[go: up one dir, main page]

EP0151970B1 - Installation process for a converter bottom - Google Patents

Installation process for a converter bottom Download PDF

Info

Publication number
EP0151970B1
EP0151970B1 EP85100624A EP85100624A EP0151970B1 EP 0151970 B1 EP0151970 B1 EP 0151970B1 EP 85100624 A EP85100624 A EP 85100624A EP 85100624 A EP85100624 A EP 85100624A EP 0151970 B1 EP0151970 B1 EP 0151970B1
Authority
EP
European Patent Office
Prior art keywords
bricks
converter
floor
shaped
stones
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85100624A
Other languages
German (de)
French (fr)
Other versions
EP0151970A1 (en
Inventor
Karl Prof. Dr. Ing. Brotzmann
Paul-Gerhard Mantey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kloeckner CRA Patent GmbH
Original Assignee
Kloeckner CRA Technologie GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kloeckner CRA Technologie GmbH filed Critical Kloeckner CRA Technologie GmbH
Publication of EP0151970A1 publication Critical patent/EP0151970A1/en
Application granted granted Critical
Publication of EP0151970B1 publication Critical patent/EP0151970B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/48Bottoms or tuyéres of converters
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/44Refractory linings

Definitions

  • the invention relates to a method for installing a converter floor, in particular one which has inlet nozzles for media and in which the largest area with floor stones of commercially available stone formats is delivered on a floor plate.
  • the space that remains free during floor installation, i.e. H. the adjustment joint between the floor and vessel masonry is filled with a refractory mass.
  • this mass is stamped in, and when the floor is changed in the heated vessel, the joint is filled with a pourable mass.
  • tar or pitch-bound products based on magnesite and / or dolomite have proven themselves as refractory materials for this application.
  • a steelmaking converter that is only operated with floor nozzles or combined blowing technology requires at least one floor change during the converter journey.
  • wear rates are about twice as high compared to wall masonry.
  • the absolute wear of the refractory material depends on the operating conditions, in particular on the maximum temperature, usually the tapping temperature of the molten steel.
  • the tapping temperature of the molten steel For the preferably used pitch-bound, low-iron magnesite stones, wear rates of 0.3 to 0.6 mm per batch result for the vessel lining at an average tapping temperature of 1,600 ° C, while a wear rate of at an average tapping temperature of 1,680 ° C approx. 1.6 mm occurs per batch.
  • the wear of the floor stones is higher by a factor of 2.
  • German Offenlegungsschrift 2,843,735 describes a floor in which only one nozzle is arranged per row of stones. Stronger joints up to 2.5% of the maximum stone width in the floor masonry are also recommended.
  • floors have not been able to bring the wear rates of the floor stones into the order of magnitude of the converter delivery in which these floors are installed.
  • German patent specification 2,654,232 relates to a method and a device for producing nozzle bases for oxygen blow-through converters with jacket gas nozzles, in which the channels for the nozzles are drilled after the stones have been built onto the base plate.
  • This method allows the floor stones to be walled up on older, partly discarded floor slabs with tight joints, regardless of the shaped stones for the nozzles.
  • the problem of the pre-wearing adaptation joint between the floor masonry and the converter delivery remains, since the exchangeable floors can only be installed after the converter lining has been completed.
  • the invention has for its object, while maintaining the advantages of the floor infeed, to connect it to the wall infeed of a converter so that the leading wear in the joint between the floor and wall lining is avoided, the durability of the floors is increased and thus the converter availability through Elimination of repair times is improved.
  • Shaped stones of such a geometry are preferably used that a rectangular free space is formed between them and the adjacent floor stones, based on the floor level.
  • the side of the shaped stones facing the ground stones is preferably flat. Rectangular stones are preferably used as floor stones.
  • the space that remains between the molded block and the adjacent floor block is wider than the desired joint width.
  • the joint widths are preferably between 0.5 and 3 mm and in particular about 1 mm.
  • the width of the free space between the shaped stone and the adjacent floor stone is preferably more than 5 mm, in particular more than 10 mm, and is usually in the range from 20 to 150 mm.
  • the dimensions for the fitting stones are preferably taken at two or even several different heights, since it has been shown that the width of the free spaces fluctuates in height.
  • the fit stones can be composed of several parts. It is therefore possible to provide several narrow fitting stones to fill in the free space.
  • the fit stones and the shaped stones are preferably installed with mortar.
  • the shaped blocks are adapted on the side of the curvature of the converter lining facing the converter lining. "Adapted does not mean” exactly adapted ", but only approximates. This is preferably achieved in that the side facing the converter lining is flat, but the shaped stone is cut and laid out in such a way that both edges of the side facing the converter lining come to rest on the lining, whereby this side lies as a chord for lining. Such an adjustment can be achieved with little effort and is generally sufficient. For special embodiments, however, it is possible to adapt the shaped block of the converter lining polygonally or by rounding it down even more.
  • the base plate with the refractory lining is preferably first mechanically attached to the converter in a known manner.
  • the space between the floor stones and the converter lining hereinafter referred to as the free edge area, adjustment joint or seal, is after this frictional installation of the base plate on the converter up to the level of the floor wear stones, d. H. in addition to the soil safety lining, as usual with a refractory material. and then the installation of the shaped and fitting stones begins.
  • the refractory mass in the seal can also be up to a greater height, i. H. partly also stamped next to the floor wear stones.
  • the shaped and fitting stones are then correspondingly shorter and, for example, only installed in the upper half of the adjustment joint. However, the length of the shaped and fitting stones preferably corresponds to the height of the floor wear stones.
  • the shaped stones are placed against the cylindrical vessel lining in this area in such a way that a rectangular cross section preferably remains free between the shaped stone and the closest floor stone.
  • the fitting stone is then inserted into this space.
  • the fitting stone can be assembled from two or more prefabricated stone slabs, prefabricated in different wall thicknesses, and the space between them can be installed.
  • the preferred implementation of the method according to the invention is to measure the space mentioned from the shaped stone to the floor stone and to install a dimensionally cut fitting stone.
  • the dimensions can be determined in several heights on both sides of the space. These dimensions are preferably taken at two heights, near the upper and lower ends of the shaped block or the intermediate space.
  • the fitting stone is then cut according to the determined dimensions of the space, preferably as a whole or lengthwise from two, or in special cases several pieces with conventional cutting discs or diamond saws and then installed.
  • a first fitting stone is preferably used, which is shaped so that a uniformly wide space remains after insertion of the same.
  • the first key is wider at the bottom than at the top.
  • a second fitting stone is then inserted into the remaining, uniformly wide space.
  • the adjustment joint with shaped and fitting stones is preferably delivered in rows, for example in an extension of the rows of floor stones and / or perpendicularly thereto.
  • the blocks can be fixed to the essentially cylindrical wall lining by adhesive or refractory mortar or by mechanical clamping and / or holding devices between the block and the floor block. For example, wedges, compression springs and simple spreading devices have proven themselves as clamping and holding devices.
  • the dimensions of the intermediate space are determined and the fitting block is cut accordingly to.
  • the clamping and / or holding device is then removed and the fitting stone cut to size.
  • the fitting stones can be laid dry without a joint filler, but they are preferably installed using commercially available mortars.
  • Another feature of the invention is the total joint space in the walls of the floors; which are installed in the converter according to the method of the invention.
  • the sum of the joint thickness between the floor, form and fit stones, based on these stone dimensions, should be on average between 0.5 to 1.2%. An almost even distribution of these joints in the masonry is desirable.
  • the joint width, with or without mortar or adhesive filling, in the direction of the stone rows in which, for example, the stones are 100 mm wide, is on average 0.5 to 1.2 mm. Individual joints up to a width of approx. 3 mm can be tolerated.
  • the converter floors can be made from one or more refractory stone qualities. It has proven useful, for example, to build the majority of the converter base from low-iron, pitch-bonded magnesite stones and to use high-carbon magnesia qualities with a high proportion of molten sinter in the vicinity of the nozzles. For example, 50% to 90%, preferably 60% to 80%, of the entire floor area is supplied with commercially available pitch or synthetic resin-bonded magnesite stones made of low-iron sintering up to dead sea periclase and a residual carbon content of approximately 4 to 6%. In the vicinity of the nozzle, i.e. H. At least 50 mm around the outer nozzle tube, special stone qualities with an increased carbon content are used. These special stones.
  • the carbon is added in the form of graphite, for example natural flake graphite.
  • the residual carbon content of these magnesite carbon stones is between 10 to 25%, preferably 12 to 18%.
  • the binding is made of pitch and / or synthetic resin.
  • the converter trays installed by the method according to the invention have a considerably better durability than comparable trays used in a known manner.
  • the method according to the invention makes it possible for the first time to reliably achieve the same durability as the converter lining with floors which have inlet nozzles for media, in particular oxygen inlet nozzles with a hydrocarbon coating. So there is no need to change the floor during the converter journey. This results in an increase in converter availability, which is associated with advantages for operational practice, for example by increasing productivity in a steel mill, and improves profitability.
  • a further, clear advantage of the method according to the invention over the known solutions is the wear characteristic of the refractory inlays.
  • the wear profile is relatively uniform and, in particular, no longer has any leading areas that require repair.
  • the disadvantage of the known methods for installing the converter floors which show excessive wear in the area of the adjustment joint provided with refractory masses, was completely overcome.
  • the known seal supplied with a pitch-bonded magnesite mass, had to be repaired three to ten times during a ground journey. 6 to 25 hours of operating time are lost, and the consumption of refractory repair compound is up to 20 t.
  • a safety lining 150 mm high made of pitch-bound, low-iron magnesite stones.
  • the base stones (1) with an average joint width (2) of 0.7 mm are then bricked up with an organic adhesive mortar that contains approx. 70% magnesite flour as a filler.
  • the floor stones have a rectangular cross-section with the dimensions (3) of 100 mm, (4) of 150 mm and a stone length of 900 mm.
  • the floor delivery including drilling the nozzle channels and installing the inlet nozzles with the associated piping below the base plate, takes place outside the converter with the base plate standing vertically according to German Patent 26 54 232.
  • the space (seal) is between the Ground stones (1) and the stones (5) of the converter side wall are leveled with a pitch-bonded magnesite mass up to the level of the safety lining, ie up to the wear stones (1).
  • the installation of the shaped blocks (6) begins - indicated by hatching in FIGS. 1 and 2.
  • These shaped stones (6) have an adaptation angle (7) on the side facing the cylindrical wall masonry with the stones (5).
  • the adjustment angle (7) changes from stone layer to stone layer. It is approx. 90 ° in the stone layer that intersects the center of the soil and then decreases in each subsequent layer.
  • the shaped blocks (6) are fixed according to Figure 1 in the direction of the floor blocks either by wedges (8) and (9) or with at least two compression springs (10) along their entire height on the side wall.
  • the dimensions (11) and (12) are then determined in at least two different heights.
  • the fitting block (13) is cut according to the determined dimensions (11) and (12) and inserted after removing the holding devices (8), (9) or (10).
  • the shaped blocks (6) and the fitting blocks (13) are installed using conventional mortar joints. However, it can also be worked with the appropriate adhesives, similar to the laying of floor tiles, or without a joint filler.
  • the laying of the shaped stones (6) usually starts next to the middle layer of floor stones and then, following the layers of floor stones, sets the adjacent shaped stone.
  • an overlapping method of working has proven itself. This can be done, for example, in such a way that the shaped blocks (7) are first installed in the first of the four quadrants, the dimensions (11) and (12) are determined and the cutting of the fitting stones is started.
  • the shaped stones (6) can already be placed in the next circular quadrant and the cut fitting stones (13) can be installed in parallel in the first quadrant. The same applies to further delivery.
  • Figure 2 shows another embodiment of the method according to the invention.
  • the principle of operation is basically the same as that described for FIG. 1, but here the shaped (6) and locating stones (13) are perpendicular to the floor stone layers, formed from the floor stones (1). It is in the spirit of the invention to work with both installation variants of the shaped and fitting stones on the same floor.
  • the method according to the invention can be used independently of the laying pattern of the floor stones.
  • Figure 1 shows, for example, the bricked floor stones (1) with a layer height (4), in this case 150 mm, while in Figure 2 the same floor stones are arranged rotated by 90 ° with a layer height (3) of 100 mm.
  • the inventive method for installing the converter floors can be modified in many ways, for.
  • it is independent of the dimensions of the floor stone, and the floor wall can also be adapted to the side wall of the converter with corresponding shaped and fit stones over more than one floor stone layer.
  • the shaped block (6) can be designed with two or more different adaptation angles (7) or have a rounded outer contour in order to achieve an optimal adaptation to the side wall masonry.
  • the method can be used regardless of the cross-section of the wall, to which the floors are adapted.
  • the wall infeed is usually cylindrical in the area next to the floor.
  • other cross-sectional shapes are also possible, e.g. B. oval to rectangle or square.
  • the installation method of the floors according to the invention is simplified.
  • the shaped blocks then have a rectangular cross section and can be replaced by a, usually enlarged, fitting block in special cases, for example if the seal is narrow.
  • a 60 t KMS converter has 10 floor nozzles and an inflation nozzle in the upper converter cone.
  • the inlet nozzles in the floor are the well-known OBM nozzles made of two concentric pipes, which are built into the refractory material and for their protection hydrocarbons, in this case propane, are passed through the annular gap.
  • OBM nozzles made of two concentric pipes, which are built into the refractory material and for their protection hydrocarbons, in this case propane, are passed through the annular gap.
  • oxygen with and without lime dust loading and carbon-containing fuels, such as finely ground coke are fed to the molten iron.
  • Nitrogen and argon can be passed into the melt as further media, and air and / or nitrogen flow through the nozzle tubes during the converter idle times. Oxygen is supplied via the inflation lance during the fresh period, and this nozzle can also be operated with air or nitrogen.
  • the converter is usually delivered with pitch-bound iron-poor magnesite stones.
  • the wear rates of the infeed in the lower cone are approx. 1.5 mm / batch, in the cylindrical part approx. 1.2 mm / batch and in the hat approx. 1.3 mm / batch.
  • the average converter durability is approx. 500 batches under the conditions mentioned.
  • the floor is also largely covered with low-iron, pitch-bonded magnesite stones and in the vicinity of the nozzle with magnesite carbon stones, the residual carbon content of which is approx. 13%.
  • the adaptation joint or seal is stamped out with a pitch-bonded magnesite mass or, in the case of the second floor, with the same mass, but poured with tar additive.
  • the wear rates for a floor installed in this way are between 2 and 3 mm / batch. Due to the premature wear of the seal, an average of five repairs with a total of about 10 t tardolomite mass per floor trip are required. Two to three trays are used during a converter trip. The total downtime for repairs and changing floors during a converter trip is on average about 1 day.
  • the floor wear rate surprisingly decreases to an average of 1.5 mm / batch. Repairs to the seal and changing the floor during the converter trip are not necessary, since only one floor is required per converter trip. The converter availability and the economy increase accordingly. The refractory costs could be drastically reduced with the method according to the invention. All of the floors installed according to the invention had a converter trip.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

