der nicht an dieser Nulleitung liegenden Glühkathodenwendel 11 bzw. mit einer der Anschlussklemmen 9 verbunden ist. Der in Fig. 1 dargestellte Ueberbrückungskondensator 34 entfällt selbstverständlich. Die übrigen Schaltungsteile der Fig. 1 sind im wesentlichen unverändert vorhanden (in Fig. 3 nicht dargestellt).The
Es ist ersichtlich, dass in der Einrichtung nach Fig. 3 die an der Sekundärwicklung 38 auftretende Zündschwingung parallel in den Netzspeisekreis der Leuchtstofflampe 13 eingespeist wird. Zufolge des Sperrkondensators 39, der einen verhältnismässig kleinen Kapazitätswert hat, da er für die Durchleitung der wesentlich höherfrequenten Zündschwingung dimensioniert ist, fliesst der Strom der Leuchtstofflampe 13 nicht über die Sekundärwicklung 38. Dagegen bestehen die Nachteile, dass im Verhältnis zur Kapazität des Kopplungskondensators 39 nicht vernachlässigbare parasitäre Wicklungskapazitäten der Heizsekundärwicklungen 14,15 und des Vorschaltgeräts 8 gegen das Erd- bzw. Nulleiterpotential die verfügbare, effektiv an der Leuchtstofflampe 13 wirksame Spannung der Zündschwingungen herabsetzen, so dass sich weniger gute Zündeigenschaften ergeben. Zudem liegt die Spannnug der Zündschwingungen am Vorschaltgerät 8 an, so dass dessen Wicklung für eine beträchtlich höhere als die eigentliche Betriebsspannung dimensioniert werden muss. Jedoch sind auch mit der Schaltung nach Fig. 3 wesentlich bessere Steuereigenschaften für die Leuchtstofflampe 13, insbesondere bezüglich minimaler Helligkeit, erzielbar, als mit den eingangs erwähnten, bekannten Steuereinrichtungen.It can be seen that in the device according to FIG. 3 the ignition oscillation occurring at the secondary winding 38 is fed in parallel into the mains feed circuit of the
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT85810080T ATE42663T1 (en) | 1984-06-21 | 1985-02-28 | DEVICE FOR CONTROLLING THE BRIGHTNESS OF FLUORESCENT LAMPS. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH3017/84 | 1984-06-21 | ||
CH301784 | 1984-06-21 |
Publications (4)
Publication Number | Publication Date |
---|---|
EP0165893A2 EP0165893A2 (en) | 1985-12-27 |
EP0165893A3 EP0165893A3 (en) | 1986-04-09 |
EP0165893B1 true EP0165893B1 (en) | 1989-04-26 |
EP0165893B2 EP0165893B2 (en) | 1993-06-09 |
Family
ID=4246770
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP85810080A Expired - Lifetime EP0165893B2 (en) | 1984-06-21 | 1985-02-28 | Brightness control device for a fluorescent lamp |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0165893B2 (en) |
AT (1) | ATE42663T1 (en) |
DE (1) | DE3569864D1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3826234A1 (en) * | 1988-08-02 | 1990-02-08 | Kulzer & Co Gmbh | CIRCUIT ARRANGEMENT FOR OPERATING A LOW-PRESSURE GAS DISCHARGE LAMP |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4096413A (en) * | 1976-02-20 | 1978-06-20 | General Electric Company | Flicker eliminating intensity controller for discharge lamp dimming circuit |
DE2938529C2 (en) * | 1979-09-24 | 1981-10-15 | Siemens AG, 1000 Berlin und 8000 München | Ignition and operating device for a high pressure lamp |
-
1985
- 1985-02-28 AT AT85810080T patent/ATE42663T1/en not_active IP Right Cessation
- 1985-02-28 EP EP85810080A patent/EP0165893B2/en not_active Expired - Lifetime
- 1985-02-28 DE DE8585810080T patent/DE3569864D1/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
EP0165893B2 (en) | 1993-06-09 |
ATE42663T1 (en) | 1989-05-15 |
EP0165893A3 (en) | 1986-04-09 |
DE3569864D1 (en) | 1989-06-01 |
EP0165893A2 (en) | 1985-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE68927334T2 (en) | Control circuits for fluorescent lamps | |
DE60122727T2 (en) | INTREGRATED CIRCUIT FOR LAMP HEATING AND DIMMER CONTROL | |
DE3903520C2 (en) | ||
DE69626603T2 (en) | BALLAST | |
EP0801881B1 (en) | Method of operating at least one fluorescent lamp with electronic ballast, and ballast therefor | |
DE60112489T2 (en) | ECG power control for ceramic metal halide lamp | |
DE4014391A1 (en) | LIGHTING SYSTEM FOR COMPACT FLUORESCENT TUBES | |
EP1333707A1 (en) | Electronic ballast for a discharge lamp | |
EP0989787A2 (en) | Process and circuit for controlling the light intensity and the behaviour of gas discharge lamps | |
DE3811194A1 (en) | SOLID-BODY OPERATING CIRCUIT FOR A DC-DISCHARGE LAMP | |
DE69327426T2 (en) | Monitoring device for a fluorescent tube | |
DE3881025T2 (en) | CIRCUIT FOR A HIGH-PERFORMANCE LAMP WITH A HIGH DISCHARGE. | |
