EP0156706B1 - Procédé de purification des métaux par insufflation - Google Patents
Procédé de purification des métaux par insufflation Download PDFInfo
- Publication number
- EP0156706B1 EP0156706B1 EP85400414A EP85400414A EP0156706B1 EP 0156706 B1 EP0156706 B1 EP 0156706B1 EP 85400414 A EP85400414 A EP 85400414A EP 85400414 A EP85400414 A EP 85400414A EP 0156706 B1 EP0156706 B1 EP 0156706B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- bath
- content
- mixture
- carbon
- inert gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000000034 method Methods 0.000 title claims abstract description 51
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 22
- 239000002184 metal Substances 0.000 title claims abstract description 22
- 238000007670 refining Methods 0.000 title abstract description 29
- 238000002347 injection Methods 0.000 title description 4
- 239000007924 injection Substances 0.000 title description 4
- 150000002739 metals Chemical class 0.000 title 1
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 61
- 239000007789 gas Substances 0.000 claims abstract description 29
- 239000000203 mixture Substances 0.000 claims abstract description 17
- 230000001590 oxidative effect Effects 0.000 claims abstract description 17
- 239000011261 inert gas Substances 0.000 claims abstract description 15
- 238000010790 dilution Methods 0.000 claims abstract description 14
- 239000012895 dilution Substances 0.000 claims abstract description 14
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 43
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 32
- 229910052786 argon Inorganic materials 0.000 claims description 16
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 10
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims description 5
- 239000000155 melt Substances 0.000 claims description 3
- 239000008246 gaseous mixture Substances 0.000 claims description 2
- 239000001307 helium Substances 0.000 claims description 2
- 229910052734 helium Inorganic materials 0.000 claims description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 2
- 229910052754 neon Inorganic materials 0.000 claims description 2
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 claims description 2
- 229910052724 xenon Inorganic materials 0.000 claims description 2
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 claims description 2
- 238000000746 purification Methods 0.000 claims 4
- AANMVENRNJYEMK-UHFFFAOYSA-N 4-propan-2-ylcyclohex-2-en-1-one Chemical compound CC(C)C1CCC(=O)C=C1 AANMVENRNJYEMK-UHFFFAOYSA-N 0.000 claims 1
- 229910000805 Pig iron Inorganic materials 0.000 abstract 1
- 229910052760 oxygen Inorganic materials 0.000 description 43
- 239000001301 oxygen Substances 0.000 description 42
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 41
- 229910000831 Steel Inorganic materials 0.000 description 16
- 239000010959 steel Substances 0.000 description 16
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 14
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 6
- 239000002893 slag Substances 0.000 description 6
- 229910052742 iron Inorganic materials 0.000 description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 3
- 229910001018 Cast iron Inorganic materials 0.000 description 3
- 229910002091 carbon monoxide Inorganic materials 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- 238000010926 purge Methods 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 230000001914 calming effect Effects 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 229910001338 liquidmetal Inorganic materials 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- 241001275902 Parabramis pekinensis Species 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000003416 augmentation Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 235000013365 dairy product Nutrition 0.000 description 1
- 238000010908 decantation Methods 0.000 description 1
- 238000005261 decarburization Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000003517 fume Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000002147 killing effect Effects 0.000 description 1
- 229910052743 krypton Inorganic materials 0.000 description 1
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910052752 metalloid Inorganic materials 0.000 description 1
- 150000002738 metalloids Chemical class 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 150000002926 oxygen Chemical class 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 230000005070 ripening Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/28—Manufacture of steel in the converter
- C21C5/30—Regulating or controlling the blowing
- C21C5/34—Blowing through the bath
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/04—Removing impurities by adding a treating agent
- C21C7/068—Decarburising
Definitions
- the present invention relates to a process for refining cast iron in which an oxidizing gas, for example industrially pure oxygen, is injected to remove oxidizable impurities, such as carbon, and more particularly the processes in which all or part oxidizing gas is injected under the surface of the molten metal.