Die Erfindung bezieht sich auf ein Verfahren zum Einbau eines Konverterbodens, insbesondere eines solchen, der über Einleitungsdüsen für Medien verfügt, und bei dem auf einer Bodenplatte der größte Bereich mit Bodensteinen handelsüblicher Steinformate zugestellt ist.The invention relates to a method for installing a converter floor, in particular one which has inlet nozzles for media and in which the largest area with floor stones of commercially available stone formats is delivered on a floor plate.

Bei Gefäßen zur Aufnahme einer Metallschmelze, insbesondere einer Eisenschmelze, bei denen sich im Gefäßboden Düsen zum Einleiten verschiedener Medien in die Metallschmelze befinden, ergibt sich bekanntermaßen ein höherer Verschleiß der feuerfesten Bodensteine im Vergleich zu der Gefäßausmauerung. Aus diesem Grund verfügen beispielsweise bodenblasende Stahlerzeugungskonverter oder Eisenbadreaktoren zur Gaserzeugung und entsprechende Konverter zur Schmelzreduktion über auswechselbare Gefäßböden. Diese Behandlungsgefäße, hier allgemein als Konverter bezeichnet, besitzen eine demontierbare Bodenplatte, auf der sich die Bodenausmauerung befindet. In diese feuerfeste Bodenzustellung sind die Einleitungsdüsen eingebaut, und im Bedarfsfall, normalerweise wenn das Feuerfestmaterial bis zur Sicherheitsschicht verschlissen ist, wird der Boden gegen einen neuen ausgetauscht. Der beim Bodeneinbau freibleibende Raum, d. h. die Anpassungsfuge zwischen dem Boden- und Gefäßmauerwerk, wird mit einer feuerfesten Masse aufgefüllt. Bei der Neuzustellung des gesamten Konverters stampft man diese Masse ein, und beim Bodenwechsel im aufgeheizten Gefäß wird die Fuge mit einer gießfähigen Masse ausgefüllt. Als Feuerfestmaterial für diesen Anwendungsfall haben sich insbesondere teer- bzw. pechgebundene Produkte auf Magnesit- und/oder Dolomitbasis bewährt.In the case of vessels for holding a molten metal, in particular an iron melt, in which there are nozzles in the bottom of the vessel for introducing various media into the molten metal, it is known that there is greater wear of the refractory base stones compared to the vessel lining. For this reason, for example, bottom-blowing steel production converters or iron bath reactors for gas generation and corresponding converters for melting reduction have exchangeable vessel bottoms. These treatment vessels, here generally referred to as converters, have a removable base plate on which the floor lining is located. The inlet nozzles are built into this fireproof floor delivery, and if necessary, usually when the refractory material has worn down to the safety layer, the floor is replaced with a new one. The space that remains free during floor installation, i.e. H. the adjustment joint between the floor and vessel masonry is filled with a refractory mass. When the entire converter is relined, this mass is stamped in, and when the floor is changed in the heated vessel, the joint is filled with a pourable mass. In particular, tar or pitch-bound products based on magnesite and / or dolomite have proven themselves as refractory materials for this application.

