[go: up one dir, main page]

EP0162096B1 - Aluminium alloys containing lithium, magnesium and copper - Google Patents

Aluminium alloys containing lithium, magnesium and copper Download PDF

Info

Publication number
EP0162096B1
EP0162096B1 EP85900122A EP85900122A EP0162096B1 EP 0162096 B1 EP0162096 B1 EP 0162096B1 EP 85900122 A EP85900122 A EP 85900122A EP 85900122 A EP85900122 A EP 85900122A EP 0162096 B1 EP0162096 B1 EP 0162096B1
Authority
EP
European Patent Office
Prior art keywords
alloys
alloy
tempering
homogenization
magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85900122A
Other languages
German (de)
French (fr)
Other versions
EP0162096A1 (en
Inventor
Bruno Dubost
Philippe Meyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cegedur Societe de Transformation de lAluminium Pechiney SA
Original Assignee
Cegedur Societe de Transformation de lAluminium Pechiney SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cegedur Societe de Transformation de lAluminium Pechiney SA filed Critical Cegedur Societe de Transformation de lAluminium Pechiney SA
Priority to AT85900122T priority Critical patent/ATE30051T1/en
Publication of EP0162096A1 publication Critical patent/EP0162096A1/en
Application granted granted Critical
Publication of EP0162096B1 publication Critical patent/EP0162096B1/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent

Definitions

  • the present invention relates to alloys based on AI, containing Li, Mg and Cu and having mechanical characteristics equivalent to those of aluminum alloys with conventional structural hardening at medium strength with a density reduced by at least minus 9% compared to these conventional alloys.
  • lithium alloys It is known to metallurgists that the addition of lithium decreases the density and increases the modulus of elasticity and the mechanical resistance of aluminum alloys. This explains the designers' interest in these alloys for applications in the aeronautical industry, and more particularly, for lithium aluminum alloys containing other addition elements such as magnesium or copper.
  • lithium alloys must imperatively have ductility and toughness at least equivalent, with mechanical strength equal to that of conventional aeronautical alloys such as alloys 2024-T4 or T351, 2214-T6 (51), 7175-T73 (51) or T7652 and 7150-T651 (according to the nomenclature of the Aluminum Association), which is not the case for known lithium alloys.
  • This alloy gives thin sheets and spun products treated in the T6 state (16 h at 170 ° C) moderately high mechanical tensile properties (FRIDLYANDER et al. Met. Science and Heat Treatment n ° 3-4, April 1968, page 212 - Metalov Translator I. Term Obrab Metallov No. 3, page 5052, March 1968) and lower than those of conventional aeronautical alloys.
  • the content of main elements is preferably held individually or in combination between 2.3 to 3.3% for Li, 1.4 and 2.4% for Mg and 0.25 and 1.2% for Cu.
  • the Zr content is preferably between 0.08 and 0.18%.
  • Homogenization can be done in a temperature range between 8 + 10 (° C) and 0 ⁇ 20 (° C); the dissolution is preferably carried out between 0 + - 10 ° C.
  • the optimal durations of heat treatment for homogenization at temperature 0 are 0.5 to 8 hours for alloys produced by rapid solidification (atomization - splat cooling - or any other means) and 12 to 72 hours for molded products or produced in semi-continuous casting.
  • alloys have their optimal mechanical properties after tempering of durations of 8 to 48 hours at temperatures between 170 and 220 ° C and it is preferable to subject the products of adequate shape (sheets, bars, widgets) to work hardening giving rise to plastic deformation of 1 to 5% (preferably 2 to 4%) between quenching and tempering, which further improves the mechanical strength of the products.
  • the alloys according to the invention have a higher mechanical strength than that of the alloy AILiMgMn 01420, which did not make it possible to predict the results of the studies available on the system.
  • the alloys according to the invention have a compromise between mechanical characteristics and density greater than that of the known AILiCuMg alloys (with low magnesium contents). They also have a satisfactory resistance to intergranular or laminating corrosion much higher than that of the known alloys AICuMg, AILiCu, and AILiCuMg.
  • alloys are therefore particularly advantageous for the manufacture of molded or wrought semi-finished products (produced by semi-continuous casting, rapid atomization or solidification, etc.) whether they are, for example, spun, rolled, forged or matrixes used in particular in the aeronautical or space industries.
  • the alloys according to the invention very loaded with Li and Mg, were pourable without major difficulty in semi-continuous casting in the form of billets or trays of industrial format (absence of cracks and porosities).
  • Table 1 gives the chemical compositions of the alloys measured by atomic absorption and spark emission spectrometry, and their characteristics (coefficient K) with respect to the domains according to the invention.
  • Table II gives the mechanical traction characteristics and the density as a function of the chemical composition of the widgets, for the various heat treatments carried out and the rate of work hardening between quenching and tempering.
  • the elastic limit (Rp 0.2), the breaking load (Rm) and the elongation at break (A%) are given.
  • Table III gives the results obtained during the corrosion tests.
  • the alloys according to the invention have mechanical strengths of levels comparable to those of the alloys of the 2000 series without lithium currently used in aeronautics, and greater than those of known AI-Li-Mg alloys. (eg alloy 01420) with the advantage of a significantly lower density than that of conventional alloys and lower than that of the known lithium alloys of the AI-Li-Cu, AI-Li-Cu-Mg systems. They also show the advantage of hardening between quenching and tempering on the mechanical properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Conductive Materials (AREA)
  • Heat Treatment Of Steel (AREA)
  • Laminated Bodies (AREA)
  • Extrusion Of Metal (AREA)
  • Powder Metallurgy (AREA)

