EP0165640B1 - Device for the galvanic insulation between a pulse generator and a load - Google Patents
Device for the galvanic insulation between a pulse generator and a load Download PDFInfo
- Publication number
- EP0165640B1 EP0165640B1 EP85200912A EP85200912A EP0165640B1 EP 0165640 B1 EP0165640 B1 EP 0165640B1 EP 85200912 A EP85200912 A EP 85200912A EP 85200912 A EP85200912 A EP 85200912A EP 0165640 B1 EP0165640 B1 EP 0165640B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- circuit
- pulses
- load
- diode
- pulse generator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/42—Circuits specially adapted for the purpose of modifying, or compensating for, electric characteristics of transformers, reactors, or choke coils
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F19/00—Fixed transformers or mutual inductances of the signal type
- H01F19/04—Transformers or mutual inductances suitable for handling frequencies considerably beyond the audio range
- H01F19/08—Transformers having magnetic bias, e.g. for handling pulses
- H01F2019/085—Transformer for galvanic isolation
Definitions
- the present invention relates to a device for carrying out galvanic isolation between a pulse generator and a load, comprising a primary circuit and a secondary circuit coupled by mutual inductance, at least one circuit for eliminating the magnetizing current connected to the secondary circuit and a unidirectional transmission circuit connected to the primary circuit.
- a device of this type is known from the German document DE-B-1 236 566 filed by PHILIPS on February 9, 1965 and gives complete satisfaction when the pulse generator has a high impedance cyclically, in particular, like that presented at the output of a transistor in switching regime.
- the generator transmits a series of pulses of the same sign (for example positive)
- the magnetizing current tends to increase by a phenomenon of accumulation in time, if one does not manage to flow it quickly enough.
- the characteristics of the transformer then deteriorate as the magnetizing current increases, the material of the core goes into saturation and the transformer no longer transmits the pulses.
- the invention provides a device combining the advantages of these known devices and which can be directly connected to the output of a generator supplying bipolar signals.
- the device for carrying out the galvanic isolation between a pulse generator and a load of the type mentioned in the preamble is remarkable in that to be directly connected to a generator supplying pulses of bipolar type, on the one hand the primary circuit consists of two windings each admitting a polarity of the pulses, said pulses being switched by means of unidirectional transmission circuits each consisting of a diode connected in series with the primary circuit to allow the pulses to pass and force in cooperation with circuits elimination of the magnetizing current the magnetizing currents to flow quickly and only through the secondary circuit while for each of the polarities is also provided a circuit for attenuation of the transient phenomena due to the switching consisting of a zener diode connected in series with corresponding unidirectional transmission circuit to clip parasitic voltage fluctuations, and on the other hand the secondary circuit has two windings to transmit each, according to the polarity of the pulses, said pulses to the load.
- each unidirectional transmission circuit allows the pulses to pass to the primary circuit and has a high impedance for the magnetizing current wishing to return to the generator having a continuously low impedance, it thus masks the low impedance of the latter.
- the pulse generator is subjected to frequent transitions during the transmission of a message (message coded in “return to zero” RZ, for example), with each transition are generated fluctuations or parasitic noises called phenomena transient.
- the zener diode therefore clips these parasitic noises, advantageously attenuates the transient phenomena due to switching and immunizes the transmission of the signals.
- the device consists of a transformer 1 formed of a primary circuit 2 comprising a single winding 3 and of a secondary circuit 4 also comprising a single winding 5, the primary circuit 2 and the secondary circuit 4 being coupled by mutual induction M.
- the winding 5 of the secondary circuit 4 and the winding 3 of the primary circuit 2 are wound so that the pulses returning with a determined polarity (positive for example) on the winding 3, come out with the same polarity of the winding 5.
- the transformer 1 performs galvanic isolation and transmits the signal from the generator E, connected to the input between terminals 6 and 7, supplying pulses of positive polarity, to the load CH connected between the points 8 and 9.
- a series circuit 12 known as the magnetizing current elimination circuit, composed of a diode 13 and a resistor 14.
- One side of the resistor 14 is connected on the one hand to the terminal 11 of the circuit secondary 4 and secondly at point 9, thus connecting it to one side of the load CH.
- the other side of the resistor 14 is connected to the anode of the diode 13.
- the cathode of the diode 13 is connected on the one hand to the terminal 10 of the secondary circuit 4 and on the other hand to the point 8, thus connected to the other side of the CH load.
- the diode 13 conducts the magnetizing current which therefore flows in the resistor 14, this if the pulse generator E has during this time a high impedance.