Unter günstigen Betriebsbedingungen ist bei einem Stahlerzeugungskonverter, der nur mit Bodendüsen oder kombinierter Blastechnik betrieben wird, mindestens ein Bodenwechsel während der Konverterreise erforderlich. In erster Näherung stellen sich demzufolge für die Bodenzustellung etwa doppelt so hohe Verschleißraten im Vergleich zum Wandmauerwerk ein.Under favorable operating conditions, a steelmaking converter that is only operated with floor nozzles or combined blowing technology requires at least one floor change during the converter journey. In a first approximation, wear rates are about twice as high compared to wall masonry.

Der absolute Verschleiß des Feuerfestmaterials, beispielsweise in einem Stahlerzeugungskonverter, hängt von den Betriebsbedingungen ab, insbesondere von der Maximaltemperatur, normalerweise der Abstichtemperatur der Stahlschmelze. Für die heute vorzugsweise eingesetzten, pechgebundenen, eisenarmen Magnesitsteine ergeben sich bei einer mittleren Abstichtemperatur von 1 600 °C für die Gefäßausmauerung Verschleißraten von 0,3 bis 0,6 mm pro Charge, während bei einer mittleren Abstichtemperatur von 1 680 °C eine Verschleißrate von ca. 1,6 mm pro Charge auftritt. Der Verschleiß der Bodensteine liegt, wie bereits gesagt, um einen Faktor 2 höher.The absolute wear of the refractory material, for example in a steel production converter, depends on the operating conditions, in particular on the maximum temperature, usually the tapping temperature of the molten steel. For the preferably used pitch-bound, low-iron magnesite stones, wear rates of 0.3 to 0.6 mm per batch result for the vessel lining at an average tapping temperature of 1,600 ° C, while a wear rate of at an average tapping temperature of 1,680 ° C approx. 1.6 mm occurs per batch. As already mentioned, the wear of the floor stones is higher by a factor of 2.

Mit zunehmender Beanspruchung der Gefäßausmauerungen, d. h. bei steigenden Betriebstemperaturen der Konverter, zeigt sich weiterhin ein überproportionaler Verschleiß der mit Stampf- bzw. Gießmasse zugestellten Anpassungsfuge zwischen dem Gefäßboden und der Wandausmauerung. Um dem voreilenden Verschleiß in diesem Bereich entgegenzuwirken, sind Reparaturen erforderlich. Zu diesem Zweck wird, ähnlich wie beim Bodenwechsel im heißen Gefäß, die vorverschlissene Fuge mit einer pechgebundenen Masse vergossen. Ebenso wie der Bodenwechsel selbst, wirken sich diese Reparaturmaßnahmen mit dem anschließenden Aufheizen und Einsintern der Vergußmasse nachteilig auf die Konverterverfügbarkeit aus. Darüber hinaus beeinflußt der Fugenverschleiß die Bodenhaltbarkeit ungünstig, da sich die Bodenrandsteine zur Fuge hin abrunden und schneller verschleißen als das Bodenzentrum.With increasing stress on the vascular lining, d. H. with increasing operating temperatures of the converters, there is still disproportionate wear of the adjustment joint between the bottom of the vessel and the wall lining provided with ramming or casting compound. Repairs are required to counteract the premature wear in this area. For this purpose, similar to when changing the floor in a hot container, the pre-worn joint is cast with a pitch-bound compound. Just like changing the floor itself, these repair measures, with the subsequent heating and sintering in of the casting compound, have a negative effect on the converter availability. In addition, the wear on the joints has an unfavorable effect on the floor durability, since the floor curbs round off towards the joint and wear out faster than the floor center.

In der Vergangenheit hat es nicht an Bemühungen gefehlt, die Bodenhaltbarkeit zu verbessern. So beschreibt die deutsche Offenlegungsschrift 2 843 735 einen Boden, in dem jeweils nur eine Düse pro Steinreihe angeordnet ist. Es werden außerdem stärkere Fungen bis zu 2,5 % der maximalen Steinbreite im Bodenmauerwerk empfohlen. Jedoch ist es mit Böden nach den Lehren dieser Anmeldung nicht gelungen, die Verschleißraten der Bodensteine in die Grössenordnung der Konverterzustellung zu bringen, in denen diese Böden eingebaut sind.Efforts to improve soil durability have not been lacking in the past. For example, German Offenlegungsschrift 2,843,735 describes a floor in which only one nozzle is arranged per row of stones. Stronger joints up to 2.5% of the maximum stone width in the floor masonry are also recommended. However, according to the teachings of this application, floors have not been able to bring the wear rates of the floor stones into the order of magnitude of the converter delivery in which these floors are installed.

Die deutsche Patentschrift 2 654 232 betrifft ein Verfahren und eine Vorrichtung zum Herstellen von Düsenböden für Sauerstoffdurchblaskonverter mit Mantelgasdüsen, bei dem nach dem Aufmauern der Steine auf die Bodenplatte die Kanäle für die Düsen gebohrt werden. Dieses Verfahren erlaubt, die Bodensteine, ohne Rücksicht auf Formsteine für die Düsen, auf ältere, teilweise verworfene Bodenplatten mit dichten Fugen aufzumauern. Jedoch bleibt, mit den nach diesem Verfahren hergestellten Böden, das Problem der vorverschleißenden Anpassungsfuge zwischen Bodenmauerwerk und Konverterzustellung erhalten, da die wechselbaren Böden grundsätzlich erst nach Fertigstellung der Konverterausmauerung eingebaut werden können.German patent specification 2,654,232 relates to a method and a device for producing nozzle bases for oxygen blow-through converters with jacket gas nozzles, in which the channels for the nozzles are drilled after the stones have been built onto the base plate. This method allows the floor stones to be walled up on older, partly discarded floor slabs with tight joints, regardless of the shaped stones for the nozzles. However, with the floors produced according to this method, the problem of the pre-wearing adaptation joint between the floor masonry and the converter delivery remains, since the exchangeable floors can only be installed after the converter lining has been completed.

Der Erfindung liegt die Aufgabe zugrunde, unter Beibehaltung der Vorteile der Bodenzustellung, diese so mit der Wandzustellung eines Konverters zu verbinden, daß der voreilende Verschleiß in der Fuge zwischen der Boden- und Wandausmauerung vermieden, die Haltbarkeit der Böden gesteigert und damit die Konverterverfügbarkeit durch den Fortfall von Reparaturzeiten verbessert wird.The invention has for its object, while maintaining the advantages of the floor infeed, to connect it to the wall infeed of a converter so that the leading wear in the joint between the floor and wall lining is avoided, the durability of the floors is increased and thus the converter availability through Elimination of repair times is improved.

Die Lösung dieser Aufgabe besteht darin, daß nach dem Einsetzen des Bodens in den Konverter der von den Bodensteinen freibleibende Randbereich der Bodenplatte zur Konverterausmauerung hin mit Formsteinen zugestellt wird und zwischen diesen Formsteinen und den Bodensteinen maßgenaue Paßsteine eingesetzt werden.The solution to this problem is that after the floor has been inserted into the converter, the edge region of the floor plate that remains free of the floor stones is delivered with shaped stones to the converter lining and between these shaped stones and the floor stones dimensionally accurate fitting stones are used.

Es werden vorzugsweise Formsteine solcher Geometrie eingesetzt, daß sich zwischen diesen und den benachbarten Bodensteinen, bezogen auf die Bodenebene, ein rechteckiger freier Raum ausbildet. Die den Bodensteinen zugewandte Seite der Formsteine ist vorzugsweise eben. Als Bodensteine werden vorzugsweise Rechtecksteine verwendet.Shaped stones of such a geometry are preferably used that a rectangular free space is formed between them and the adjacent floor stones, based on the floor level. The side of the shaped stones facing the ground stones is preferably flat. Rectangular stones are preferably used as floor stones.