EP0669789A1 (en) | Circuit for operating at least one low-pressure discharge lamp | |
DE3046617C2 (en) | ||
EP0614052B1 (en) | Automatic ignition device | |
DE3338464C2 (en) | Circuit arrangement for operating at least one fluorescent lamp with adjustable brightness on a self-oscillating inverter | |
DE4005776C2 (en) | Circuit arrangement for starting and operating a gas discharge lamp | |
EP0111373B1 (en) | Circuit arrangement for starting and operating high pressure gas discharge lamps | |
EP0165893B1 (en) | Brightness control device for a fluorescent lamp | |
DE4219958C1 (en) | Ballast circuit for discharge lamp - uses phase gate control to short out electrodes for interval in each half cycle, depending on brightness | |
DE69817326T2 (en) | BALLAST | |
EP0252438B1 (en) | Ignition device for high-pressure discharge lamps | |
EP0155729B1 (en) | Circuit device for the ac operation of high-pressure discharge lamps | |
DE3625499A1 (en) | Starter for high-pressure discharge lamps which are supplied independently of the mains | |
DE102004009995A1 (en) | Switching arrangement for operating gas-discharge lamp, has inverter attached to load circuit that is galvanically separated from intermediate circuit that exhibits capacitors for adjusting impedances of intermediate circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
17P | Request for examination filed |
Effective date: 19860718 |
|
R17P | Request for examination filed (corrected) |
Effective date: 19860718 |
|
17Q | First examination report despatched |
Effective date: 19880728 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
ITF | It: translation for a ep patent filed | ||
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
REF | Corresponds to: |
Ref document number: 42663 Country of ref document: AT Date of ref document: 19890515 Kind code of ref document: T |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
REF | Corresponds to: |
Ref document number: 3569864 Country of ref document: DE Date of ref document: 19890601 |
|
ET | Fr: translation filed | ||
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
26 | Opposition filed |
Opponent name: STRAND LIGHTING LIMITED Effective date: 19900125 |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: STRAND LIGHTING LIMITED. |
|
ITTA | It: last paid annual fee | ||
PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
ITF | It: translation for a ep patent filed | ||
27A | Patent maintained in amended form |
Effective date: 19930609 |
|
AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: AEN |
|
GBTA | Gb: translation of amended ep patent filed (gb section 77(6)(b)/1977) |
Effective date: 19930623 |
|
NLR2 | Nl: decision of opposition | ||
ET3 | Fr: translation filed ** decision concerning opposition | ||
NLR3 | Nl: receipt of modified translations in the netherlands language after an opposition procedure | ||
EPTA | Lu: last paid annual fee | ||
EAL | Se: european patent in force in sweden |
Ref document number: 85810080.3 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20000113 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20000214 Year of fee payment: 16 Ref country code: AT Payment date: 20000214 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20000221 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20000222 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20000228 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20000229 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20000313 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 20000315 Year of fee payment: 16 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010228 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010228 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010228 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010228 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010228 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010301 |
|
BERE | Be: lapsed |
Owner name: STARKSTROM-ELEKTRONIK A.G. Effective date: 20010228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010901 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20010228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20011031 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20010901 |
|
EUG | Se: european patent has lapsed |
Ref document number: 85810080.3 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20011201 |