- a unidirectional transmission circuit 15 allows the pulses to pass and force in cooperation with the magnetizing current elimination circuit 12, said magnetizing current to flow quickly and only by the secondary circuit 4.
- the unidirectional transmission circuit 15 preferably consists of a diode 16, connected in series with the primary circuit 2 of the transformer 1. The cathode of the diode 16 is connected to the primary circuit 2 at terminal 17.
- the anode of the diode zener 19 is connected to the anode of the diode 16.
- the cathode of the zener diode 19 is connected to the input terminal 6 and thus connected at a point of the pulse generator E.
- the terminal 20 of the primary circuit 2 is directly connected to the second input terminal 7, itself connected to the pulse generator E at its second point.
- the diode 16 allows the pulses of positive polarity to pass and prevents the return of the magnetizing current since it has a high impedance in reverse, it thus forces the magnetizing current to flow through the secondary circuit 4 in the current elimination circuit.
- magnetizer 12 specially provided for this purpose.
- the pulse generator E is subjected to frequent transitions and therefore is disturbed by transient phenomena due to switching.
- the role of the zener diode 19 is to advantageously attenuate the influence of the transient phenomena due to the switching, it clips the parasitic fluctuations and immunizes the transmission of the signals.
- FIG. 2 shows a device according to the invention, for which the pulse generator E supplies pulses of bipolar type, such as those proposed in FIG. 3a.
- the primary circuit 2 here comprises two windings 3 'and 3 "each admitting a polarity of the pulses
- the secondary circuit 4 comprises two windings 5' and 5" transmitting the pulses to a load CH.
- the winding 5 'of the secondary circuit 4 and the winding 3' of the primary circuit 2 are wound so that the pulses returning with a determined polarity (positive for example) on the winding 3 ', come out with the same polarity of winding 5 '.
- the winding 5 “of the secondary circuit 4 and the winding 3" of the primary circuit 2 are wound so that the pulses returning with a determined polarity (negative for example) on the winding 3 ", come out of the 5 "winding with opposite polarity (positive).
- the pulses of positive polarity are routed through the unidirectional transmission circuit 15 'and transmitted to the winding 3' of the primary circuit 2.
- the pulses of negative polarity are routed through the unidirectional transmission circuit 15 "to the 3 "winding of the primary circuit 2.
- the circuits for attenuating transient phenomena due to switching 18 'and 18" are connected in series, respectively with the unidirectional transmission circuits 15' and 15 ".
- the unidirectional transmission and attenuation circuits for transient phenomena due to switching are each adapted to the polarities of the pulses.
- the operation of the device shown is based on that described for the device of FIG. 1, except that in the unidirectional transmission circuit 15 "and the circuit for attenuation of the transient switching phenomena 18", the diode 16 “and the zener diode 19 "are connected in reverse relative to the connections of the diode 16 and the zener diode 19, this in order to direct and to let pass only the pulses of negative polarity.
- the diode 16 'placed in series with the winding 3' of the primary circuit 2 allows only the pulses of positive polarity to pass while the diode 16 "placed in series with the winding 3" of the primary circuit 2 allows only the pulses of negative polarity.
- the diodes 16 'and 16 "prevent the magnetizing current from returning to the pulse generator E.
- the zener diode 19 ' is connected in series with the diode 16' while the zener diode 19 "is connected in series with the diode 16".
- the zener diodes 19 'and 19 protect the pulse generator E by clipping parasitic fluctuations, thus attenuating the transient phenomena due to switching.
- the diodes 16 'and 19' are connected in the same way as the diodes 16 and 19 of the device of FIG. 1, since they all receive pulses of positive polarity.
- the cathodes of the 16 "and 19" diodes are interconnected.
- the anode of diode 16 is connected to point 17" of the primary circuit 2.
- the anode of diode 19 is connected to the input at terminal 6, connected at one point to pulse generator E.
- the primary circuit 2 is connected by its terminal 20 "to the second point of the pulse generator E via terminal 7.
- circuits for eliminating the magnetizing current are in total identity with the circuit 12 of Figure 1 as to the operation and arrangement of the elements.
- V + is the voltage across the terminals of this load
- V_ is the voltage at the terminals of this second load.
- the voltage V + is applied to the inverting input of a voltage comparator circuit 21 ′, it is compared to a reference voltage REF, which is a fraction of the value of the amplitude of the input voltage, thus the transitions of V + are detected.