Der zwischen Formstein und benachbartem Bodenstein freibleibende Raum ist breiter als eine gewünschte Fugenbreite. Die Fugenbreiten betragen vorzugsweise zwischen 0,5 und 3 mm und insbesondere etwa 1 mm. Die Breite des freien Raums zwischen Formstein und benachbartem Bodenstein beträgt vorzugsweise mehr als 5 mm, insbesondere mehr als 10 mm und liegt meist im Bereich von 20 bis 150 mm.The space that remains between the molded block and the adjacent floor block is wider than the desired joint width. The joint widths are preferably between 0.5 and 3 mm and in particular about 1 mm. The width of the free space between the shaped stone and the adjacent floor stone is preferably more than 5 mm, in particular more than 10 mm, and is usually in the range from 20 to 150 mm.

Die Maße für die Paßsteine werden vorzugsweise in zwei oder sogar mehreren verschiedenen Höhen genommen, da sich gezeigt hat, daß die Breite der freien Räume in der Höhe schwankt. Die Paßsteine können aus mehreren Teilen zusammengesetzt werden. So kommt es in Betracht, mehrere schmale Paßsteine zur Ausfüllung des freien Raums vorzusehen. Die Paßsteine sowie die Formsteine werden vorzugsweise mit Mörtel eingebaut.The dimensions for the fitting stones are preferably taken at two or even several different heights, since it has been shown that the width of the free spaces fluctuates in height. The fit stones can be composed of several parts. It is therefore possible to provide several narrow fitting stones to fill in the free space. The fit stones and the shaped stones are preferably installed with mortar.

Die Formsteine sind an der der Konverterausmauerung zugewandten Seite der Krümmung der Konverterausmauerung angepaßt. Dabei bedeutet « angepaßt nicht « exakt angepaßt », sondern nur angenähert. Dies wird vorzugsweise dadurch erreicht, daß die der Konverterausmauerung zugewandte Seite zwar eben ist, aber der Formstein so geschnitten und angelegt ist, daß beide Kanten der der Konverterausmauerung zugewandten Seite an der Ausmauerung zu liegen kommen, wodurch diese Seite als Kreissehne zur Ausmauerung liegt. Eine solche Anpassung ist mit wenig Aufwand zu erreichen und im allgemeineh ausreichend. Für besondere Ausführungsformen kommt es jedoch in Betracht, den Formstein der Konverterausmauerung polygonal oder durch Abrundung noch näher anzupassen.The shaped blocks are adapted on the side of the curvature of the converter lining facing the converter lining. "Adapted does not mean" exactly adapted ", but only approximates. This is preferably achieved in that the side facing the converter lining is flat, but the shaped stone is cut and laid out in such a way that both edges of the side facing the converter lining come to rest on the lining, whereby this side lies as a chord for lining. Such an adjustment can be achieved with little effort and is generally sufficient. For special embodiments, however, it is possible to adapt the shaped block of the converter lining polygonally or by rounding it down even more.

Die Bodenplatte mit der feuerfesten Zustellung wird vorzugsweise zunächst in bekannter Weise am Konverter mechanisch befestigt. Der Raum zwischen den Bodensteinen und der Konverterausmauerung, nachfolgend mit freibleibender Randbereich, Anpassungsfuge oder Dichtung bezeichnet, wird nach dieser kraftschlüssigen Montage der Bodenplatte am Konverter bis in Höhe der Bodenverschleißsteine, d. h. neben dem Bodensicherheitsfutter, wie üblich mit einer Feuerfestmasse zugestellt. und danach beginnt der Einbau der Form- und Paßsteine. Es kann die Feuerfestmasse in der Dichtung auch bis zu einer größeren Höhe, d. h. zum Teil auch noch neben den Bodenverschleißsteinen, eingestampft werden. Die Form- und Paßsteine sind dann entsprechend kürzer und beispielsweise nur in der oberen Hälfte der Anpassungsfuge eingebaut. Vorzugsweise entspricht jedoch die Länge der Form- und Paßsteine der Höhe der Bodenverschleißsteine.The base plate with the refractory lining is preferably first mechanically attached to the converter in a known manner. The space between the floor stones and the converter lining, hereinafter referred to as the free edge area, adjustment joint or seal, is after this frictional installation of the base plate on the converter up to the level of the floor wear stones, d. H. in addition to the soil safety lining, as usual with a refractory material. and then the installation of the shaped and fitting stones begins. The refractory mass in the seal can also be up to a greater height, i. H. partly also stamped next to the floor wear stones. The shaped and fitting stones are then correspondingly shorter and, for example, only installed in the upper half of the adjustment joint. However, the length of the shaped and fitting stones preferably corresponds to the height of the floor wear stones.

Die Formsteine werden derart an die in diesem Bereich zylinderförmige Gefäßausmauerung angelegt, daß zwischen dem Formstein und dem nächstliegenden Bodenstein vorzugsweise ein rechteckiger Querschnitt frei bleibt. In diesen Zwischenraum wird dann der Paßstein eingefügt. Der Paßstein kann aus zwei oder mehreren, in verschiedenen Wandstärken vorgefertigten, feuerfersten Steinplatten zusammengesetzt und den Zwischenraum ausfüllend eingebaut werden.The shaped stones are placed against the cylindrical vessel lining in this area in such a way that a rectangular cross section preferably remains free between the shaped stone and the closest floor stone. The fitting stone is then inserted into this space. The fitting stone can be assembled from two or more prefabricated stone slabs, prefabricated in different wall thicknesses, and the space between them can be installed.

Bei dieser erfindungsgemäßen Zustellungsart erübrigt sich ein maßgenaues Schneiden des Paßsteines. In der Praxis hat es sich jedoch gezeigt, daß aufgrund von Mauerungsungenauigkeiten bei der Boden- und Gefäßzustellung, dieser Raum zwischen Form- und Bodenstein meistens Abweichungen vom Rechteckquerschnitt, sowohl in der Höhe als auch senkrecht dazu, aufweist. Daher besteht die bevorzugte Durchführung des erfindungsgemäßen Verfahrens darin, den genannten Zwischenraum vom Formstein zum Bodenstein hin auszumessen und einen maßgenau geschnittenen Paßstein einzubauen. Die Maße können dabei in mehreren Höhen an beiden Seiten des Zwischenraumes bestimmt werden. Vorzugsweise nimmt man diese Maße in zwei Höhen, nahe dem oberen und unteren Ende des Formsteines bzw. des Zwischenraumes. Der Paßstein wird dann entsprechend den ermittelten Abmessungen des Zwischenraumes vorzugsweise als Ganzes oder längsgeteilt aus zwei, oder in Sonderfällen mehreren Stücken mit üblichen Trennscheiben oder insbesondere Diamantsägen geschnitten und anschließend eingebaut.With this type of infeed according to the invention, there is no need for a precise cutting of the fitting stone. In practice, however, it has been shown that due to wall inaccuracies in the delivery of soil and vessels, this space between the form and floor stone mostly deviates from the rectangular cross-section, both in height and perpendicular to it. Therefore, the preferred implementation of the method according to the invention is to measure the space mentioned from the shaped stone to the floor stone and to install a dimensionally cut fitting stone. The dimensions can be determined in several heights on both sides of the space. These dimensions are preferably taken at two heights, near the upper and lower ends of the shaped block or the intermediate space. The fitting stone is then cut according to the determined dimensions of the space, preferably as a whole or lengthwise from two, or in special cases several pieces with conventional cutting discs or diamond saws and then installed.

Ist der Zwischenraum unten breiter als oben, dann wird vorzugsweise ein erster Paßstein eingesetzt, der so geformt ist, daß nach Einsetzen desselben ein gleichmäßig breiter Zwischenraum verbleibt. Der erste Paßstein ist also auch unten breiter als oben. In dem verbliebenen gleichmäßig breiten Zwischenraum wird dann ein zweiter Paßstein eingefügt.If the space at the bottom is wider than at the top, then a first fitting stone is preferably used, which is shaped so that a uniformly wide space remains after insertion of the same. The first key is wider at the bottom than at the top. A second fitting stone is then inserted into the remaining, uniformly wide space.