- an oxidizing gas for example industrially pure oxygen
- LWS for those in which most of the oxygen is blown from the bottom
- LD-OB LD-OTB
- STB for those in which only a small part of the oxygen is injected under the surface of the bath.
- New processes have attempted to overcome this drawback: these are the LBE and LDAB processes, for example, in which a neutral gas is injected from the bottom which promotes the mixing of the metal, however without reaching the processes in which part of the oxygen is injected from the bottom.
- these bottom refining processes have not so far made it possible to obtain, with the oxygen converter, steels with low and very low carbon contents which do not have high contents of mainly dissolved gas. oxygen.
- bottom refining processes are those for which the dissolved oxygen content is lowest, compared to top refining processes.
- the first of these techniques is called calming. Is added to the liquid metal, before ingot ingot or continuous casting, highly oxidizable elements such as aluminum, silicon and other metalloids or mixtures thereof which react with the dissolved oxygen to form oxides which decant and are trapped by the cover slag. However, there is always a certain amount of these oxides in the metal during its solidification, but the morphology of the inclusions is better controlled.
- Another technique, used in the converter, is the purging of the metal using a neutral gas, mainly nitrogen or argon. It has the drawback of being moderately effective and of varying the carbon content of the bath, hence a greater dispersion of the carbon contents during casting.
- US Patent 3,930,843 describes a bottom refining process in which a mixture of oxygen and argon is introduced through the bottom of the converter into the bath of molten steel, when the carbon content of this steel is less than 0.25%. This introduction is carried out according to a process comprising three successive stages of dilution of oxygen with argon as a function of the carbon concentration in the metal bath. This patent gives no indication for obtaining the desired steels while reducing the refining time and the consumption of Argon.
- the object of the present invention is to obtain steels having both a low carbon content (mild and extra-mild steels) and a low oxygen content in the converter.
- the object of the invention is to obtain these steels “in the converter”, that is to say directly in the converter and not after a certain number of steps, such as the calming (“kil-ling” according to the Anglo-Saxon name) with aluminum, silicon, etc ...
- the present invention relates to a method making it possible to remedy the aforementioned drawbacks and to obtain mild and extra-mild steels with a converter having dissolved oxygen contents of less than 300 ppm in the case of mild steels (0.08 ⁇ % C ⁇ 0 , 03) and less than 300 ppm in the case of extra-mild steels (% C ⁇ 0.035).
- an oxidizing gas such as industrial
- the total flow rate of the gaseous mixture (oxidizing gas and inert gas) injected through the bottom remains substantially constant throughout the last refining period. This flow is preferably the maximum flow compatible with a "calm" refining of the bath, that is to say without significant projections of the bath.
- argon is used in the present invention as dilution gas, the injection of which is controlled to reduce the CO concentration, which makes it possible to obtain, unexpectedly. , a concentration of oxygen dissolved in the metal bath substantially constant throughout the duration of the process.
- the inert dilution gas injected during the last refining period can be chosen from the group comprising nitrogen, argon, helium, neon, krypton, xenon or any mixture of these.
- Zone A corresponds to known methods of refining from the top
- zone B to known methods of refining from the bottom
- zone C to known methods of refining from the bottom with purging
- zone D to known methods of mixed refining
- the zone E is a zone which can be reached using the method according to the invention.
- a bottom-blowing converter model equipped with an injection nozzle is produced in the laboratory. 600 kg of liquid iron containing 1.5% carbon and 1550 ° C. are loaded into this converter. Pure oxygen is then injected at a flow rate of 15 Nm 3 / h until the carbon content of the bath drops to 0.03% (point 1a of the curve in FIG. 3 corresponding to an oxygen content dissolved at 1280 ppm). From this instant, industrially pure argon is injected into the bath, together with oxygen, at a constant flow rate of 15 Nm 3 / h. Metal samples are taken at regular intervals to determine the change in the dissolved oxygen content of the bath.
- the same converter is loaded with 600 kg of liquid iron containing 1.5% carbon.