- REF reference voltage
- the voltage V_ is applied to l inverting input of a second voltage comparator circuit 21 ", it is also compared to the reference voltage REF, in order to detect the transitions of V_.
- the output voltage V s _ see figure 3c.
- Such a device is of great interest as to its use in receiving data, it gives the possibility of strictly complying with the ARINC 429-2 standard.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Electronic Switches (AREA)
- Dc Digital Transmission (AREA)
- Coils Or Transformers For Communication (AREA)
Description
La présente invention concerne un dispositif pour réaliser l'isolement galvanique entre un générateur d'impulsions et une charge, comportant un circuit primaire et un circuit secondaire couplés par inductance mutuelle, au moins un circuit d'élimination du courant magnétisant connecté au circuit secondaire et un circuit de transmission unidirectionnelle connecté au circuit primaire.The present invention relates to a device for carrying out galvanic isolation between a pulse generator and a load, comprising a primary circuit and a secondary circuit coupled by mutual inductance, at least one circuit for eliminating the magnetizing current connected to the secondary circuit and a unidirectional transmission circuit connected to the primary circuit.
Un dispositif de ce type est connu du document allemand DE-B-1 236 566 déposé par PHILIPS le 9 Février 1965 et donne entière satisfaction lorsque le générateur d'impulsions présente cycliquement une impédance élevée, notamment, comme celle présentée à la sortie d'un transistor en régime de commutation. Quand le générateur transmet une série d'impulsions de même signe (par exemple positives), le courant magnétisant tend à augmenter par un phénomène d'accumulation dans le temps, si l'on ne parvient pas à l'écouler suffisamment rapidement. Les caractéristiques du transformateur se dégradent alors au fur et à mesure que le courant magnétisant croît, le matériau du noyau va en saturation et le transformateur ne transmet plus les impulsions. En branchant au secondaire du transformateur et en parallèle avec la charge un circuit d'élimination du courant magnétisant, on évite les inconvénients dus à la saturation.A device of this type is known from the German document DE-B-1 236 566 filed by PHILIPS on February 9, 1965 and gives complete satisfaction when the pulse generator has a high impedance cyclically, in particular, like that presented at the output of a transistor in switching regime. When the generator transmits a series of pulses of the same sign (for example positive), the magnetizing current tends to increase by a phenomenon of accumulation in time, if one does not manage to flow it quickly enough. The characteristics of the transformer then deteriorate as the magnetizing current increases, the material of the core goes into saturation and the transformer no longer transmits the pulses. By connecting a magnetization current elimination circuit to the transformer secondary and in parallel with the load, the drawbacks due to saturation are avoided.
Cependant si le générateur d'impulsions présente continuellement une faible impédance comme c'est le cas par exemple pour un amplificateur opérationnel, un autre défaut apparaît. Le primaire du transformateur choisit alors le chemin le plus court et de moindre résistance pour écouler le courant magnétisant, lequel retourne alors vers le générateur, provoquant ainsi des perturbations, voire une destruction. Ce second type d'inconvénients peut être évité en utilisant un circuit de transmission unidirectionnelle, tel que celui proposé dans GB-A- 836 027, qui présente une très faible impédance dans un sens pour laisser passer les impulsions et une impédance très élevée dans l'autre sens pour éviter le retour des courants de démagnétisation.However, if the pulse generator continuously has a low impedance as is the case for example for an operational amplifier, another fault appears. The transformer primary then chooses the shortest and least resistance path to flow the magnetizing current, which then returns to the generator, thus causing disturbances or even destruction. This second type of drawback can be avoided by using a unidirectional transmission circuit, such as that proposed in GB-A-836 027, which has a very low impedance in one direction for passing the pulses and a very high impedance in the Another way to avoid the return of demagnetization currents.
Toutefois, ces types de dispositifs ne sont pas prévus pour être connectés à un générateur délivrant des signaux bipolaires, signaux couramment utilisés.However, these types of devices are not intended to be connected to a generator delivering bipolar signals, signals commonly used.
L'invention propose un dispositif combinant les avantages de ces dispositifs connus et pouvant être directement connecté à la sortie d'un générateur fournissant des signaux bipolaires.The invention provides a device combining the advantages of these known devices and which can be directly connected to the output of a generator supplying bipolar signals.