Die Zustellung der Anpassungsfuge mit Form-und Paßsteinen erfolgt vorzugsweise reihenweise, zum Beispiel in Verlängerung der Bodensteinreihen und/oder senkrecht dazu. Es werden zunächst die Formsteine an die Wandmauerung fixiert, die Abmessungen für den Paßstein bestimmt und anschließend der Paßstein als Ganzes oder in zwei und mehr Teilen eingesetzt. Die Fixierung der Formsteine an die im wesentlichen zylindrische Wandausmauerung kann einmal durch Kleber bzw. durch Feuerfestmörtel oder durch mechanische Klemm- und/oder Haltevorrichtungen zwischen dem Formstein und dem Bodenstein erfolgen. Es bewähren sich beispielsweise als Klemm- und Haltevorrichtungen Keile, Druckfedern und einfache Spreizvorrichtungen. Nach dem Einbau der Formsteine mit den genannten Klemm- und/oder Haltevorrichtungen bestimmt man die Abmessung des Zwischenraumes und schneidet den Paßstein entsprechend zu. Die Klemm- und/oder Haltevorrichtung wird dann entfernt und der maßgenau geschnittene Paßstein eingesetzt. Die Paßsteine kann man trocken ohne Fugenfüller verlegen, bevorzugt werden sie jedoch mit handelsüblichen Mörteln eingebaut.The adjustment joint with shaped and fitting stones is preferably delivered in rows, for example in an extension of the rows of floor stones and / or perpendicularly thereto. First the shaped stones are fixed to the wall, the dimensions for the fitting stone are determined and then the fitting stone is used as a whole or in two or more parts. The blocks can be fixed to the essentially cylindrical wall lining by adhesive or refractory mortar or by mechanical clamping and / or holding devices between the block and the floor block. For example, wedges, compression springs and simple spreading devices have proven themselves as clamping and holding devices. After installing the shaped blocks with the mentioned clamping and / or holding devices, the dimensions of the intermediate space are determined and the fitting block is cut accordingly to. The clamping and / or holding device is then removed and the fitting stone cut to size. The fitting stones can be laid dry without a joint filler, but they are preferably installed using commercially available mortars.

Ein weiteres Merkmal der Erfindung besteht darin, den Gesamtfugenraum in der Mauerung der Böden ; die nach dem erfindungsgemäßen Verfahren im Konverter eingebaut werden, gering zu halten. Die Summe der Fugenstärke zwischen den Boden-, Form- und Paßsteinen sollte, bezogen auf diese Steinabmessungen, im Mittel etwa zwischen 0.5 bis 1.2 % betragen. Eine annähernd gleichmäßige Verteilung dieser Fugen im Mauerwerk ist anzustreben. Demzufolge beträgt die Fugenbreite, mit oder ohne Mörtel- bzw. Kleberfüllung, in Richtung der Steinreihen, in denen beispielsweise die Steine 100 mm breit sind, im Mittel 0.5 bis 1.2 mm. Dabei können einzelne Fugen bis zu einer Breite von ca. 3 mm toleriert werden.Another feature of the invention is the total joint space in the walls of the floors; which are installed in the converter according to the method of the invention. The sum of the joint thickness between the floor, form and fit stones, based on these stone dimensions, should be on average between 0.5 to 1.2%. An almost even distribution of these joints in the masonry is desirable. As a result, the joint width, with or without mortar or adhesive filling, in the direction of the stone rows in which, for example, the stones are 100 mm wide, is on average 0.5 to 1.2 mm. Individual joints up to a width of approx. 3 mm can be tolerated.

Gemäß der Erfindung können, die Konverterböden sowohl aus einer als auch aus mehreren feuerfesten Steinqualitäten hergestellt werden. Es hat sich beispielsweise bewährt, den größten Teil des Konverterbodens aus eisenarmen, pechgebundenen Magnesitsteinen aufzubauen und im Nahbereich der Düsen kohlenstoffreiche Magnesiaqualitäten mit einem hohen Anteil von geschmolzenem Sinter einzusetzen. Beispielsweise werden 50 % bis 90 %, vorzugsweise 60 % bis 80 %, der gesamten Bodenfläche mit handelsüblichen pech- oder kunstharzgebundenen Magnesitsteinen aus eisenarmem Sinter bis hin zum Dead-Sea-Periclase und einem Restkohlenstoffgehalt von etwa 4 bis 6% zugestellt. Im Düsennahbereich, d. h. mindestens 50 mm um das äußere Düsenrohr herum, kommen spezielle Steinqualitäten mit erhöhtem Kohlenstoffgehalt zum Einsatz. Diese Spezialsteine . können aus einer Mischung von mindestens 50% Magnesitschmelzkorn und reinem Magnesitsinter bis hin zu 100 % Schmelzkorn bestehen. Der Kohlenstoff wird in Form von Graphit, beispielsweise natürlichem Flockengraphit, zugesetzt. Der Restkohlenstoffgehalt dieser Magnesitkohlenstoffsteine beträgt zwischen 10 bis 25 %, vorzugsweise 12 bis 18 %. Die Bindung besteht aus Pech und/oder Kunstharz.According to the invention, the converter floors can be made from one or more refractory stone qualities. It has proven useful, for example, to build the majority of the converter base from low-iron, pitch-bonded magnesite stones and to use high-carbon magnesia qualities with a high proportion of molten sinter in the vicinity of the nozzles. For example, 50% to 90%, preferably 60% to 80%, of the entire floor area is supplied with commercially available pitch or synthetic resin-bonded magnesite stones made of low-iron sintering up to dead sea periclase and a residual carbon content of approximately 4 to 6%. In the vicinity of the nozzle, i.e. H. At least 50 mm around the outer nozzle tube, special stone qualities with an increased carbon content are used. These special stones. can consist of a mixture of at least 50% magnesite melting grain and pure magnesite sinter up to 100% melting grain. The carbon is added in the form of graphite, for example natural flake graphite. The residual carbon content of these magnesite carbon stones is between 10 to 25%, preferably 12 to 18%. The binding is made of pitch and / or synthetic resin.

Überraschenderweise zeigen die nach dem erfindungsgemäßen Verfahren eingebauten Konverterböden eine erheblich bessere Haltbarkeit als vergleichbare, in bekannter Weise eingesetzte Böden. Das erfindungsgemäße Verfahren ermöglicht es erstmals, mit Böden, die über Einleitungsdüsen für Medien, insbesondere Sauerstoffeinleitungsdüsen mit Kohlenwasserstoffummantelung, verfügen, betriebssicher die gleiche Haltbarkeit wie die Konverterausmauerung zu erreichen. Damit entfällt ein Bodenwechsel während der Konverterreise. Daraus resultiert eine Steigerung der Konverterverfügbarkeit, die mit Vorteilen für die Betriebspraxis, beispielsweise durch die Erhöhung der Produktivität in einem Stahlwerk, verbunden ist und die Wirtschaftlichkeit verbessert.Surprisingly, the converter trays installed by the method according to the invention have a considerably better durability than comparable trays used in a known manner. The method according to the invention makes it possible for the first time to reliably achieve the same durability as the converter lining with floors which have inlet nozzles for media, in particular oxygen inlet nozzles with a hydrocarbon coating. So there is no need to change the floor during the converter journey. This results in an increase in converter availability, which is associated with advantages for operational practice, for example by increasing productivity in a steel mill, and improves profitability.

Ein weiterer, deutlicher Vorteil der erfindungsgemäßen Verfahrens gegenüber den bekannten Lösungen besteht in der Verschleißcharakteristik der feuerfesten Bodenzustellungen. Das Verschleißprofil ist relativ gleichmäßig und weist insbesondere keine reparaturbedürftigen voreilenden Bereiche mehr auf. So konnte der Nachteil der bekannten Verfahren zum Einbau der Konverterböden, die einen stark voreilenden Verschleiß im Bereich der mit feuerfesten Massen zugestellten Anpassungsfuge zeigen, vollkommen überwunden werden. Beispielsweise mußte bei einem bodenblasenden Stahlerzeugungskonverter mit einer mittleren Betriebstemperatur von 1 670 °C die bekannte, mit einer pechgebundenen Magnesitmasse zugestellte Dichtung während einer Bodenreise drei- bis zehnmal repariert werden. Dabei gehen 6 bis 25 Stunden Betriebszeit verloren, und der Verbrauch an Feuerfest-Reparaturmasse beträgt bis zu 20 t. Bei Anwendung des erfindungsgemäßen Verfahrens zum Einbau der Konverterböden treten keine Produktionsausfallzeiten zur Reparatur der Bodendichtung mehr auf, und außerdem wird die Reparaturmasse eingespart.A further, clear advantage of the method according to the invention over the known solutions is the wear characteristic of the refractory inlays. The wear profile is relatively uniform and, in particular, no longer has any leading areas that require repair. In this way, the disadvantage of the known methods for installing the converter floors, which show excessive wear in the area of the adjustment joint provided with refractory masses, was completely overcome. For example, in the case of a ground-blowing steel production converter with an average operating temperature of 1,670 ° C., the known seal, supplied with a pitch-bonded magnesite mass, had to be repaired three to ten times during a ground journey. 6 to 25 hours of operating time are lost, and the consumption of refractory repair compound is up to 20 t. When using the method according to the invention for installing the converter floors, there are no longer any production downtimes for repairing the floor seal, and the repair mass is also saved.