- Industrially pure oxygen is injected at a flow rate of 15 Nm 3 / h until the bath has a carbon content of 0.212%, the temperature then being 1647 ° C. From this instant, the oxygen injected with argon is diluted by following the law corresponding to curve II of FIG. 2, the total flow rate of the injected gas (inert gas + oxygen) being kept constant. From this moment, the dissolved oxygen content, as a function of the carbon bath content, varies according to curve II of the diagram in FIG. 3.
- the same converter is loaded with 600 kg of liquid iron containing 1.5% carbon.
- oxygen is injected at a flow rate of 15 Nm 3 / h until a carbon content of 0.19% is obtained.
- the temperature of the bath is 1600 ° C.
- the oxygen injected is diluted with argon, the argon content of the injected mixture varying, as a function of the carbon content of the bath, according to curve III of FIG. 2.
- the dissolved oxygen content then varies, depending on the carbon content of the bath, according to curve III of the diagram in FIG. 3.
- the carbon content of the bath is 0.02% and its dissolved oxygen content is 180 ppm (point 3b of section III of Figure 3).
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Carbon Steel Or Casting Steel Manufacturing (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Treatment Of Steel In Its Molten State (AREA)
- Mold Materials And Core Materials (AREA)
- Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
Description
- La présente invention concerne un procédé d'affinage de la fonte dans lequel on injecte un gaz oxydant, par exemple de l'oxygène industriellement pur, pour éliminer les impurétés oxydables, telles que le carbone, et plus particulièrement les procédés dans lesquels tout ou partie du gaz oxydant est injecté sous la surface du métal en fusion. De tels procédés sont connus principalement sous les noms de OBM, QBOP, LWS pour ceux dans lesquels la plus grande partie de l'oxygène est soufflée par le fond, sous les noms de LD-OB, LD-OTB, STB pour ceux dans lesquels seule une faible partie de l'oxygène est injectée sous la surface du bain.
- Dans les procédés d'élaboration pneumatiques de l'acier les plus couramment utilisés, l'oxygène est soufflé au travers d'une lance au-dessus de la charge de façon que le jet d'oxygène pénètre la masse fondue et forme un laitier très oxydé qui, au contact de la fonte, réagit avec le carbone pour former du monoxyde de carbone. Avec les procédés à soufflage par le fond, l'oxygène est injecté sous la surface du bain à travers des tuyères situées dans le fond ou près du fond du convertisseur. Un gaz de protection, en général un hydrocarbure ou un gaz non oxydant (qui peut être sous forme liquéfiée) est utilisé pour entourer le courant d'oxygène afin de réduire l'usure très importante des tuyères ainsi que des réfractaires du fond du convertisseur. Un des avantages appréciables de ces derniers procédés par rapport aux précédents est la possibilité d'obtenir des rendements supérieurs en métal. Ces rendements sont obtenus principalement parce que:
- 1. l'oxygène traversant le bain métallique brasse de façon plus intense le bain et permet une meilleure approche des conditions d'équilibre et,
- 2. la quantité de fumées d'oxyde de fer produites est beaucoup plus faible car la réaction d'oxydation du carbone se situe au sein même du métal contrairement aux procédés d'affinage par le dessus où cette reaction a lieu à l'interface laitier-métal. Il en découle que les procédés d'affinage par le haut sont impropres pour l'obtention, dans de bonnes conditions, des aciers à basses et très basses teneurs en carbone.
- De nouveaux procédés ont tenté de pallier cet inconvénient: ce sont les procédés LBE, LDAB par exemple, dans lesquels on injecte par le fond un gaz neutre qui favorise le brassage du métal, cependant sans atteindre les procédés dans lesquels une partie de l'oxygène est injectée par le fond. Toutefois, ces procédés d'affinage par le fond n'ont pas permis d'obtenir jusqu'à présent, au convertisseur à l'oxygène, des aciers à basses et très basses teneurs en carbone ne présentant pas des teneurs élevées en gaz dissous principalement de l'oxygène.
- Néanmoins, les procédés d'affinage par le fond sont ceux pour lesquels la teneur en oxygène dissous est la plus faible, comparativement aux procédés d'affinage par le haut.