Abstract

Aluminium alloys containing essentially additions of Li, Mg and Cu, and optionally minor additions of Cr, Zr, Ti, Mn which have high specific mechanical characteristics, a low density and a good corrosion resistance. The alloys according to the invention contain in percentage by weight: 1.8 to 3.5 of Li; 1.4 to 6.0 Mg; 0.2 to 1.6 of Cu with Mg-Cu >= 1.5; Cr up to 0.3; Mn up to 1; Zr up to 0.2; Ti up to 0.1 and/or Be up to 0.02, Fe up to 0.20; Si up to 0.12; Zn up to 0.35. The homogenizing and soluting treatments must be sufficiently carried out to dissolve the quaternary intermetal phases (Al, Li, Mg, Cu) of a grain size larger than 5 mum. These alloys present a mechanical characteristics/density compromise higher than that of known Al Cu Mg alloys and those containing Li.

Description

La présente invention est relative à des alliages à base d'AI, contenant du Li, du Mg et du Cu et possédant des caractéristiques mécaniques équivalentes à celles des alliages d'aluminium à durcissement structural conventionnels à moyenne résistance avec une densité diminuée d'au moins 9% par rapport à ces alliages conventionnels.The present invention relates to alloys based on AI, containing Li, Mg and Cu and having mechanical characteristics equivalent to those of aluminum alloys with conventional structural hardening at medium strength with a density reduced by at least minus 9% compared to these conventional alloys.

Il est connu des métallurgistes que l'addition de lithium diminue la densité et augmente le module d'élasticité et la résistance mécanique des alliages d'aluminium. Ceci explique l'intérêt des concepteurs pour ces alliages en vue d'applications dans l'industrie aéronautique, et plus particulièrement, pour les alliages d'aluminium au lithium contenant d'autres éléments d'addition tels que le magnésium ou le cuivre. Toutefois, de tels alliages au lithium devront impérativement posséder une ductilité et une ténacité au moins équivalentes, à résistance mécanique égale, à celle des alliages aéronautiques conventionnels tels que les alliages 2024-T4 ou T351, 2214-T6(51), 7175-T73(51) ou T7652 et 7150-T651 (selon la nomenclature de l'Aluminium Association), ce qui n'est pas le cas des alliages au lithium connus.It is known to metallurgists that the addition of lithium decreases the density and increases the modulus of elasticity and the mechanical resistance of aluminum alloys. This explains the designers' interest in these alloys for applications in the aeronautical industry, and more particularly, for lithium aluminum alloys containing other addition elements such as magnesium or copper. However, such lithium alloys must imperatively have ductility and toughness at least equivalent, with mechanical strength equal to that of conventional aeronautical alloys such as alloys 2024-T4 or T351, 2214-T6 (51), 7175-T73 (51) or T7652 and 7150-T651 (according to the nomenclature of the Aluminum Association), which is not the case for known lithium alloys.