Die Erfindung wird nachfolgend anhand von nichteinschränkenden Beispielen und Zeichnungen näher erläutert :

  • Die Zeichnungen zeigen in Figur 1 einen waagerechten Schnitt durch Teilbereiche der Boden-und Konverterwandzustellung mit Form- und Paßsteinen und in Figur 2 ebenfalls einen waagerechten Schnitt durch einen Teilbereich der zuvor genannten Ausmauerung, jedoch mit einer anderen Variante des erfindungsgemäßen Bodeneinbauverfahrens mit Form- und Paßsteinen.
The invention is explained in more detail below with the aid of non-restrictive examples and drawings:
  • The drawings show in FIG. 1 a horizontal section through partial areas of the floor and converter wall infeed with shaped and fitting stones, and in FIG. 2 also a horizontal section through a partial area of the aforementioned brick lining, but with another variant of the floor installation method according to the invention with shaped and fitting stones .

Auf einer nicht dargestellten Bodenplatte befindet sich ein Sicherheitsfutter von 150 mm Höhe aus pechgebundenen, eisenarmen Magnesitsteinen. Darauf werden die Bodensteine (1) mit einer mittleren Fugenbreite (2) von 0.7 mm mit einem organischen Klebemörtel, der ca. 70 % Magnesitmehl als Füller enthält, aufgemauert. Die Bodensteine haben einen rechteckigen Querschnitt mit den Abmessungen (3) von 100 mm, (4) von 150 mm und einer Steinlänge von 900 mm. Die Bodenzustellung, einschließlich Bohren der Düsenkanäle und Einbau der Einleitungsdüsen mit der zugehörigen Verrohrung unterhalb der Bodenplatte, erfolgt außerhalb des Konverters bei senkrecht stehender Bodenplatte gemäß dem deutschen Patent 26 54 232. Nach der Montage des Bodens am Konverter wird der Raum (Dichtung) zwischen den Bodensteinen (1) und den Steinen (5) der Konverterseitenwand bis in Höhe des Sicherheitsfutters, d. h. bis zu den Verschleißsteinen (1), mit einer pechgebundenen Magnesitmasse ausgestampft. Anschließend beginnt der Einbau der Formsteine (6) - in den Figuren 1 und 2 schraffiert gekennzeichnet. Diese Formsteine (6) weisen an der Seite, die dem zylindrischen Wandmauerwerk mit den Steinen (5) zugekehrt ist, einen Anpassungswinkel (7) auf. Der Anpassungswinkel (7) ändert sich von Steinlage zu Steinlage. Er beträgt ca. 90° in der Steinlage, die den Bodenmittelpunkt schneidet und nimmt dann in jeder anschließenden Lage ab. Jedoch ergibt sich für jeden Kreisquadranten ein Formstein (6) mit dem gleichen Anpassungswinkel (7).On a base plate, not shown, there is a safety lining 150 mm high made of pitch-bound, low-iron magnesite stones. The base stones (1) with an average joint width (2) of 0.7 mm are then bricked up with an organic adhesive mortar that contains approx. 70% magnesite flour as a filler. The floor stones have a rectangular cross-section with the dimensions (3) of 100 mm, (4) of 150 mm and a stone length of 900 mm. The floor delivery, including drilling the nozzle channels and installing the inlet nozzles with the associated piping below the base plate, takes place outside the converter with the base plate standing vertically according to German Patent 26 54 232. After installing the base on the converter, the space (seal) is between the Ground stones (1) and the stones (5) of the converter side wall are leveled with a pitch-bonded magnesite mass up to the level of the safety lining, ie up to the wear stones (1). Then the installation of the shaped blocks (6) begins - indicated by hatching in FIGS. 1 and 2. These shaped stones (6) have an adaptation angle (7) on the side facing the cylindrical wall masonry with the stones (5). The adjustment angle (7) changes from stone layer to stone layer. It is approx. 90 ° in the stone layer that intersects the center of the soil and then decreases in each subsequent layer. However, there is a shaped block (6) with the same adjustment angle (7) for each circular quadrant.

Die Formsteine (6) werden gemäß Figur 1 in Richtung der Bodensteine entweder durch Keile (8) und (9) oder mit mindestens zwei Druckfedern (10) auf ihrer ganzen Höhe an die Seitenwandmauerung fixiert. Danach werden die Maße (11) und (12) in mindestens zwei unterschiedlichen Höhen bestimmt. Der Paßstein (13) wird gemäß den ermittelten Maßen (11) und (12) zugeschnitten und nach Entfernen der Haltevorrichtungen (8), (9) oder (10) eingesetzt. Der Einbau der Formsteine (6) und der Paßsteine (13) erfolgt mit üblichen Mörtelfugen. Es kann aber auch mit entsprechenden Klebern, ähnlich wie bei der Bodensteinverlegung, oder ohne Fugenfüller gearbeitet werden.The shaped blocks (6) are fixed according to Figure 1 in the direction of the floor blocks either by wedges (8) and (9) or with at least two compression springs (10) along their entire height on the side wall. The dimensions (11) and (12) are then determined in at least two different heights. The fitting block (13) is cut according to the determined dimensions (11) and (12) and inserted after removing the holding devices (8), (9) or (10). The shaped blocks (6) and the fitting blocks (13) are installed using conventional mortar joints. However, it can also be worked with the appropriate adhesives, similar to the laying of floor tiles, or without a joint filler.

Mit der Verlegung der Formsteine (6) beginnt man normalerweise neben der mittleren Bodensteinlage und setzt dann, den Bodensteinlagen folgend, jeweils den benachbarten Formstein. Um in möglichst kurzer Zeit die Formsteine (6) und die Paßsteine (13) im gesamten Bereich der Dichtung einzubauen, hat sich eine überlappende Arbeitsweise bewährt. Dies kann beispielsweise in der Art erfolgen, daß im ersten der vier Kreisquadranten zunächst die Formsteine (7) eingebaut, die Maße (11) und (12) bestimmt und mit dem Schneiden der Paßsteine begonnen wird. Während der Zuschneidezeit für die Paßsteine können im nächsten Kreisquadranten die Formsteine (6) bereits gesetzt und parallel dazu die geschnittenen Paßsteine (13) im ersten Quadranten eingebaut werden. Entsprechend geht man bei der weiteren Zustellung vor.The laying of the shaped stones (6) usually starts next to the middle layer of floor stones and then, following the layers of floor stones, sets the adjacent shaped stone. In order to install the shaped stones (6) and fitting stones (13) in the entire area of the seal in the shortest possible time, an overlapping method of working has proven itself. This can be done, for example, in such a way that the shaped blocks (7) are first installed in the first of the four quadrants, the dimensions (11) and (12) are determined and the cutting of the fitting stones is started. During the cutting time for the fitting stones, the shaped stones (6) can already be placed in the next circular quadrant and the cut fitting stones (13) can be installed in parallel in the first quadrant. The same applies to further delivery.

Figur 2 zeigt eine andere erfindungsgemäße Ausführungsform des Verfahrens. Das Arbeitsprinzip ist sinngemäß gleich wie zu Figur 1 beschrieben, jedoch stehen hier die Form- (6) und Paßsteine (13) senkrecht auf den Bodensteinlagen, gebildet aus den Bodensteinen (1). Es liegt im Sinne der Erfindung, mit beiden Einbauvarianten der Form- und Paßsteine bei dem gleichen Boden zu arbeiten. Selbstverständlich kann das erfindungsgemäße Verfahren unabhängig vom Verlegemuster der Bodensteine angewendet werden. Figur 1 zeigt beispielsweise die vermauerten Bodensteine (1) mit einer Lagenhöhe (4), in diesem Fall 150 mm, während in Figur 2 die gleichen Bodensteine um 90° gedreht mit einer Lagenhöhe (3) von 100 mm angeordnet sind.Figure 2 shows another embodiment of the method according to the invention. The principle of operation is basically the same as that described for FIG. 1, but here the shaped (6) and locating stones (13) are perpendicular to the floor stone layers, formed from the floor stones (1). It is in the spirit of the invention to work with both installation variants of the shaped and fitting stones on the same floor. Of course, the method according to the invention can be used independently of the laying pattern of the floor stones. Figure 1 shows, for example, the bricked floor stones (1) with a layer height (4), in this case 150 mm, while in Figure 2 the same floor stones are arranged rotated by 90 ° with a layer height (3) of 100 mm.