Pour cela, le dispositif pour réaliser l'isolement galvanique entre un générateur d'impulsions et une charge du type mentionné dans le préambule est remarquable en ce que pour être directement connecté à un générateur fournissant des impulsions de type bipolaire, d'une part le circuit primaire est constitué de deux enroulements admettant chacun une polarité des impulsions, lesdites impulsions étant aiguillées au moyen des circuits de transmission unidirectionnelle constitués chacun d'une diode connectée en série avec le circuit primaire pour laisser passer les impulsions et forcer en coopération avec des circuits d'élimination du courant magnétisant les courants magnétisants à s'écouler rapidement et uniquement par le circuit secondaire alors que pour chacune des polarités est en outre prévu un circuit d'atténuation des phénomènes transitoires dus à la commutation constitué d'une diode zéner connectée en série avec le circuit de transmission unidirectionnelle correspondant pour écrêter les fluctuations de tension parasites, et d'autre part le circuit secondaire comporte deux enroulements pour transmettre chacun, selon la polarité des impulsions, lesdites impulsions vers la charge.For this, the device for carrying out the galvanic isolation between a pulse generator and a load of the type mentioned in the preamble is remarkable in that to be directly connected to a generator supplying pulses of bipolar type, on the one hand the primary circuit consists of two windings each admitting a polarity of the pulses, said pulses being switched by means of unidirectional transmission circuits each consisting of a diode connected in series with the primary circuit to allow the pulses to pass and force in cooperation with circuits elimination of the magnetizing current the magnetizing currents to flow quickly and only through the secondary circuit while for each of the polarities is also provided a circuit for attenuation of the transient phenomena due to the switching consisting of a zener diode connected in series with corresponding unidirectional transmission circuit to clip parasitic voltage fluctuations, and on the other hand the secondary circuit has two windings to transmit each, according to the polarity of the pulses, said pulses to the load.
Ainsi la diode de chaque circuit de transmission unidirectionnelle laisse passer les impulsions vers le circuit primaire et présente une impédance élevée pour le courant magnétisant désirant retourner vers le générateur présentant une impédance continûment faible, elle masque ainsi la faible impédance de ce dernier. En outre, le générateur d'impulsions est soumis à de fréquentes transitions lors de l'émission d'un message (message codé en « retour à zéro » RZ, par exemple), à chaque transition sont engendrés des fluctuations ou bruits parasites appelés phénomènes transitoires. La diode zéner écrête donc ces bruits parasites, atténue avantageusement les phénomènes transitoires dus à ia commutation et immunise la transmission des signaux.Thus the diode of each unidirectional transmission circuit allows the pulses to pass to the primary circuit and has a high impedance for the magnetizing current wishing to return to the generator having a continuously low impedance, it thus masks the low impedance of the latter. In addition, the pulse generator is subjected to frequent transitions during the transmission of a message (message coded in “return to zero” RZ, for example), with each transition are generated fluctuations or parasitic noises called phenomena transient. The zener diode therefore clips these parasitic noises, advantageously attenuates the transient phenomena due to switching and immunizes the transmission of the signals.
La description suivante en regard des dessins annexés, donnés à titre d'exemple, fera bien comprendre comment l'invention peut être réalisée.
- La figure 1 montre un dispositif complet combinant les dispositifs connus pour un générateur fournissant des impulsions unipolaires.
- La figure 2 présente un dispositif conforme à l'invention, pour un générateur fournissant des impulsions bipolaires.
- La figure 3 représente l'allure de quelques signaux dans le dispositif montré à la figure 2.
- Figure 1 shows a complete device combining the known devices for a generator providing unipolar pulses.
- FIG. 2 shows a device according to the invention, for a generator supplying bipolar pulses.
- FIG. 3 represents the appearance of a few signals in the device shown in FIG. 2.