Dans le système Aluminium-Lithium-Magnésium, le seul alliage industriel connu est l'alliage soviétique 01420, de composition nominale (en poids %) : Li = 2,0 à 2,2 ; Mg = 5,0 à 5,4 ; Mn = 0 à 0,6 ; Zr = 0 à 0,15. Cet alliage confère aux tôles minces et produits filés traités à l'état T6 (16 h à 170 °C) des caractéristiques mécaniques de traction moyennement élevées (FRIDLYANDER et coll. Met. Science and Heat Treatment n° 3-4, Avril 1968, page 212 - Traduct. de Metalov. i. Term. Obrab. Metallov n° 3, page 5052, mars 1968) et inférieures à celles des alliages aéronautiques conventionnels. Par ailleurs, l'étude des lois statistiques de modification de caractéristiques des alliages du système AI-Li-Mg-Zr en fonction de leurs teneurs en Li et Mg (I.N. FRIDLYANDER et coll. « Zavod. Lab. •, juillet 1974, T7, page 847) montre qu'il n'est pas possible d'augmenter le compromis entre résistance mécanique et allongement de cet alliage jusqu'au niveau des alliages aéronautiques classiques, par diminution des teneurs en Lithium et en Magnésium. Ces tendances sont confirmées par les résultats de SANDES (rapport final NADC Contract n° N 622 69-74-C-0438, juin 1976) montrant que le compromis entre limite élastique et ténacité des produits filés en alliages AI-Li-Mg est d'autant plus élevé que la teneur en lithium et, dans une moindre mesure, la teneur en magnésium sont faibles. En particulier, les auteurs montrent que les alliages à teneurs globales en lithium-magnésium élevées possèdent à l'état trempé-revenu un compromis entre résistance mécanique, ductilité et ténacité très inférieur à celui des alliages conventionnels des séries 2000 et 7000.In the Aluminum-Lithium-Magnesium system, the only known industrial alloy is the Soviet alloy 01420, of nominal composition (by weight%): Li = 2.0 to 2.2; Mg = 5.0 to 5.4; Mn = 0 to 0.6; Zr = 0 to 0.15. This alloy gives thin sheets and spun products treated in the T6 state (16 h at 170 ° C) moderately high mechanical tensile properties (FRIDLYANDER et al. Met. Science and Heat Treatment n ° 3-4, April 1968, page 212 - Metalov Translator I. Term Obrab Metallov No. 3, page 5052, March 1968) and lower than those of conventional aeronautical alloys. Furthermore, the study of the statistical laws of modification of characteristics of alloys of the AI-Li-Mg-Zr system as a function of their Li and Mg contents (IN FRIDLYANDER et al. “Zavod. Lab. •, July 1974, T7 , page 847) shows that it is not possible to increase the compromise between mechanical strength and elongation of this alloy up to the level of conventional aeronautical alloys, by reducing the contents of Lithium and Magnesium. These trends are confirmed by the results of SANDES (NADC Contract final report n ° N 622 69-74-C-0438, June 1976) showing that the compromise between elastic limit and toughness of products spun with AI-Li-Mg alloys is d as much higher than the lithium content and, to a lesser extent, the magnesium content are low. In particular, the authors show that alloys with high overall lithium-magnesium contents have, in the quenched-tempered state, a compromise between mechanical strength, ductility and toughness much lower than that of conventional alloys of the 2000 and 7000 series.

Plus récemment, les métallurgistes ont proposé de nouvelles compositions d'alliages aluminium-lithium au cuivre (Cu = 1,5 à 3 %) et au magnésium (Mg = 0,5 à 1,4 %) à faible densité et haute résistance mécanique. Il s'agit, en particulier, de l'alliage expérimental F92 (spécification britannique DXXXA) de composition nominale (en poids %) : Li = 2,5 ; Cu = 1,2 ; Mg = 0,7 ; Zr = 0,12, dont les compromis de caractéristiques mécaniques types annoncées en 1983 par British ALCAN sur tôles minces à l'état T8 (Rm = 500 MPa ; Rp 0,2 = 420 MPa ; A = 6 %) et sur tôles épaisses à l'état T651 (Rm = 520 MPa ; Rp 0,2 = 460 MPa ; A = 7 %) montrent que cet alliage possède un compromis entre résistance mécanique et ductilité encore inférieur à celui des alliages aéronautiques des séries 2000 et 7000, comme tous les autres alliages des systèmes AILiCu et AILiCuMg à teneur en lithium supérieure à 2 % connus à ce jour.More recently, metallurgists have proposed new compositions of aluminum-lithium alloys with copper (Cu = 1.5 to 3%) and magnesium (Mg = 0.5 to 1.4%) with low density and high mechanical resistance . It is, in particular, the experimental alloy F92 (British specification DXXXA) of nominal composition (by weight%): Li = 2.5; Cu = 1.2; Mg = 0.7; Zr = 0.12, including the compromises of typical mechanical characteristics announced in 1983 by British ALCAN on thin sheets in the T8 state (Rm = 500 MPa; Rp 0.2 = 420 MPa; A = 6%) and on thick sheets in the T651 state (Rm = 520 MPa; Rp 0.2 = 460 MPa; A = 7%) show that this alloy has a compromise between mechanical strength and ductility even lower than that of aeronautical alloys of the 2000 and 7000 series, as all the other alloys of the AILiCu and AILiCuMg systems with a lithium content greater than 2% known to date.

Au cours d'essais métallurgiques, nous avons trouvé et expérimenté de nouvelles compositions d'alliages industriels du système AI-Li-Mg-Cu (-Cr, Mn, Zr, Ti) plus performants que les alliages des systèmes AICuMg (2024). AILiCu et AILiMg, et que les alliages connus du système AILiCuMg, du point de vue du compromis entre la résistance mécanique, la densité et la résistance à la corrosion intergranulaire ou feuilletante.During metallurgical tests, we found and tested new compositions of industrial alloys of the AI-Li-Mg-Cu system (-Cr, Mn, Zr, Ti) more efficient than the alloys of the AICuMg systems (2024). AILiCu and AILiMg, and that the known alloys of the AILiCuMg system, from the point of view of the compromise between mechanical strength, density and resistance to intergranular or laminating corrosion.