- La présence d'oxygène dissous dans le métal liquide est particulièrement gênante. Lors de la solidification du métal, cet oxygène réagit avec les éléments oxydables et plus particulièrement avec le carbone résiduel pour former du CO. Il en résulte une teneur en carbone du métal solide plus faible, une inho- mogénéité due à la présence de cavités contenant du monoxyde de carbone et surtout, pour les aciers extra-doux, la présence d'oxydes métalliques.
- Il existe plusieurs procédés pour remédier à ces inconvénients. La première des ces techniques est celle dite du calmage. On ajoute au métal liquide, avant la coulée en lingot ou la coulée continue, des éléments très oxydables tels que l'aluminium, le silicium et autres métalloïdes ou des mélanges de ceux-ci qui réagissent avec l'oxygène dissous pour former des oxydes qui décantent et sont piégés par le laitier de couverture. Toutefois, il reste toujours une certaine quantité de ces oxydes dans le métal lors de sa solidification mais la morphologie des inclusions est mieux contrôlée.
- Une autre technique, utilisée au convertisseur, est la purge du métal à l'aide d'un gaz neutre, principalement de l'azote ou de l'argon. Elle présente l'incon- venient d'être moyennement efficace et de faire varier la teneur en carbone du bain, d'où une plus grande dispersion des teneurs en carbone à la coulée.
- Les dernières techniques, que l'on peut regrouper sous le terme générique de techniques de traitement sous vide, sont très performantes, mais présentent les inconvénients suivants:
- - gros investissements
- - coûts de fonctionnemenr et d'entretien élevés dus aux techniques d'obtention du vide
- - pertes de température nécessitant soit une surchauffe à la coulée, soit un système de réchauffage de la masse en fusion
- - temps de traitement long.
- Dans les procédés dans lesquels un gaz contenant de l'oxygène est soufflé à travers une tuyère située sous la surface du bain, l'affinage a lieu en deux étapes:
- 1. formation d'un microlaitier contenant principalement de l'oxyde de fer selon la réaction:
- 2. décantation et réduction de ce microlaitier: en remontant à travers la masse métallique ce laitier réagit avec le carbone du bain selon la réaction:
- Durant l'affinage, on peut déterminer deux périodes:
- 1. une première période durant laquelle le bain contient suffisamment de carbone pour tout l'oxyde de fer produit soit réduit: ce qui se passe pour les teneurs en carbone du bain supérieures à une certaine valeur C*.
- 2. une seconde période durant laquelle le carbone contenu dans la masse métallique est trop faible pour réduire tout l'oxyde de fer produit au nez de la tuyère, ce qui entraîne une baisse notoire du rendement en fer de l'affinage et une augmentation de la quantité d'oxyde de fer contenu dans le laitier.
- Le brevet US 3 930 843 décrit un procédé d'affinage par le fond dans lequel on introduit par le fond du convertisseur un mélange d'oxygène et d'argon dans le bain d'acier en fusion, lorsque la teneur en carbone de cet acier est inférieure à 0,25%. Cette introduction s'effectue selon un procédé comportant trois étapes successives de dilution de l'oxygène par l'argon en fonction de la concentration en carbone dans le bain de métal. Ce brevet ne donne aucune indication pour obtenir les aciers souhaités tout en réduisant la durée d'affinage et la consommation en Argon.
- Par ailleurs, dans le brevet français FR-A-2 448 572 est décrit un procédé d'affinage d'acier à basse teneur en carbone au convertisseur dans lequel de l'argon est introduit avec le gaz oxydant à partir d'une valeur prédéterminée de la teneur en carbone, en l'occurrence 0,02%. Or, une telle valeur est trop faible pour obtenir de faibles teneurs en oxygène dissous. Pour une telle valeur, la concentration en oxygène dissous est très importante et une injection de gaz neutre ne peut abaisser de façon efficace cette teneur.
- L'objet de la présente invention est d'obtenir au convertisseur des aciers ayant à la fois une faible teneur en carbone (aciers doux et extra-doux) et une faible teneur en oxygène. Le but de l'invention est d'obtenir ces aciers «au convertisseur», c'est-à-dire directement dans le convertisseur et non après un certain nombre d'étapes, telles que le calmage («kil- ling» selon la dénomination anglo-saxonne) avec l'aluminium, du silicium, etc....