Sur la figure 1, le dispositif est constitué par un transformateur 1 formé d'un circuit primaire 2 comportant un seul enroulement 3 et d'un circuit secondaire 4 comportant aussi un seul enroulement 5, le circuit primaire 2 et le circuit secondaire 4 étant couplés par induction mutuelle M. L'enroulement 5 du circuit secondaire 4 et l'enroulement 3 du circuit primaire 2 sont bobinés de telle sorte que les impulsions rentrant avec une polarité déterminée (positive par exemple) sur l'enroulement 3, ressortent avec la même polarité de l'enroulement 5. Le transformateur 1 réalise l'isolement galvanique et transmet le signal du générateur E, branché à t'entrée entre les bornes 6 et 7, fournissant des impulsions de polarité positive, vers la charge CH connectée entre les points 8 et 9. Aux bornes 10 et 11 du circuit secondaire 4 est branché un circuit série 12, dit circuit d'élimination du courant magnétisant, composé d'une diode 13 et d'une résistance 14. Un côté de la résistance 14 est connecté d'une part à la borne 11 du circuit secondaire 4 et d'autre part au point 9, le reliant ainsi à un côté de la charge CH. L'autre côté de la résistance 14 est connecté à l'anode de la diode 13. La cathode de la diode 13 est raccordée d'une part à la borne 10 du circuit secondaire 4 et d'autre part au point 8, ainsi reliée à l'autre côté de la charge CH. La diode 13 conduit le courant magnétisant qui s'écoule donc dans la résistance 14, ceci si le générateur d'impulsions E présente pendant ce temps une impédance élevée. Connecté entre le générateur d'impulsions E et le circuit primaire 2, un circuit de transmission unidirectionnelle 15 laisse passer les impulsions et force en coopération avec le circuit d'élimination du courant magnétisant 12, ledit courant magnétisant à s'écouler rapidement et uniquement par le circuit secondaire 4. Le circuit de transmission unidirectionnelle 15 est constitué de préférence par une diode 16, branchée en série avec le circuit primaire 2 du transformateur 1. La cathode de la diode 16 est connectée au circuit primaire 2 en la borne 17.In FIG. 1, the device consists of a
En amont du circuit de transmission unidirectionnelle 15 et en série avec celui-ci, se trouve un circuit d'atténuation des phénomènes transitoires dus à la commutation 18, qui de préférence est constitué d'une diode zéner 19. L'anode de la diode zéner 19 est reliée à l'anode de la diode 16. La cathode de la diode zéner 19 est connectée à la borne d'entrée 6 et ainsi reliée en un point du générateur d'impulsions E. La borne 20 du circuit primaire 2 est directement reliée à la deuxième borne d'entrée 7, elle-même reliée au générateur d'impulsions E en son deuxième point.Upstream of the
La diode 16 laisse passer les impulsions de polarité positive et interdit le retour du courant magnétisant puisqu'elle présente en inverse une grande impédance, elle force ainsi le courant magnétisant à s'écouler par le circuit secondaire 4 dans le circuit d'élimination du courant magnétisant 12, spécialement prévu à cet effet.The
D'autre part, le générateur d'impulsions E est soumis à de fréquentes transitions et de ce fait est perturbé par des phénomènes transitoires dus à la commutation. Le rôle de la diode zéner 19 est d'atténuer avantageusement l'influence des phénomènes transitoires dus à la commutation, elle écrête les fluctuations parasites et immunise la transmission des signaux.On the other hand, the pulse generator E is subjected to frequent transitions and therefore is disturbed by transient phenomena due to switching. The role of the
Sur la figure 2 est représenté un dispositif conforme à l'invention, pour lequel le générateur d'impulsions E fournit des impulsions de type bipolaire, telles que celles proposées sur la figure 3a.FIG. 2 shows a device according to the invention, for which the pulse generator E supplies pulses of bipolar type, such as those proposed in FIG. 3a.
Le circuit primaire 2 comporte ici deux enroulements 3' et 3" admettant chacun une polarité des impulsions, de même le circuit secondaire 4 comporte deux enroulements 5' et 5" transmettant les impulsions vers une charge CH. L'enroulement 5' du circuit secondaire 4 et l'enroulement 3' du circuit primaire 2 sont bobinés de telle sorte que les impulsions rentrant avec une polarité déterminée (positive par exemple) sur l'enroulement 3', ressortent avec la même polarité de l'enroulement 5'. Au contraire, l'enroulement 5" du circuit secondaire 4 et l'enroulement 3" du circuit primaire 2 sont bobinés de telle sorte que les impulsions rentrant avec une polarité déterminée (négative par exemple) sur l'enroulement 3", ressortent de l'enroulement 5" avec une polarité opposée (positive).The
Les impulsions de polarité positive sont aiguillées par l'intermédiaire du circuit de transmission unidirectionnelle 15' et transmises vers l'enroulement 3' du circuit primaire 2. Les impulsions de polarité négative sont aiguillées par l'intermédiaire du circuit de transmission unidirectionnelle 15" vers l'enroulement 3" du circuit primaire 2. Les circuits d'atténuation des phénomènes transitoires dus à la commutation 18' et 18" sont branchés en série, respectivement avec les circuits de transmission unidirectionnelle 15' et 15".The pulses of positive polarity are routed through the unidirectional transmission circuit 15 'and transmitted to the winding 3' of the
Les circuits de transmission unidirectionnelle et d'atténuation des phénomènes transitoires dus à la commutation sont chacun adaptés aux polarités des impulsions.The unidirectional transmission and attenuation circuits for transient phenomena due to switching are each adapted to the polarities of the pulses.