Ces nouveaux alliages selon l'invention ont les compositions pondérales suivantes :

Figure imgb0001
These new alloys according to the invention have the following weight compositions:
Figure imgb0001

La teneur en éléments principaux est de préférence tenue individuellement ou en combinaison entre 2,3 à 3,3 % pour Li, 1,4 et 2,4 % pour Mg et 0,25 et 1,2 % pour Cu. La teneur en Zr est de préférence comprise entre 0,08 et 0,18 %.The content of main elements is preferably held individually or in combination between 2.3 to 3.3% for Li, 1.4 and 2.4% for Mg and 0.25 and 1.2% for Cu. The Zr content is preferably between 0.08 and 0.18%.

Pour obtenir un meilleur compromis, résistance mécanique-densité, on doit de plus observer la relation suivante :

Figure imgb0002
avec 8,5 ≤ K ≤ 11,5 et de préférence 9 ≤ K ≤ 11.To obtain a better compromise, mechanical strength-density, we must also observe the following relationship:
Figure imgb0002
with 8.5 ≤ K ≤ 11.5 and preferably 9 ≤ K ≤ 11.

Les alliages selon l'invention possèdent leur niveau optimal de résistance et de ductilité après des traitements d'homogénéisation des produits coulés et de mise en solution des produits transformés comportant au moins un palier à une température θ (en °C) de l'ordre de 0 = 535-5 (% Mg) pendant une durée suffisante pour qu'après trempe, les composés intermétalliques des phases quaternaires (AILiCuMg) détectables lors d'examen micrographique ou par microanalyse électronique ou ionique (SIMS) aient une taille inférieure à 5 µm. L'homogénéisation peut se faire dans un domaine de température compris entre 8 + 10 (°C) et 0 ―20 (°C) ; la mise en solution est de préférence effectuée entre 0 + - 10 °C.The alloys according to the invention have their optimal level of resistance and ductility after homogenization treatments of the cast products and dissolving of the transformed products comprising at least one level at a temperature θ (in ° C) of the order of 0 = 535-5 (% Mg) for a sufficient time so that after quenching, the intermetallic compounds of the quaternary phases (AILiCuMg) detectable during micrographic examination or by electronic or ionic microanalysis (SIMS) have a size less than 5 µm. Homogenization can be done in a temperature range between 8 + 10 (° C) and 0 ―20 (° C); the dissolution is preferably carried out between 0 + - 10 ° C.

Les durées optimales de traitement thermique d'homogénéisation à la température 0 sont de 0,5 à 8 heures pour les alliages élaborés par solidification rapide (atomisation - splat cooling - ou tout autre moyen) et de 12 à 72 heures pour les produits moulés ou élaborés en coulée semi-continue.The optimal durations of heat treatment for homogenization at temperature 0 are 0.5 to 8 hours for alloys produced by rapid solidification (atomization - splat cooling - or any other means) and 12 to 72 hours for molded products or produced in semi-continuous casting.

Ces alliages possèdent leurs propriétés mécaniques optimales après revenus de durées de 8 à 48 heures à des températures comprises entre 170 et 220 °C et il est préférable de faire subir aux produits de forme adéquate (tôles, barres, largets) un écrouissage donnant lieu à une déformation plastique de 1 à 5 % (préférentiellement 2 à 4 %) entre trempe et revenu, ce qui permet d'améliorer encore la résistance mécanique des produits.These alloys have their optimal mechanical properties after tempering of durations of 8 to 48 hours at temperatures between 170 and 220 ° C and it is preferable to subject the products of adequate shape (sheets, bars, widgets) to work hardening giving rise to plastic deformation of 1 to 5% (preferably 2 to 4%) between quenching and tempering, which further improves the mechanical strength of the products.

Dans ces conditions, les alliages selon l'invention possèdent une résistance mécanique supérieure à celle de l'alliage AILiMgMn 01420, ce qui ne permettait pas de prévoir les résultats des études disponibles sur le système. Nous avons constaté que les alliages selon l'invention ont un compromis entre caractéristiques mécaniques et densité supérieur à celui des alliages AILiCuMg connus (à faibles teneurs en magnésium). Ils possèdent aussi une résistance à la corrosion intergranulaire ou feuilletante satisfaisante très supérieure à celle des alliages AICuMg, AILiCu, et AILiCuMg connus.Under these conditions, the alloys according to the invention have a higher mechanical strength than that of the alloy AILiMgMn 01420, which did not make it possible to predict the results of the studies available on the system. We have found that the alloys according to the invention have a compromise between mechanical characteristics and density greater than that of the known AILiCuMg alloys (with low magnesium contents). They also have a satisfactory resistance to intergranular or laminating corrosion much higher than that of the known alloys AICuMg, AILiCu, and AILiCuMg.