- La présente invention concerne un procédé permettant de remédier aux inconvénients précités et d'obtenir des aciers doux et extra-doux au convertisseur présentant des teneurs en oxygène dissous inférieures à 300 ppm dans le cas des aciers doux (0,08 < % C < 0,03) et inférieures à 300 ppm dans le cas des aciers extra-doux (% C < 0,035).
- A cet effet, ce procédé d'affinage de la fonte par le fond dans lequel on injecte, dans le bain de métal en fusion, un gaz oxydant tel que de l'oxygène industriellement pur, et on injecte, pendant la dernière période de l'affinage, c'est-à-dire à partir d'une valeur prédéterminée de la teneur en carbone du bain, un mélange de gaz oxydant et de gaz inerte assurant la dilution du gaz oxydant, la teneur du mélange en gaz inerte variant en fonction de la teneur en carbone du bain, est caractérisé en ce que l'on fait varier la teneur du mélange en gaz inerte, en fonction de la teneur du bain en carbone, suivant une loi correspondant à une courbe de dilution du gaz oxydant qui est située dans une zone déterminée par deux courbes enveloppes, à savoir une première courbe de dilution maximale définie par les portions de droites:
- Ce procédé permet de maintenir la teneur en oxygène dissous du bain sensiblement constante tout au long de la décarburation et de minimiser ainsi la quantité d'oxyde de fer du laitier. De plus, de manière inattendue, ce procédé est plus économique pour l'objectif visé, permettant à la fois de diminuer la quantité d'Argon utilisé tout en minimisant la quantité d'oxyde de fer présente dans le laitier du bain. Selon un mode préférentiel de réalisation, le débit total du mélange gazeux (gaz oxydant et gaz inerte) injecté par le fond reste sensiblement constante pendant toute le dernière période de l'affinage. Ce débit est de préférence le débit maximal compatible avec un affinage «calme» du bain, c'est-à-dire sans projections importantes du bain.
- Enfin, contrairement à l'enseignement du brevet US 3 930 843, on utilise dans la présente invention de l'argon comme gaz de dilution dont on contrôle l'injection pour diminuer la concentration en CO ce qui permet d'obtenir, de manière inattendue, une concentration en oxygène dissous dans le bain métallique sensiblement constante pendant toute la durée du procédé.
- Le gaz inerte de dilution injecté durant la dernière période d'affinage peut être choisi dans le groupe comprenant l'azote, l'argon, l'hélium, le néon, le krypton, le xénon ou tout mélange de ceux-ci.
- On décrira ci-après, à titre d'exemples non limitatifs, diverses formes d'exécution de la présente invention en référence au dessin annexé sur lequel:
- la figure 1 est un diagramme illustrant la variation de la teneur en oxygène dissous en fonction de la teneur en carbone du bain métallique, à la coulée obtenue selon les différents procédés d'affinage connus et du procédé suivant l'invention;
- la figure 2 est un diagramme donnant deux lois de variation du pourcentage de gaz injecté dans le mélange en fonction de la teneur en carbone du bain métallique, dans le cas de deux exemples de mise en oeuvre du procédé suivant l'invention, et l'étendue de la plage de variation de la loi précitée;
- la figure 3 est un diagramme illustrant la variation de la teneur en oxygène dissous en fonction de la teneur en carbone du bain métallique, respectivement dans le cas d'un procédé connu et de deux exemples de mise un oeuvre du procédé suivant l'invention.
- On se référera tout d'abord au diagramme de la figure 1 qui illustre la façon dont la teneur en oxygène dissous, exprimée en ppm en ordonnée, varie en fonction de la teneur en carbone du bain métallique dans le cas de différents procédés d'affinage. La zone A correspond à des procédés connus d'affinage par le haut, la zone B à des procédes connus d'affinage par le fond, la zone C à des procédés connus d'affinage par le fond avec purge, la zone D à des procédés connus d'affinage mixtes et la zone E est une zone qui peut être atteinte à l'aide du procédé suivant l'invention. Sur ce diagramme est tracée également une courbe d'équilibre C,O à 1600°C pour une pression de monoxyde de carbone d'un bar.