Le fonctionnement du dispositif représenté est basé sur celui décrit pour le dispositif de la figure 1, à cela près que dans le circuit de transmission unidirectionnelle 15" et le circuit d'atténuation des phénomènes transitoires de commutation 18", la diode 16" et la diode zéner 19" sont branchées en inverse relativement aux branchements de la diode 16 et de la diode zéner 19, cela afin d'aiguiller et de ne laisser passer que les impulsions de polarité négative.The operation of the device shown is based on that described for the device of FIG. 1, except that in the
La diode 16' placée en série avec l'enroulement 3' du circuit primaire 2 ne laisse passer que les impulsions de polarité positive alors que la diode 16" placée en série avec l'enroulement 3" du circuit primaire 2 ne laisse passer que les impulsions de polarité négative. Les diodes 16' et 16" interdisent au courant magnétisant de retourner vers le générateur d'impulsions E.The diode 16 'placed in series with the winding 3' of the
La diode zéner 19' est branchée en série avec la diode 16' alors que la diode zéner 19" est branchée en série avec la diode 16". Les diodes zéner 19' et 19" protègent le générateur d'impulsions E en écrêtant les fluctuations parasites, atténuant ainsi les phénomènes transitoires dus à la commutation.The zener diode 19 'is connected in series with the diode 16' while the
Les diodes 16' et 19' sont connectées de la même manière que les diodes 16 et 19 du dispositif de la figure 1, puisqu'elles reçoivent toutes des impulsions de polarité positive.The diodes 16 'and 19' are connected in the same way as the
Les cathodes des diodes 16" et 19" sont reliées entre elles. L'anode de la diode 16" est connectée au point 17" du circuit primaire 2. L'anode de la diode 19" est connectée à l'entrée à la borne 6, reliée en un point du générateur d'impulsions E. Le circuit primaire 2 est relié par sa borne 20" au deuxième point du générateur d'impulsions E par l'intermédiaire de la borne 7.The cathodes of the 16 "and 19" diodes are interconnected. The anode of
Les circuits 12' et 12" d'élimination du courant magnétisant sont en totale identité avec le circuit 12 de la figure 1 quant au fonctionnement et à la disposition des éléments.The 12 'and 12 "circuits for eliminating the magnetizing current are in total identity with the
Aux points 8' et 9' d'une part est connectée une charge CH', la tension V+ est la tension aux bornes de cette charge, aux points 8" et 9" d'autre part est connectée une charge équivalente CH", la tension V_ est la tension aux bornes de cette deuxième charge. La tension V+ est appliquée à l'entrée inverseuse d'un circuit comparateur de tension 21', elle est comparée à une tension de référence REF, qui est une fraction de la valeur de l'amplitude de la tension d'entrée, ainsi les transitions de V+ sont détectées. A la sortie du comparateur de tension 21' est la tension de sortie Vs+ (voir figure 3b). La tension V_ est appliquée à l'entrée inverseuse d"un deuxième circuit comparateur de tension 21", elle est aussi comparée à la tension de référence REF, afin de détecter les transitions de V_. A la sortie du comparateur de tension 21" la tension de sortie Vs_ (voir figure 3c).At points 8 'and 9' on the one hand, a load CH 'is connected, the voltage V + is the voltage across the terminals of this load, at
L'obtention de ces deux tensions Vs+ et Vs_, permet avantageusement d'une part de reconstituer l'horloge de départ en utilisant un circuit logique NON-ET 22, dont les deux entrées reçoivent respectivement Vs+ et Vs―, et d'autre part de transformer le message codé en « retour à zéro » RZ en un message codé en « non retour à zéro » NRZ, au moyen d'une bascule bistable 23, du type bascule RS par exemple, obtenue à partir de deux circuits logiques NON-ET. L'horloge reconstituée HR et le message transformé IR, sont reproduits respectivement en figure 3d et 3e.Obtaining these two voltages V s + and V s _ advantageously makes it possible on the one hand to reconstruct the starting clock using a
Un tel dispositif est d'un grand intérêt quant à son utilisation en réception de données, il donne la possibilité de respecter strictement la norme ARINC 429-2.Such a device is of great interest as to its use in receiving data, it gives the possibility of strictly complying with the ARINC 429-2 standard.