Das erfindungsgemäße Verfahren zum Einbau der Konverterböden kann in vielfacher Weise abgewandelt werden, z. B. ist es unabhängig von den Bodensteinabmessungen, und es kann auch die Bodenmauerung mit entsprechenden Form-und Paßsteinen über mehr als eine Bodensteinlage an die Konverterseitenwand angepaßt werden. Weiterhin kann der Formstein (6) mit zwei und mehr verschiedenen Anpassungswinkein (7) ausgebildet sein oder eine gerundete Außenkontur aufweisen, um eine optimale Anpassung an das Seitenwandmauerwerk zu erreichen.The inventive method for installing the converter floors can be modified in many ways, for. For example, it is independent of the dimensions of the floor stone, and the floor wall can also be adapted to the side wall of the converter with corresponding shaped and fit stones over more than one floor stone layer. Furthermore, the shaped block (6) can be designed with two or more different adaptation angles (7) or have a rounded outer contour in order to achieve an optimal adaptation to the side wall masonry.

Gemäß der Erfindung kann das Verfahren unabhängig vom Querschnitt der Wandmauerung, an das man die Böden anpaßt, angewendet werden. Üblicherweise ist die Wandzustellung im Bereich neben dem Boden zylindrisch. Es sind aber auch andere Querschnittsformen möglich, z. B. oval bis hin zum Rechteck oder Quadrat. Bei den Sonderfällen von Rechteck- oder Quadratform der Wandzustellung neben dem Boden, vereinfacht sich das erfindungsgemäße Einbauverfahren der Böden. Die Formsteine weisen dann einen rechteckigen Querschnitt auf und können in besonderen Fällen, beispielsweise bei geringer Breite der Dichtung, durch einen, meistens vergrößerten, Paßstein ersetzt werden.According to the invention, the method can be used regardless of the cross-section of the wall, to which the floors are adapted. The wall infeed is usually cylindrical in the area next to the floor. However, other cross-sectional shapes are also possible, e.g. B. oval to rectangle or square. In the special cases of rectangular or square shape of the wall infeed next to the floor, the installation method of the floors according to the invention is simplified. The shaped blocks then have a rectangular cross section and can be replaced by a, usually enlarged, fitting block in special cases, for example if the seal is narrow.

Ein 60 t-KMS-Konverter verfügt über 10 Bodendüsen und eine Aufblasdüse im oberen Konverterkonus. Bei den Einleitungsdüsen im Boden handelt es sich um die bekannten OBM-Düsen aus zwei konzentrischen Rohren, die im feuerfesten Material eingebaut sind, und zu deren Schutz durch den Ringspalt Kohlenwasserstoffe, in diesem Fall Propan, geleitet wird. Durch das Zentralrohr dieser Düsen führt man der Eisenschmelze Sauerstoff mit und ohne Kalkstaubbeladung und kohlenstoffhaltige Brennstoffe zu, wie beispielsweise feingemahlenen Koks. Als weitere Medien können Stickstoff und Argon in die Schmelze geleitet werden, und während der Konverterliegezeiten strömen Luft und/oder Stickstoff durch die Düsenrohre. Über die Aufblaslanze wird Sauerstoff während der Frischzeit zugeführt, und weiterhin kann diese Düse mit Luft oder Stickstoff betrieben werden.A 60 t KMS converter has 10 floor nozzles and an inflation nozzle in the upper converter cone. The inlet nozzles in the floor are the well-known OBM nozzles made of two concentric pipes, which are built into the refractory material and for their protection hydrocarbons, in this case propane, are passed through the annular gap. Through the central tube of these nozzles, oxygen with and without lime dust loading and carbon-containing fuels, such as finely ground coke, are fed to the molten iron. Nitrogen and argon can be passed into the melt as further media, and air and / or nitrogen flow through the nozzle tubes during the converter idle times. Oxygen is supplied via the inflation lance during the fresh period, and this nozzle can also be operated with air or nitrogen.

Der Konverter ist üblicherweise mit pechgebundenen eisenarmen Magnesitsteinen zugestellt. Bei der mittleren Abstichtemperatur von ca. 1 675 °C betragen die Verschleißraten der Zustellung im unteren Konus ca. 1.5 mm/Charge, im zylindrischen Teil ca. 1.2 mm/Charge und im Hut ca. 1.3 mm/Charge. Die mittlere Konverterhaltbarkeit beträgt unter den genannten Bedingungen ca. 500 Chargen.The converter is usually delivered with pitch-bound iron-poor magnesite stones. At the average tapping temperature of approx. 1,675 ° C, the wear rates of the infeed in the lower cone are approx. 1.5 mm / batch, in the cylindrical part approx. 1.2 mm / batch and in the hat approx. 1.3 mm / batch. The average converter durability is approx. 500 batches under the conditions mentioned.

Der Boden wird zum größten Teil ebenfalls mit eisenarmen, pechgebundenen Magnesitsteinen und im Düsennahbereich mit Magnesitkohlenstoffsteinen, deren Restkohlenstoffgehalt ca. 13 % beträgt, zugestellt. Bei der bekannten, früher angewendeten Einbaumethode wird die Anpassungsfuge oder Dichtung mit einer pechgebundenen Magnesitmasse ausgestampft bzw. beim Zweitboden mit der gleichen Masse, jedoch mit Teerzusatz vergossen. Die Verschleißraten für einen derart eingebauten Boden liegen zwischen 2 bis 3 mm/Charge. Aufgrund des voreilenden Verschleißes der Dichtung sind im Mittel fünf Reparaturen mit insgesamt etwa 10 t Teerdolomitmasse pro Bodenreise erforderlich. Es kommen während einer Konverterreise zwei bis drei Böden zum Einsatz. Die Gesamtausfallzeiten für Reparaturen und Bodenwechsel während einer Konverterreise betragen im Mittel ungefähr 1 Tag.The floor is also largely covered with low-iron, pitch-bonded magnesite stones and in the vicinity of the nozzle with magnesite carbon stones, the residual carbon content of which is approx. 13%. In the known, previously used installation method, the adaptation joint or seal is stamped out with a pitch-bonded magnesite mass or, in the case of the second floor, with the same mass, but poured with tar additive. The wear rates for a floor installed in this way are between 2 and 3 mm / batch. Due to the premature wear of the seal, an average of five repairs with a total of about 10 t tardolomite mass per floor trip are required. Two to three trays are used during a converter trip. The total downtime for repairs and changing floors during a converter trip is on average about 1 day.

Nach Einführung der erfindungsgemäßen Verfahrens zum Einbau der Konverterböden und Anwendung der gleichen Bodenzustellung verringert sich die Bodenverschleißrate überraschenderweise auf im Mittel 1.5 mm/Charge. Reparaturen der Dichtung und der Bodenwechsel während der Konverterreise entfallen, da nur ein Boden pro Konverterreise erforderlich ist. Die Konverterverfügbarkeit und die Wirtschaftlichkeit steigern sich dementsprechend. Die Feuerfest-Kosten konnten mit dem erfindungsgemäßen Verfahren drastisch verringert werden. Sämtliche erfindungsgemäß eingebauten Böden hielten eine Konverterreise.After the introduction of the method according to the invention for installing the converter floors and using the same floor infeed, the floor wear rate surprisingly decreases to an average of 1.5 mm / batch. Repairs to the seal and changing the floor during the converter trip are not necessary, since only one floor is required per converter trip. The converter availability and the economy increase accordingly. The refractory costs could be drastically reduced with the method according to the invention. All of the floors installed according to the invention had a converter trip.

Bei der Kohlevergasung im Eisenbadreaktor mit und ohne gleichzeitiger Schmelzreduktion von Eisenerz, wirkt sich der Einbau der Böden mit den Einleitungsdüsen für die Reaktionspartner gemäß der Erfindung ebenfalls sehr vorteilhaft aus. Insbesondere da bei diesem kontinuierlich betriebenen Prozess störende Reparaturen an der Dichtung mit den dazu erforderlichen Inspektionen wegfallen.When coal gasification in an iron bath reactor with and without simultaneous smelting reduction of iron ore, the installation of the trays with the inlet nozzles for the reactants according to the invention also has a very advantageous effect. In particular, since this continuously operated process eliminates annoying repairs to the seal with the necessary inspections.

Claims (11)

1. A method for installing a converter bottom, whereby the largest area of a bottom plate is lined with flagstones of commercial formats, leaving a free edge area, characterized in that after the bottom is inserted into the converter shaped bricks are inserted beside each other in the free edge area adjacent to the converter lining, the side of said shaped bricks facing the converter lining conforming with the curvature of the converter lining and said shaped bricks being of a size such that a free space exceeding one joint width remains between the shaped brick and the adjacent flagstone, and fitted bricks accurate to size are inserted in these free spaces.
2. The method according to claim 1, characterized in that shaped bricks are inserted having a geometry such that a rectangular free space is formed between them and the adjacent flagstones.
3. The method according to either of claims 1 and 2, characterized in that the free spaces into which the fitted bricks are inserted have a width between the fitted brick and the adjacent flagstone of more than 5 mm.
4. The method according to any of claims 1 to 3, characterized in that the joint width is between 0.5 and 3 mm.
5. The method according to any of claims 1 to 4, characterized in that the flagstones are bricked up on the bottom plate before the bottom is inserted into the converter.
6. The method according to any of claims 1 to 5, characterized in that the shaped bricks are fixed at the converter lining with clamping or holding means provided between the flagstones and the shaped bricks.
7. The method according to any of claims 1 to 6, characterized in that the dimensions of the fitted bricks are determined at two different heights.
8. The method according to any of claims 1 to 7, characterized in that the fitted bricks are composed of several parts.
9. The method according to any of claims 1 to 8, characterized in that the sum of the joints between the flagstones, the shaped bricks and the fitted bricks is adjusted to 0.5 % to 1.2 % of the brick dimensions.
10. The method according to any of claims 1 to 9, characterized in that the shaped bricks and fitted bricks are installed in the direction of the rows of flagstones and/or at right angles thereto.
11. The method according to any of claims 1 to 10, characterized in that 50 % to 90 % of the total bottom area is lined with pitch-bound magnesite bricks poor in iron and the vicinity of the introducing nozzles is lined with magnesite carbon bricks.
EP85100624A 1984-02-02 1985-01-22 Installation process for a converter bottom Expired EP0151970B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3403490A DE3403490C2 (en) 1984-02-02 1984-02-02 Procedure for installing a converter base
DE3403490 1984-02-02

Publications (2)

Publication Number Publication Date
EP0151970A1 EP0151970A1 (en) 1985-08-21
EP0151970B1 true EP0151970B1 (en) 1987-04-15

Family

ID=6226483

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85100624A Expired EP0151970B1 (en) 1984-02-02 1985-01-22 Installation process for a converter bottom

Country Status (11)

Country Link
US (1) US4673167A (en)
EP (1) EP0151970B1 (en)
JP (1) JPS60194008A (en)
AR (1) AR247248A1 (en)
AU (1) AU563219B2 (en)
BR (1) BR8500469A (en)
CA (1) CA1254721A (en)
DE (2) DE3403490C2 (en)
ES (1) ES295029Y (en)
NZ (1) NZ211020A (en)
ZA (1) ZA85446B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0355401Y2 (en) * 1987-04-08 1991-12-10
JPH0211110A (en) * 1988-06-29 1990-01-16 Tiger Vacuum Bottle Co Ltd Microcomputer controlled electric pot
DE3940575A1 (en) * 1989-12-08 1991-06-13 Cra Services METHOD FOR INCREASING THE DURABILITY OF FIREPROOF VESSEL DELIVERY
AT405570B (en) * 1992-01-31 1999-09-27 Veitsch Radex Ag SYSTEM OF FORMATS FOR THE BRICKNING OF BALCONY FLOORS
DE4238970C1 (en) * 1992-11-19 1994-04-21 Kct Tech Gmbh Process for blowing oxidizing gases into metal melts
CN102107276B (en) * 2009-12-25 2013-07-03 武汉钢铁集团精鼎工业炉有限责任公司 Novel slope-forming brick for wall of ladle and slope forming process
RU2642995C1 (en) * 2016-11-10 2018-01-29 Юрий Александрович Пузырев Brickwork of converter lining joint

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1213447B (en) * 1963-02-23 1966-03-31 Phoenix Rheinrohr Ag Blast furnace floor with carbon bricks
US3330546A (en) * 1965-10-21 1967-07-11 Monolith Portland Cement Co Means for holding kiln brick within a rotary kiln
US3401226A (en) * 1965-10-24 1968-09-10 Dresser Ind Induction furnace having a composite lining composed of refractory brick
US3429487A (en) * 1967-07-13 1969-02-25 Resco Products Inc Refractory floor construction
US3396962A (en) * 1967-09-06 1968-08-13 Joseph W. Smith Basic oxygen furnace lining construction
DE2620035C3 (en) * 1976-05-06 1979-12-13 Didier-Werke Ag, 6200 Wiesbaden Delivery of a dome-shaped floor
US4238121A (en) * 1977-10-07 1980-12-09 Kawasaki Steel Corporation Hearth structure of an oxygen-bottom-blowing converter

Also Published As

Publication number Publication date
JPS6250526B2 (en) 1987-10-26
DE3403490C2 (en) 1986-10-02
JPS60194008A (en) 1985-10-02
EP0151970A1 (en) 1985-08-21
ZA85446B (en) 1985-09-25
AR247248A1 (en) 1994-11-30
BR8500469A (en) 1985-09-17
CA1254721A (en) 1989-05-30
AU563219B2 (en) 1987-07-02
NZ211020A (en) 1986-06-11
US4673167A (en) 1987-06-16
DE3403490A1 (en) 1985-08-14
AU3798485A (en) 1985-08-08
ES295029U (en) 1987-10-16
ES295029Y (en) 1988-05-01
DE3560121D1 (en) 1987-05-21

Similar Documents

Publication Publication Date Title
DE2105247C3 (en) Furnace for the fused aluminum electrolysis
EP0151970B1 (en) Installation process for a converter bottom
DE2607598B2 (en) Lining for truncated cone-like wall constructions
DE69802427T2 (en) FIREPROOF WALL STRUCTURE AND METALLURGICAL VESSEL THEREOF AND METHOD FOR USING THIS FIREPROOF WALL STRUCTURE
EP0043787A1 (en) Gas-permeable body of fire-resistant material
EP0043338A1 (en) Gas-permeable body of fire-resistant material
EP0432628B1 (en) Process for increasing the life of fire-proof lining for vessels
EP0862034B1 (en) Keystone set
DE3105704C2 (en) Electrothermal reduction furnace with refractory lining
DE3127183C2 (en) Molten metal channel unit, especially for blast furnaces
DE69011041T2 (en) METHOD FOR PRODUCING A COATING ON A METALLURGICAL VESSEL AND COMPOSITION AND MACHINE FOR PRODUCING THE SAME.
DE2458406A1 (en) INTERCHANGEABLE RUNNING FOR A FIRE-RESISTANT LINED VESSEL
DE2940371C2 (en) Procedure for repairing shaft furnaces
DE2654232A1 (en) METHOD AND DEVICE FOR MANUFACTURING DUESENBOEDEN
DE3743745C1 (en) Method for constructing a shaft furnace, and shaft furnace
DE2331820C2 (en) Method and device for the production of bases for metallurgical vessels
EP0155255A2 (en) A flushing arrangement for a metallurgical vessel
DE2000966C3 (en) Concrete slab road surface
DE3744694C2 (en)
DE2134368C3 (en) Shaped stone for making a furnace wall or hearth bench for industrial furnaces
DE698732C (en) Process for the simultaneous direct production of iron or its alloys and cement or hydraulic lime and a rotary kiln for its execution
DE558970C (en) Large-scale azotizing furnace for the production of calcium cyanamide
DE941838C (en) Process for the production of spherical structures
DE510496C (en) Pouring attachment for block molds
DE2518638A1 (en) HEAT-RESISTANT MEASURES FOR THE MANUFACTURING OF THE LINING OF STEELWORK FURNACES, IN PARTICULAR FOR LINING THE VELVET

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE FR GB IT LU NL SE

17P Request for examination filed

Effective date: 19850726

17Q First examination report despatched

Effective date: 19860626

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT LU NL SE

REF Corresponds to:

Ref document number: 3560121

Country of ref document: DE

Date of ref document: 19870521

ITF It: translation for a ep patent filed
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: 732

ITPR It: changes in ownership of a european patent

Owner name: CESSIONE;KLOECKNER CRA PATENT GMBH

NLS Nl: assignments of ep-patents

Owner name: KLOECKNER CRA PATENT GMBH TE DUISBURG, BONDSREPUBL

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

ITTA It: last paid annual fee
EPTA Lu: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 85100624.7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20010105

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010118

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20010122

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20010131

Year of fee payment: 17

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020122

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020801

EUG Se: european patent has lapsed

Ref document number: 85100624.7

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020122

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20020801

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040108

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040129

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20040409

Year of fee payment: 20

BE20 Be: patent expired

Owner name: *KLOCKNER CRA PATENT G.M.B.H.

Effective date: 20050122

BE20 Be: patent expired

Owner name: *KLOCKNER CRA PATENT G.M.B.H.

Effective date: 20050122