Ces alliages sont donc particulièrement intéressants pour la fabrication de demi-produits moulés ou corroyés (élaborés par coulée semi-continue, atomisation ou solidification rapide, etc...) qu'il s'agisse par exemple de produits filés, laminés, forgés ou matricés utilisés en particulier dans les industries aéronautique ou spatiale.These alloys are therefore particularly advantageous for the manufacture of molded or wrought semi-finished products (produced by semi-continuous casting, rapid atomization or solidification, etc.) whether they are, for example, spun, rolled, forged or matrixes used in particular in the aeronautical or space industries.

En particulier, il a été constaté de façon surprenante que les alliages selon l'invention, très chargés en Li et Mg, étaient coulables sans difficulté majeure en coulée semi-continue sous forme de billettes ou de plateaux de format industriel (absence de criques et de porosités).In particular, it was surprisingly found that the alloys according to the invention, very loaded with Li and Mg, were pourable without major difficulty in semi-continuous casting in the form of billets or trays of industrial format (absence of cracks and porosities).

L'invention sera mieux comprise et illustrée à l'aide des exemples suivants :The invention will be better understood and illustrated with the aid of the following examples:

ExemplesExamples

Nous avons élaboré par coulée semi-continue des billettes de diamètre 200 mm constituées d'alliages d'aluminium aéronautiques de compositions connues et de différents alliages au lithium selon l'invention. Ces billettes ont subi des homogénéisations de longue durée à température suffisante pour dissoudre la quasi-totalité des phases eutectiques et transformées, après écroûtage, en largets de largeur 100 mm et d'épaisseur 13 mm.We have produced by semi-continuous casting 200 mm diameter billets made of aeronautical aluminum alloys of known compositions and of various lithium alloys according to the invention. These billets have undergone long-term homogenization at a temperature sufficient to dissolve almost all of the eutectic phases and transformed, after peeling, into strips of width 100 mm and thickness 13 mm.

Les largets ont subi une mise en solution dans les conditions jugées optimales du point de vue de la dissolution des phases riches en éléments d'addition principaux (Li, Cu, Mg, Zn), puis trempés à l'eau froide (20 °C), avant de subir une traction contrôlée à 2 % de déformation rémanente et différentes températures de revenu en four ventilé pendant une durée de 24 heures. Certains largets filés n'ont pas été tractionnés entre trempe et revenu, de façon à mettre en évidence l'influence de l'écrouissage entre trempe et revenu sur les propriétés mécaniques.The largets were dissolved in the conditions deemed optimal from the point of view of the dissolution of the phases rich in main addition elements (Li, Cu, Mg, Zn), then soaked in cold water (20 ° C ), before undergoing controlled traction at 2% residual deformation and different tempering temperatures in a ventilated oven for a period of 24 hours. Certain spun strips have not been pulled between quenching and tempering, so as to highlight the influence of the work hardening between quenching and tempering on the mechanical properties.

Tous les largets ainsi fabriqués ont été caractérisés par essais de traction et mesure de densité. Des tests de sensibilité à la corrosion intergranulaire selon la norme AIR 9048 (immersion continue 6 heures en solution NaCI- H2O2) et à la corrosion feuilletante selon le test EXCO (immersion continue 96 heures selon la norme ASTM G 34-79) ont également été effectués.All the widgets thus produced were characterized by tensile tests and density measurement. Sensitivity tests for intergranular corrosion according to AIR 9048 standard (6 hour continuous immersion in NaCI-H 2 O 2 solution ) and to flaky corrosion according to EXCO test (96 hour continuous immersion according to ASTM G 34-79 standard) were also carried out.

Le tableau 1 donne les compositions chimiques des alliages mesurées par absorption atomique et spectrométrie d'émission à étincelles, et leurs caractéristiques (coefficient K) par rapport aux domaines selon l'invention.Table 1 gives the chemical compositions of the alloys measured by atomic absorption and spark emission spectrometry, and their characteristics (coefficient K) with respect to the domains according to the invention.

Le tableau Il donne les caractéristiques mécaniques de traction et la densité en fonction de la composition chimique des largets, pour les différents traitements thermiques effectués et le taux d'écrouissage entre trempe et revenu. On donne la limite élastique (Rp 0,2), la charge de rupture (Rm) et l'allongement à rupture (A%).Table II gives the mechanical traction characteristics and the density as a function of the chemical composition of the widgets, for the various heat treatments carried out and the rate of work hardening between quenching and tempering. The elastic limit (Rp 0.2), the breaking load (Rm) and the elongation at break (A%) are given.

Le tableau III donne les résultats obtenus lors des essais de corrosion.Table III gives the results obtained during the corrosion tests.

Les résultats des tests de sensibilité à la corrosion intergranulaire et à la corrosion feuilletante effectués, pour certains états de revenu à l'état T651, montrent que les alliages selon l'invention possèdent une résistance améliorée à la corrosion par rapport aux alliages conventionnels de la série 2000 et aux alliages au lithium connus, qui sont moins chargés en Mg.The results of the sensitivity tests to intergranular corrosion and to laminating corrosion carried out, for certain states of tempering in the T651 state, show that the alloys according to the invention have improved corrosion resistance compared to conventional 2000 series alloys and known lithium alloys, which are less loaded with Mg.

L'ensemble des résultats obtenus montre donc que les alliages selon l'invention possèdent des résistances mécaniques de niveaux comparables à celles des alliages des séries 2000 sans lithium actuellement utilisés dans l'aéronautique, et supérieurs à ceux des alliages AI-Li-Mg connus (par ex. alliage 01420) avec l'avantage d'une densité nettement plus faible que celle des alliages conventionnels et inférieure à .celle des alliages au lithium connus des systèmes AI-Li-Cu, AI-Li-Cu-Mg. Ils montrent également l'intérêt d'un écrouissage entre trempe et revenu sur les propriétés mécaniques.

Figure imgb0003
Figure imgb0004
Figure imgb0005
Figure imgb0006
All the results obtained therefore show that the alloys according to the invention have mechanical strengths of levels comparable to those of the alloys of the 2000 series without lithium currently used in aeronautics, and greater than those of known AI-Li-Mg alloys. (eg alloy 01420) with the advantage of a significantly lower density than that of conventional alloys and lower than that of the known lithium alloys of the AI-Li-Cu, AI-Li-Cu-Mg systems. They also show the advantage of hardening between quenching and tempering on the mechanical properties.
Figure imgb0003
Figure imgb0004
Figure imgb0005
Figure imgb0006

Claims (12)

1. AI-base alloy having high strength and high ductility characterized in that it contains (in % by weight) :
Figure imgb0009
2. Alloy according to claim 1 characterised in that it contains from 2.3 to 3.3 % Li.
3. Alloy according to claim 1 characterised in that it contains from 0.25 to 1.2% Cu.
4. Alloy according to one of claims 1 to 3 characterised in that it contains from 2.3 to 3.3 % Li, 0.25 to 1.2 % Cu and 1.4 to 2.4 % Mg.
5. Alloy according to one of claims 1 to 4 characterised in that :
Figure imgb0010
with 8.5 ≤ K ≤ 11.5.
6. Alloy according to claim 5 characterised in that 9 ≤ K ≤ 11.
7. A process for the heat treatment of the alloys according to one of claims 1 to 6 comprising a homogenization operation, a solution treatment, a quenching operation and a tempering operation, characterised in that the alloy is subjected to homogenization and solution treatment at a temperature (in °C) of the order of 0 = 535 - 5 (% Mg).
8. A process according to claim 7 characterised in that the duration of the homogenization operation and the solution treatment is sufficiently long that, after the quenching operation, the residual quaternary intermetallic phases (AI, Li, Mg, Cu) are less than 5 µm in size.
9. A process according to claim 7 or claim 8 characterised in that the homogenization operation is carried out in the temperature range which is defined by θ + 10 (°C) and 8―20 (°C).
10. A process according to claim 7 or claim 8 characterised in that the solution treatment is carried out in the temperature range defined by 8 + 10 (°C) and 0 - 10 (°C).
11. A process according to one of claims 7 to 10 characterised in that the tempering operation is effected at from 170 to 220 °C for a period ranging from 8 to 48 hours.
12. A process according to one of claims 7 to 11 characterised in that plastic deformation of from 1 to 5 % and preferably from 2 to 4 % is applied to the treated product between the quenching and tempering operations.
EP85900122A 1983-11-24 1984-11-22 Aluminium alloys containing lithium, magnesium and copper Expired EP0162096B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT85900122T ATE30051T1 (en) 1983-11-24 1984-11-22 ALUMINUM-BASED ALLOYS WITH LITHIUM, MAGNESIUM AND COPPER.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8319070 1983-11-24
FR8319070 1983-11-24

Publications (2)

Publication Number Publication Date
EP0162096A1 EP0162096A1 (en) 1985-11-27
EP0162096B1 true EP0162096B1 (en) 1987-09-30

Family

ID=9294664

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85900122A Expired EP0162096B1 (en) 1983-11-24 1984-11-22 Aluminium alloys containing lithium, magnesium and copper

Country Status (10)