Claims (1)
- An arrangement for providing the d. c. insulation between a pulse generator (E) and a load (CH', CH") comprising a primary circuit (2) and a secondary circuit (4) coupled to each other by mutual inductance, at least one circuit (12) for eliminating the magnetizing current connected to the secondary circuit and a unidirectional transmission circuit (15) connected to the primary circuit, characterized in that, in order to be directly connected to a generator supplying pulses of the bipolar type, on the one hand the primary circuit is constituted by two windings (3', 3") each admitting one polarity of the pulses, the said pulses being routed by means of the unidirectional transmission circuits (15', 15") each constituted by a diode (16', 16") connected in series with the primary circuit (2) to cause the pulses to pass and to force in cooperation with circuits (12', 12") for eliminating the magnetizing current the magnetizing currents to flow rapidly and solely through the secondary circuit (4), while moreover there is provided for each of the polarities a circuit for attenuating the transient phenomena due to the commutation (18', 18") constituted by a Zener diode (19', 19") connected in series with the corresponding unidirectional transmission circuit to smooth the parasitic voltage fluctuations, and on the other hand the secondary circuit (4) comprises two windings (5', 5") each for transmitting, in accordance with the polarity of the pulses, the said pulses to the load (CH', CH").
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8409410 | 1984-06-15 | ||
FR8409410A FR2566169B1 (en) | 1984-06-15 | 1984-06-15 | DEVICE FOR PROVIDING GALVANIC ISOLATION BETWEEN A PULSE GENERATOR AND A LOAD |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0165640A1 EP0165640A1 (en) | 1985-12-27 |
EP0165640B1 true EP0165640B1 (en) | 1989-09-20 |
Family
ID=9305071
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP85200912A Expired EP0165640B1 (en) | 1984-06-15 | 1985-06-11 | Device for the galvanic insulation between a pulse generator and a load |
Country Status (5)
Country | Link |
---|---|
US (1) | US4721863A (en) |
EP (1) | EP0165640B1 (en) |
JP (1) | JPS6116506A (en) |
DE (1) | DE3573189D1 (en) |
FR (1) | FR2566169B1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4777382A (en) * | 1987-06-19 | 1988-10-11 | Allied-Signal, Inc. | Pulse width logic/power isolation circuit |
FR2638231B1 (en) * | 1988-10-24 | 1993-02-05 | Michelin & Cie | ANTENNA FOR TIRE MONITORING DEVICE |
US5196845A (en) * | 1988-10-24 | 1993-03-23 | Compagnie Generale Des Etablissements Michelin | Antenna for tire monitoring device |
DE19706127C2 (en) * | 1997-02-17 | 1999-09-09 | Vacuumschmelze Gmbh | Power converter |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2787755A (en) * | 1953-08-13 | 1957-04-02 | North American Aviation Inc | Magnetic frequency divider |
US2942175A (en) * | 1954-11-08 | 1960-06-21 | Ryan Aeronautical Co | Cascaded magnetic amplifier |
US2758206A (en) * | 1955-08-03 | 1956-08-07 | Hughes Aircraft Co | Transistor pulse generator |
GB836027A (en) * | 1955-08-18 | 1960-06-01 | Sperry Rand Corp | Improvements in gating circuits using transformers |
US3234407A (en) * | 1963-01-31 | 1966-02-08 | Burroughs Corp | Rapid recovery pulse transformer circuit |
US3339022A (en) * | 1963-12-16 | 1967-08-29 | Ibm | Transistor circuit for receiving data pulses |
US3375378A (en) * | 1964-06-01 | 1968-03-26 | Bliss E W Co | Pulse forming circuit |
DE1236566B (en) * | 1965-02-09 | 1967-03-16 | Philips Patentverwaltung | Transistor impulse amplifier with transformer coupling of the load resistor |
US3524071A (en) * | 1966-11-03 | 1970-08-11 | Sinclair Research Inc | Oscillatory pulse forming circuit |
GB1252905A (en) * | 1968-05-17 | 1971-11-10 | ||
US3681656A (en) * | 1970-09-23 | 1972-08-01 | Ikor Inc | High power wide bandwidth pulse generator |
JPS57154931A (en) * | 1981-03-19 | 1982-09-24 | Nissin Electric Co Ltd | High-voltage pulse generating circuit |
GB2135547B (en) * | 1983-01-22 | 1986-05-14 | Marconi Co Ltd | Pulse circuits |
US4612455A (en) * | 1984-05-10 | 1986-09-16 | The United States Of America As Represented By The Secretary Of The Army | Distributed pulse forming network for magnetic modulator |
-
1984