- On voit déja, d'après le diagramme de la figure 1, que le procédé suivant l'invention permet d'obtenir des teneurs en oxygène dissous bien inférieures à tous les procédés d'affinage connus antérieurement.
- On décrira maintenant, au moyen des exemples qui vont suivre, divers mode de mise en oeuvre du procédé d'affinage suivant l'invention et on comparera les résultats obtenus avec ceux d'un procédé d'affinage classique par le fond.
- On réalise en laboratoire un modèle de convertisseur à soufflage par le fond équipé d'une tuyère d'injection. On charge 600 kg de fonte liquide à 1,5% de carbone et à 1550°C dans ce convertisseur. On injecte ensuite de l'oxygène pur à un débit de 15 Nm3/h jusqu'à ce que la teneur en carbone du bain tombe à 0,03% (point 1a de la courbe de la figure 3 correspondant à une teneur en oxygène dissous de 1280 ppm). A partir de cet instant, on injecte dans le bain, conjointement avec l'oxygène, de l'argon industriellement pur à un débit constant de 15 Nm3/h. On prélève des échantillons de métal à intervalles réguliers afin de déterminer la variation de la teneur en oxygène dissous du bain. Au bout de 3 minutes, c'est-à-dire après une consommation de 1,25 Nm3 d'argon/tonne d'acier produit, on s'aperçoit que la teneur en carbone du bain a été abaissée à 0,01 % et que la teneur en oxygène dissous du bain est alors de 750 ppm (point 1b de la courbe de la figure 3).
- On charge le même convertisseur avec 600 kg de fonte liquide à 1,5% de carbone. On injecte de l'oxygène industriellement pur à un débit de 15 Nm3/h jusqu'à ce que le bain présente une teneur en carbone de 0,212%, la température étant alors de 1647°C. A partir de cet instant, on dilue l'oxygène injecté par de l'argon en suivant la loi correspondant à la courbe Il de la figure 2, le débit total du gaz injecté (gaz inerte + oxygène) étant maintenu constant. A partir de ce moment, la teneur en oxygène dissous, en fonction de la teneur du bain en carbone, varie suivant la courbe Il du diagramme de la figure 3. Au bout du 12,5 minutes, soit après une consommation de 3,2 Nm3 d'argon/tonne d'acier produit, la teneur du bain en carbone est abaissée à 0,01 % tandis que cette teneur en oxygène dissous est de 250 ppm (point 2b sur la courbe Il de la figure 3). Autrement dit, on obtient une teneur en oxygène dissous inférieur de 500 ppm par rapport au cas de l'exemple 1.
- On charge le même convertisseur avec 600 kg de fonte liquide à 1,5% de carbone. On injecte, comme précédemment, de l'oxygène à un débit de 15 Nm3/h jusqu'à ce que l'on obtienne une teneur en carbone de 0,19%. La température du bain est de 1600°C. A partir de cet instant, on dilue l'oxygène injecté au moyen d'argon la teneur en argon du mélange injecté variant, en fonction de la teneur en carbone du bain, suivant la courbe III de la figure 2. La teneur en oxygène dissous varie alors, en fonction de la teneur en carbone du bain, suivant la courbe III du diagramme de la figure 3. Après 9 minutes, soit une consommation de 2,95 Nm3/tonne d'acier produit, la teneur en carbone du bain est de 0,02% et sa teneur en oxygène dissous est de 180 ppm (point 3b de la corbe III de la figure 3).
- On peut remarquer, d'après les courbes Il et III de la figure 3, que dans les exemples 2 et 3 dans lesquels on met en oeuvre le procédé suivant l'invention, la teneur en oxygène dissous du bain ne dépasse pas 200 ppm jusqu'à une teneur en carbone de 0,02%. Ce fait est très avantageux car il permet d'arrêter l'affinage à la teneur en carbone désirée et d'obtenir un bain métallique bien désoxydé.
- De plus, il est bien connu en aciérie de conversion qu'une faible teneur en oxygène dissous du bain favorise la purge des gaz dissous tels que l'azote et l'hydrogène. Par l'emploi d'un gaz inerte présentant un très faible pouvoir de dissolution dans l'acier, tel par exemple l'argon, il est possible d'obtenir des teneurs en azote et en hydrogène nettement inférieures à celles obtenues par les procédés de conversion connus à ce jour.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT85400414T ATE29739T1 (de) | 1984-03-09 | 1985-03-05 | Verfahren zum feinen von metallen durch einblasen. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8403626A FR2560891B1 (fr) | 1984-03-09 | 1984-03-09 | Procede d'affinage de la fonte |
FR8403626 | 1984-03-09 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0156706A1 EP0156706A1 (fr) | 1985-10-02 |
EP0156706B1 true EP0156706B1 (fr) | 1987-09-16 |
Family
ID=9301846
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP85400414A Expired EP0156706B1 (fr) | 1984-03-09 | 1985-03-05 | Procédé de purification des métaux par insufflation |
Country Status (8)
Country | Link |
---|---|
US (1) | US4568386A (fr) |
EP (1) | EP0156706B1 (fr) |
JP (1) | JPS60211007A (fr) |
AT (1) | ATE29739T1 (fr) |
CA (1) | CA1233646A (fr) |
DE (1) | DE3560636D1 (fr) |
ES (1) | ES8606505A1 (fr) |
FR (1) | FR2560891B1 (fr) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
HRP970303B1 (en) * | 1996-06-05 | 2002-06-30 | Holderbank Financ Glarus | Method for making pozzolans, synthetic blast-furnance slag, belite or alite clinkers, and pig-iron alloys, from oxidic slag and a device for implementing this method |
US7363851B2 (en) * | 2006-01-20 | 2008-04-29 | Fisher Controls International, Llc | Spacers for use with actuator casings |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3004847A (en) * | 1957-12-23 | 1961-10-17 | Bot Brassert Oxygen Technik Ag | Refining of crude iron |
BE610265A (fr) * | 1960-11-18 | |||
US3861888A (en) * | 1973-06-28 | 1975-01-21 | Union Carbide Corp | Use of CO{HD 2 {B in argon-oxygen refining of molten metal |
DE2538159C2 (de) * | 1974-08-30 | 1984-08-09 | USS Engineers and Consultants, Inc., Pittsburgh, Pa. | Verfahren zum Frischen von Roheisen |
US3930843A (en) * | 1974-08-30 | 1976-01-06 | United States Steel Corporation | Method for increasing metallic yield in bottom blown processes |
JPS5392319A (en) * | 1977-01-25 | 1978-08-14 | Nisshin Steel Co Ltd | Method of making ultralowwcarbon stainless steel |
FR2448572B1 (fr) * | 1979-02-09 | 1985-10-18 | Pennsylvania Engineering Corp | Procede d'obtention d'acier a basse teneur en carbone au convertisseur oxygene-argon |
US4260415A (en) * | 1979-12-12 | 1981-04-07 | Allegheny Ludlum Steel Corporation | Decarburizing molten metal |
-
1984
- 1984-03-09 FR FR8403626A patent/FR2560891B1/fr not_active Expired
-
1985
- 1985-03-05 EP EP85400414A patent/EP0156706B1/fr not_active Expired
- 1985-03-05 DE DE8585400414T patent/DE3560636D1/de not_active Expired
- 1985-03-05 AT AT85400414T patent/ATE29739T1/de not_active IP Right Cessation
- 1985-03-05 US US06/708,277 patent/US4568386A/en not_active Expired - Fee Related
- 1985-03-08 JP JP60044989A patent/JPS60211007A/ja active Pending
- 1985-03-08 ES ES541084A patent/ES8606505A1/es not_active Expired
- 1985-03-08 CA CA000476079A patent/CA1233646A/fr not_active Expired
Also Published As
Publication number | Publication date |
---|---|
FR2560891B1 (fr) | 1989-10-20 |
JPS60211007A (ja) | 1985-10-23 |
ATE29739T1 (de) | 1987-10-15 |
US4568386A (en) | 1986-02-04 |
ES8606505A1 (es) | 1986-04-16 |
CA1233646A (fr) | 1988-03-08 |
DE3560636D1 (en) | 1987-10-22 |
FR2560891A1 (fr) | 1985-09-13 |
EP0156706A1 (fr) | 1985-10-02 |
ES541084A0 (es) | 1986-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
FI73740C (fi) | Kontroll av kvaevehalten i rostfritt staol i samband med staolframstaellningen. | |
FR2527634A1 (fr) | Procede de production d'acier a teneur ultra-faible en phosphore | |
EP0156706B1 (fr) | Procédé de purification des métaux par insufflation | |
FR2478671A1 (fr) | Procede d'elaboration de l'acier par etapes distinctes d'affinage | |
CA1205638A (fr) | Production de l'acier a tres faible teneur de carbone par le procede a l'oxygene basique | |
EP0033289B1 (fr) | Procédé de décarburation des fontes au chrome | |
RU2754337C1 (ru) | Способ производства стали, легированной азотом в ковше | |
CA2356370A1 (fr) | Procede de denitruration de l'acier en fusion en cours d'elaboration | |
US3860418A (en) | Method of refining iron melts containing chromium | |
EP0062548A1 (fr) | Procédé de brassage pneumatique d'un bain métallique | |
CA1098321A (fr) | Procede d'elaboration au convertisseur d'acier inoxydable | |
SU1125263A1 (ru) | Способ производства стали | |
EP1268863B1 (fr) | Traitement sous vide d'un metal fondu avec brassage simultane par injection d'helium | |
SU947199A1 (ru) | Способ производства низкоуглеродистой стали | |
RU2031138C1 (ru) | Способ внепечной обработки стали | |
BE1003182A4 (fr) | Procede de fabrication de l'acier d'usage courant. | |
SU1120022A1 (ru) | Способ легировани стали азотом | |
SU1049551A1 (ru) | Способ выплавки стали в кислородном конверторе | |
SU1258841A1 (ru) | Способ выпуска металла из сталеплавильного агрегата | |
RU1768649C (ru) | Способ производства стали | |
SU1252354A1 (ru) | Способ производства низколегированной трубной стали | |
JPH05195046A (ja) | 高マンガン極低炭素鋼の溶製方法 | |
RU2109074C1 (ru) | Способ производства низкоуглеродистой спокойной стали | |
SU1068496A1 (ru) | Способ раскислени трубной стали | |
FI97626C (fi) | Menetelmä ruostumattoman teräksen valmistamiseksi |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19850308 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
17Q | First examination report despatched |
Effective date: 19860818 |
|
ITF | It: translation for a ep patent filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
REF | Corresponds to: |
Ref document number: 29739 Country of ref document: AT Date of ref document: 19871015 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 3560636 Country of ref document: DE Date of ref document: 19871022 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19880331 |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
26 | Opposition filed |
Opponent name: UNION CARBIDE CORPORATION Effective date: 19880614 |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: UNION CARBIDE CORPORATION |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19900202 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19900207 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19900221 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19900222 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19900226 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 19900227 Year of fee payment: 6 Ref country code: DE Payment date: 19900227 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19900228 Year of fee payment: 6 |
|
ITTA | It: last paid annual fee | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19900331 Year of fee payment: 6 |
|
RDAG | Patent revoked |
Free format text: ORIGINAL CODE: 0009271 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT REVOKED |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
27W | Patent revoked |
Effective date: 19900831 |
|
GBPR | Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state | ||
NLR2 | Nl: decision of opposition | ||
BERE | Be: lapsed |
Owner name: L' AIR LIQUIDE S.A. POUR L'ETUDE ET L'EXPLOITATION Effective date: 19910331 |
|
EUG | Se: european patent has lapsed |
Ref document number: 85400414.0 Effective date: 19910116 |