Country Link
US (1) US4758286A (en)
EP (1) EP0162096B1 (en)
JP (1) JPS60502159A (en)
BR (1) BR8407153A (en)
CA (1) CA1253362A (en)
DE (1) DE3466560D1 (en)
ES (1) ES537895A0 (en)
IL (1) IL73619A (en)
IT (1) IT1209600B (en)
WO (1) WO1985002416A1 (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5137686A (en) * 1988-01-28 1992-08-11 Aluminum Company Of America Aluminum-lithium alloys
US4961792A (en) * 1984-12-24 1990-10-09 Aluminum Company Of America Aluminum-lithium alloys having improved corrosion resistance containing Mg and Zn
FR2583776B1 (en) * 1985-06-25 1987-07-31 Cegedur LITHIUM-CONTAINING AL PRODUCTS FOR USE IN A RECRYSTALLIZED CONDITION AND A PROCESS FOR OBTAINING SAME
US4921548A (en) * 1985-10-31 1990-05-01 Aluminum Company Of America Aluminum-lithium alloys and method of making same
US4816087A (en) * 1985-10-31 1989-03-28 Aluminum Company Of America Process for producing duplex mode recrystallized high strength aluminum-lithium alloy products with high fracture toughness and method of making the same
US4915747A (en) * 1985-10-31 1990-04-10 Aluminum Company Of America Aluminum-lithium alloys and process therefor
EP0250656A1 (en) * 1986-07-03 1988-01-07 The Boeing Company Low temperature underaging of lithium bearing alloys
US4795502A (en) * 1986-11-04 1989-01-03 Aluminum Company Of America Aluminum-lithium alloy products and method of making the same
US5122339A (en) * 1987-08-10 1992-06-16 Martin Marietta Corporation Aluminum-lithium welding alloys
US5032359A (en) * 1987-08-10 1991-07-16 Martin Marietta Corporation Ultra high strength weldable aluminum-lithium alloys
US5066342A (en) * 1988-01-28 1991-11-19 Aluminum Company Of America Aluminum-lithium alloys and method of making the same
US5108519A (en) * 1988-01-28 1992-04-28 Aluminum Company Of America Aluminum-lithium alloys suitable for forgings
US4869870A (en) * 1988-03-24 1989-09-26 Aluminum Company Of America Aluminum-lithium alloys with hafnium
US5455003A (en) * 1988-08-18 1995-10-03 Martin Marietta Corporation Al-Cu-Li alloys with improved cryogenic fracture toughness
US5259897A (en) * 1988-08-18 1993-11-09 Martin Marietta Corporation Ultrahigh strength Al-Cu-Li-Mg alloys
US5512241A (en) * 1988-08-18 1996-04-30 Martin Marietta Corporation Al-Cu-Li weld filler alloy, process for the preparation thereof and process for welding therewith
US5462712A (en) * 1988-08-18 1995-10-31 Martin Marietta Corporation High strength Al-Cu-Li-Zn-Mg alloys
US5085830A (en) * 1989-03-24 1992-02-04 Comalco Aluminum Limited Process for making aluminum-lithium alloys of high toughness
FR2646172B1 (en) * 1989-04-21 1993-09-24 Cegedur AL-LI-CU-MG ALLOY WITH GOOD COLD DEFORMABILITY AND GOOD DAMAGE RESISTANCE
AU626435B2 (en) * 1989-07-10 1992-07-30 Toyota Jidosha Kabushiki Kaisha Method of manufacture of metal matrix composite material including intermetallic compounds with no micropores
US5211910A (en) * 1990-01-26 1993-05-18 Martin Marietta Corporation Ultra high strength aluminum-base alloys
US5133931A (en) * 1990-08-28 1992-07-28 Reynolds Metals Company Lithium aluminum alloy system
US5198045A (en) * 1991-05-14 1993-03-30 Reynolds Metals Company Low density high strength al-li alloy
DE602004017787D1 (en) * 2004-09-06 2008-12-24 Federalnoe G Unitarnoe Predpr ALUMINUM ALLOY AND PRODUCT MANUFACTURED THEREOF
WO2009073794A1 (en) 2007-12-04 2009-06-11 Alcoa Inc. Improved aluminum-copper-lithium alloys
US8333853B2 (en) * 2009-01-16 2012-12-18 Alcoa Inc. Aging of aluminum alloys for improved combination of fatigue performance and strength
CN107012374A (en) * 2017-04-07 2017-08-04 安徽省宁国市万得福汽车零部件有限公司 A kind of wear-resistant aluminum alloy lagging material and preparation method thereof
CN114480922B (en) * 2022-01-25 2023-04-07 郑州轻研合金科技有限公司 Ultra-light aluminum-lithium alloy and preparation method and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0142261A1 (en) * 1983-10-12 1985-05-22 Alcan International Limited Stress corrosion resistant aluminium-magnesium-lithium-copper alloy

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1220961A (en) * 1958-01-13 1960-05-30 Aluminum Co Of America Aluminum based alloy
FR1519021A (en) * 1967-03-07 1968-03-29 Iosif Naumovich Fridlyander Ni Aluminum based alloy
DE3366165D1 (en) * 1982-02-26 1986-10-23 Secr Defence Brit Improvements in or relating to aluminium alloys
US4526630A (en) * 1982-03-31 1985-07-02 Alcan International Limited Heat treatment of aluminium alloys
JPS59118848A (en) * 1982-12-27 1984-07-09 Sumitomo Light Metal Ind Ltd Structural aluminum alloy having improved electric resistance

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0142261A1 (en) * 1983-10-12 1985-05-22 Alcan International Limited Stress corrosion resistant aluminium-magnesium-lithium-copper alloy

Also Published As

Publication number Publication date
ES8600419A1 (en) 1985-09-16
IT1209600B (en) 1989-08-30
DE3466560D1 (en) 1987-11-05
CA1253362A (en) 1989-05-02
ES537895A0 (en) 1985-09-16
IL73619A (en) 1987-11-30
JPS60502159A (en) 1985-12-12
IT8423712A0 (en) 1984-11-23
IL73619A0 (en) 1985-02-28
WO1985002416A1 (en) 1985-06-06
EP0162096A1 (en) 1985-11-27
BR8407153A (en) 1985-10-08
US4758286A (en) 1988-07-19

Similar Documents

Publication Publication Date Title
EP0162096B1 (en) Aluminium alloys containing lithium, magnesium and copper
KR101333915B1 (en) Aluminum-zinc-magnesium-scandium alloys and methods of fabricating same
KR102437942B1 (en) 6xxx aluminum alloys
EP1329530A1 (en) High temperature resistant magnesium alloys
FR2726007A1 (en) PROCESS FOR MANUFACTURING ALSIMGCU ALLOY PRODUCTS HAVING IMPROVED RESISTANCE TO INTERCRYSTAL CORROSION
EP1382698B1 (en) Wrought product in Al-Cu-Mg alloy for aircraft structural element
FR2584094A1 (en) HIGH STRENGTH TITANIUM ALLOY MATERIAL HAVING IMPROVED OUVABILITY AND PROCESS FOR PRODUCING THE SAME
JP2009013479A (en) High strength aluminum alloy material excellent in stress corrosion cracking resistance and method for producing the same
EP0158571A1 (en) Al-Cu-Li-Mg alloys with a very high specific mechanical resistance
JP4185247B2 (en) Aluminum-based alloy and heat treatment method thereof
EP0164294B1 (en) Aluminium base alloys containing lithium, copper and magnesium
CA2961712A1 (en) Isotropic aluminium-copper-lithium alloy sheets for producing aeroplane fuselages
EP0008996B1 (en) Process for heat-treating aluminium-copper-magnesium-silicon alloys
Zhihao et al. Effect of Mn on microstructures and mechanical properties of Al-Mg-Si-Cu-Cr-V alloy.
JPH0380862B2 (en)
JP4498180B2 (en) Al-Zn-Mg-Cu-based aluminum alloy containing Zr and method for producing the same
JP2021526594A (en) A method for producing an Al-Mg-Mn alloy plate product having improved corrosion resistance.
EP0227563A1 (en) Process od desensitization to exfoliating corrosion of lithium-containing aluminium alloys, resulting simultaneously in a high mechanical resistance and in good damage limitation
JP2003277868A (en) Aluminum alloy forging having excellent stress corrosion cracking resistance and stock for the forging
Atkinson et al. Thixoforming of normally wrought aluminium alloys
RU2560485C1 (en) High-strength heat-treatable aluminium alloy and article made thereof
JP2007509240A (en) Al-Mg-Si alloy suitable for extrusion
RU2489217C1 (en) Method of sheets production from heat-hardened aluminium alloys alloyed with scandium and zirconium
FR2646172A1 (en) AL-LI-CU-MG ALLOY HAS GOOD DEFORMABILITY TO COLD AND GOOD RESISTANCE TO DAMAGE
Agboola et al. Effects of Aging Temperature and Time on Microstructure and Mechanical Properties of LM 12 Aluminium Alloy

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19850802

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB LI NL SE

17Q First examination report despatched

Effective date: 19860730

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB LI NL SE

REF Corresponds to:

Ref document number: 30051

Country of ref document: AT

Date of ref document: 19871015

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3466560

Country of ref document: DE

Date of ref document: 19871105

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19911017

Year of fee payment: 8

Ref country code: AT

Payment date: 19911017

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19911018

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19911019

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19911023

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19911108

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19911129

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19911130

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19921122

Ref country code: AT

Effective date: 19921122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19921123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19921130

Ref country code: CH

Effective date: 19921130

Ref country code: BE

Effective date: 19921130

BERE Be: lapsed

Owner name: CEGEDUR SOC. DE TRANSFORMATION DE L'ALUMINIUM PEC

Effective date: 19921130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19930601

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19921122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19930730

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930803

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 85900122.4

Effective date: 19930610