- 1984-06-15 FR FR8409410A patent/FR2566169B1/en not_active Expired
-
1985
- 1985-05-30 US US06/739,356 patent/US4721863A/en not_active Expired - Fee Related
- 1985-06-11 DE DE8585200912T patent/DE3573189D1/en not_active Expired
- 1985-06-11 EP EP85200912A patent/EP0165640B1/en not_active Expired
- 1985-06-12 JP JP60126373A patent/JPS6116506A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
EP0165640A1 (en) | 1985-12-27 |
JPS6116506A (en) | 1986-01-24 |
FR2566169B1 (en) | 1987-04-17 |
US4721863A (en) | 1988-01-26 |
FR2566169A1 (en) | 1985-12-20 |
DE3573189D1 (en) | 1989-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0454597B1 (en) | Pulse gate control circuit with short-circuit protection | |
EP0004815B1 (en) | System for transmitting optically linked electrical signals and device for the automatic gain control of a receiver path connected to this optical linkage | |
EP0082791A1 (en) | Signal transmission device over a line also assuring a D.C. current supply | |
FR2602620A1 (en) | SEMICONDUCTOR SWITCHING CIRCUIT | |
EP0737989A1 (en) | Switching power supply using a saturable inductor for achieving a pulsed current source | |
EP0194177B1 (en) | Subscriber line interface circuit with a reduced power monitoring mode | |
EP0165640B1 (en) | Device for the galvanic insulation between a pulse generator and a load | |
FR2556905A1 (en) | CONTROL CIRCUIT FOR POWER FIELD EFFECT TRANSISTOR | |
FR2477338A1 (en) | OUTPUT CIRCUIT PREVENTS BLOCKING DUE TO VOLTAGE PULSES GENERATED BY AN INDUCTIVE LOAD | |
FR2573257A1 (en) | PROTECTION CIRCUIT AGAINST POWER SUPPLY BREAKS | |
EP0063502B1 (en) | Arrangement for locating faults in a two-wire line | |
EP0277855B1 (en) | Binary-to-bipolar converter | |
EP0060164A1 (en) | Sliding class A broadband linear amplifier with low power consumption, and circuit comprising at least one such amplifier | |
FR2571561A1 (en) | CONTINUOUS-DIRECT CURRENT CONVERTER | |
EP0605305A1 (en) | Remote power feeding unit for communications equipment | |
WO1996033086A1 (en) | Ac input cell for data acquisition circuits | |
FR2851379A1 (en) | DIRECT ENERGY TRANSFER CONVERTER | |
EP0147306A2 (en) | Linear power amplifier | |
EP0046421A1 (en) | Receiver for a signal-transmission system by electromagnetic, especially infra.red radiation | |
CA1115869A (en) | Subscriber electronic equipment with two wire - four wire conversion circuit for telephone exchange | |
EP0130261A1 (en) | D.C. powering circuit for a line interface circuit | |
FR2498387A1 (en) | OVERVOLTAGE PROTECTION DEVICE FOR TELEPHONE CENTER TERMINAL CIRCUIT | |
EP0195713A1 (en) | Switching aid device for a switch and free-wheel diode | |
FR2491704A1 (en) | SUPPLY CIRCUIT OF A TELEPHONE LINE | |
EP1428309A1 (en) | Device for measuring a chopped current |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): BE CH DE FR GB IT LI NL SE |
|
17P | Request for examination filed |
Effective date: 19860529 |
|
17Q | First examination report despatched |
Effective date: 19870515 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE CH DE FR GB IT LI NL SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19890920 Ref country code: NL Effective date: 19890920 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 19890920 Ref country code: GB Effective date: 19890920 |
|
REF | Corresponds to: |
Ref document number: 3573189 Country of ref document: DE Date of ref document: 19891026 |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: N.V. PHILIPS' GLOEILAMPENFABRIEKEN Owner name: TELECOMMUNICATIONS RADIOELECTRIQUES ET TELEPHONIQU |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
GBV | Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed] | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Effective date: 19900630 Ref country code: CH Effective date: 19900630 Ref country code: BE Effective date: 19900630 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
BERE | Be: lapsed |
Owner name: PHILIPS' GLOEILAMPENFABRIEKEN N.V. Effective date: 19900630 Owner name: TELECOMMUNICATIONS RADIOELECTRIQUES ET TELEPHONIQU Effective date: 19900630 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19910301 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19930625 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19950228 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |