EP0149400B1 - Aérien comportant un dispositif d'excitation en mode circulaire - Google Patents
Aérien comportant un dispositif d'excitation en mode circulaire Download PDFInfo
- Publication number
- EP0149400B1 EP0149400B1 EP84402741A EP84402741A EP0149400B1 EP 0149400 B1 EP0149400 B1 EP 0149400B1 EP 84402741 A EP84402741 A EP 84402741A EP 84402741 A EP84402741 A EP 84402741A EP 0149400 B1 EP0149400 B1 EP 0149400B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- guide
- antenna
- frequency
- antenna array
- circular
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q11/00—Electrically-long antennas having dimensions more than twice the shortest operating wavelength and consisting of conductive active radiating elements
- H01Q11/02—Non-resonant antennas, e.g. travelling-wave antenna
- H01Q11/08—Helical antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/165—Auxiliary devices for rotating the plane of polarisation
- H01P1/17—Auxiliary devices for rotating the plane of polarisation for producing a continuously rotating polarisation, e.g. circular polarisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P5/00—Coupling devices of the waveguide type
- H01P5/08—Coupling devices of the waveguide type for linking dissimilar lines or devices
- H01P5/10—Coupling devices of the waveguide type for linking dissimilar lines or devices for coupling balanced lines or devices with unbalanced lines or devices
- H01P5/103—Hollow-waveguide/coaxial-line transitions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/20—Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/24—Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave constituted by a dielectric or ferromagnetic rod or pipe
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/16—Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
- H01Q9/26—Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole with folded element or elements, the folded parts being spaced apart a small fraction of operating wavelength
- H01Q9/27—Spiral antennas
Definitions
- the present invention relates to aerials comprising an excitation device in circular mode.
- the wave propagation mode is a transverse electromagnetic (TEM) mode.
- the wave propagation mode in a guide is a transverse electric (TE) or transverse magnetic (TM) mode.
- the preferred excitation mode of a circular waveguide is the circular mode (TE 11 or TM 11).
- the first solution consists first of all in carrying out an electrical coupling.
- This coupling makes it possible to pass from the TEM mode to the TE 10 mode in rectangular guide. It is then necessary to perform a coupling by transition to switch to TE 11 mode (rectilinear) in circular guide. It is then necessary to switch from TE 11 mode to a circular mode.
- This coupling is generally carried out by a polarization rotator of the iris or dielectric plate type.
- the second solution consists in attacking the circular guide by two probes arranged perpendicularly. They are supplied by waves of equal amplitude phase shifted by 2, transmitted by a microwave line.
- the phase shift can be carried out before the supply of the probes, in this case the probes are located in the same plane. It can be done in the guide by an offset of the probes of a length equal to - ° where ⁇ g is the guided wavelength.
- the polarization rotator In both cases of the second solution, the polarization rotator must be supplied by two channels of the same power. It is therefore necessary to use a power divider able to distribute the energy equitably on each channel.
- phase shifter is generally used to phase the probes supplying the guide.
- a third drawback is added concerning the bandwidth of the device, since it is generally narrow and therefore unsuitable for many applications requiring a very wide band.
- a known solution makes it possible to widen the bandwidth. It consists in using a waveguide of the “double orthogonal ridge” type. Such a guide is machined so that it has longitudinal recesses which give a grooved shape to the section of the guide. The manufacture of such guides is of course more complex than that of ordinary guides and therefore more expensive.
- US Pat. No. 2,773,254 describes a microwave phase shifter enabling phase shifts to be carried out continuously.
- This device comprises a circular waveguide in which a single spiral antenna emits a wave in circular polarization towards a second antenna arranged opposite in this guide; the first antenna is supplied from a coaxial line.
- the object of the present invention is to remedy these drawbacks and proposes an aerial comprising a waveguide exciter device in circular polarization comprising an antenna with unidirectional radiation in circular polarization supplied directly by a microwave line, this antenna having dimensions suitable for that the radiation emitted excites the guide, and the pass band of the guide being very wide since it is no longer limited except by the cut-off frequency of the guide.
- the subject of the invention is therefore an aerial comprising a waveguide, a microwave line traversed by an electromagnetic transverse wave, a radiating element connected to the microwave line, characterized in that the microwave line consists of a coaxial cable terminating by a two-wire line in that the radiating element is constituted by a double spiral antenna placed upstream from one end of the guide behind the radiating opening of the guide, the ends of each conductor forming the spiral antenna being loaded by an absorbent, the spiral antenna being fed in its center by the two other ends of the conductors which are connected to the two-wire line, a reflective plane being placed at the rear of the double spiral antenna outside the guide , so that the aerial thus formed is capable of radiating at the other end of the guide a wave exciting the guide in circular polarization without disturbance in the guide below the cut-off frequency f c of the guide, the aerial behaving like a high-pass filter having as minimum frequency the cut-off frequency of the guide.
- the waveguide excitation device in circular mode shown in FIG. 1 makes it possible to pass directly from a transverse electromagnetic mode TEM which is the conventional propagation mode in microwave lines, to a guided mode in circular polarization.
- This device comprises a circular guide 1 with a longitudinal axis XX ′ and a diameter D determined as a function of the desired cutoff wavelength ⁇ c .
- One end 2 which will be termed an inlet is placed in front of a radiating element 3, the other end 4 which will be termed an outlet is open.
- the radiating element 3 is constituted by an antenna emitting unidirectional radiation in circular polarization when it is supplied by an electromagnetic transverse wave.
- the feeding is carried out by means of a microwave line 5.
- Line 5 can be a coaxial, or two-wire or microstrip line.
- the excitation antenna 3 therefore emits a wave with circular polarization in the direction of the opening 4.
- a cavity 6 placed against the antenna 3 upstream thereof and in the extension of the guide constitutes a reflective plane making it possible to obtain unidirectional radiation from the antenna 3.
- FIG. 2 represents an exemplary embodiment of a radiating element 3 in circular polarization. It is a classic logarithmic double spiral antenna; an Archimedes spiral or a multi-spiral may also be suitable.
- the antenna is produced from an expansion center 0 and a given expansion rate 2 .
- the supply is carried out from points A and B, the two arms of the antenna are supplied in phase opposition to obtain a maximum field in the direction XX '.
- the antenna is placed in front of the reflective plane 6 shown in Figure 1 to radiate unidirectionally.
- the length of an arm fixes the lowest frequency, while the width AB fixes the highest frequency.
- the bandwidth of this type of antenna is very wide.
- FIG. 3 represents another exemplary embodiment of a radiating element 3. It is a helical antenna whose dimensions are chosen so that it radiates axially in circular polarization. The conditions to be respected for the choice of the length, the diameter and the pitch of each turn in order to obtain a unidirectional radiation are known.
- a reflector is not essential to obtain the unidirectional effect, but it is necessary for the adaptation of the supply line 5.
- the antenna 3 can for example be supplied by a coaxial line 5 whose sheath is joined to reflector 6.
- the dimensions of the antennas are compatible with those of the guide that they excite so that all of the radiation takes place inside the guide without attenuation.
- the wavelengths must therefore be less than the cut-off wavelength ⁇ c , which leads to a passband f c -f M , f M depending only on the excitation antenna 3.
- ⁇ c cut-off wavelength
- a helix pitch S is chosen such that it is less than ( ⁇ o corresponding to f o , central frequency of the band), as well as a diameter D H such that the length of the circumference C H is between 0.7 ⁇ o and 1.7 ⁇ o, D H being consequently between 0.22 ⁇ o and 0.45 ⁇ o. It follows from this choice that the phase shift between radiating points located identically on adjacent turns achieves the condition of longitudinal radiation, which makes it possible to obtain a maximum of radiation in the axis XX '. We see as in the previous case that D H is always less than D.
- FIG. 4 shows the aerial and its waveguide excitation device.
- the aerial as shown in this figure is seen in section.
- the radiating element 3 is constituted by a logarithmic double spiral antenna printed on a substrate for example. Support for this radiating element 3 can also serve as a support for micro-electronic components for particular applications. Indeed, it is easy to place a detector diode between points A and B of the double spiral and thus to perform the detection function on reception. PIN diodes can be placed between the two arms, slightly spaced from the center to modulate the signal received by the antenna. It is also possible to place capacitors in series on each arm between the center and the PIN diodes allowing decoupling between the modulation current and the detected voltage.
- connection device 7 is placed at the rear of the cavity 6. It makes it possible to connect a coaxial line 5 to the excitation antenna 3.
- the connection device 7 comprises a coaxial socket 8 and an adapter 9 making it possible to progressively pass from d '' a coaxial line to a microstrip then two-wire line.
- the two-wire line directly feeds the exciting antenna at points A and B.
- the antenna 3 is loaded at its ends 10 by an absorbent 11 plated on the support circuit of the antenna to absorb the non-radiated energy.
- the outlet 4 of the guide thus constitutes a radiating opening.
- a metal disc 12 is interposed at the entrance of the guide and at its center at a distance d close to Io from the excitation antenna, ⁇ o corresponding to the length of wave of the central frequency f a of the working bandwidth of the aerial.
- FIG. 5 shows an alternative embodiment according to Figure 4.
- the aerial seen in section is identical to that of Figure 4 with the difference that the guide is filled with a dielectric material 13 whose dielectric constant is greater than 1
- the medium in which the waves propagate is modified and makes it possible to reduce the dimensions of the guide.
- the shape of the dielectric at the right of the mouth is chosen so as to respond to the radiation pattern that has been imposed. This shape is also chosen so as to obtain an aerodynamics compatible with the installation of the aerial.
- This figure shows a dielectric antenna in the form of a cone which is perfectly compatible with installation on an aircraft for example.
- the aerial shown in Figure 5 has the advantage of having the same characteristics as that shown in Figure 4 while having a reduced footprint because the dimensions of the guide are reduced.
- This variant also has the advantage of obtaining protection against external stresses on the guide and thus ensuring the same functions as those of a radome.
- the aerial according to the invention comprises a space-saving device for excitation of waveguide in circular polarization which allows the direct passage from a transverse electromagnetic polarization mode to a circular polarization mode and which allows it to waves in circular and broadband polarization.
- a radiating element 3 is used in circular polarization which excites the waveguide in circular mode and which is supplied by a microwave line 5 in which the propagation mode is transverse electromagnetic. Therefore, the bandwidth of the device is determined by the bandwidth of the exciting antenna 3 on the one hand and the cutoff frequency of the guide on the other hand.
- the opening of the guide serves as a radiating element and the guide serves as a high-pass filter. In the case where the radiating element 3 is a double spiral antenna, this antenna can be used as a support for micro-electronic components.
Landscapes
- Waveguide Aerials (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Description
- La présente invention se rapporte aux aériens comportant un dispositif d'excitation en mode circulaire.
- Pour alimenter un aérien comportant un guide d'onde circulaire à partir d'une ligne hyperfréquence, il est nécessaire de changer le mode de propagation de l'onde transmise par la ligne.
- En effet, dans les lignes hyperfréquences couramment utilisées, comme les lignes coaxiales, bifilaires, triplaques ou à plan parallèles (microstrip), le mode de propagation des ondes est un mode transverse électromagnétique (TEM).
- Le mode de propagation des ondes dans un guide est un mode transverse électrique (TE) ou transverse magnétique (TM).
- Le mode d'excitation privilégié d'un guide d'onde circulaire est le mode circulaire (TE 11 ou TM 11).
- Pour passer d'un mode TEM à un mode guidé en polarisation circulaire dans un guide circulaire, plusieurs solutions sont connues.
- La première solution consiste tout d'abord à effectuer un couplage électrique. Ce couplage permet de passer du mode TEM au mode TE 10 en guide rectangulaire. Il faut ensuite effectuer un couplage par transition pour passer en mode TE 11 (rectiligne) en guide circulaire. Il faut ensuite passer du mode TE 11 en un mode circulaire. Ce couplage est généralement réalisé par un rotateur de polarisation du type à iris ou à lame diélectrique.
- La deuxième solution consiste à attaquer le guide circulaire par deux sondes disposées perpendiculairement. Elles sont alimentées par des ondes d'égale amplitude déphasées de 2, transmises par une ligne hyperfréquence. Le déphasage peut être effectué avant l'alimentation des sondes, dans ce cas les sondes sont situées dans un même plan. Il peut se faire dans le guide par un décalage des sondes d'une longueur égale à -° où λg est la longueur d'onde guidée.
- Ces deux solutions connues sont généralement complexes et les dispositifs d'excitation obtenus sont encombrants, notamment dans le cas de la première solution.
- Dans les deux cas de la deuxième solution, le rotateur de polarisation doit être alimenté par deux voies de même puissance. Il est donc nécessaire d'utiliser un diviseur de puissance apte à répartir l'énergie équitablement sur chaque voie.
- Dans le premier cas de la deuxième solution, on fait généralement appel à un déphaseur pour déphaser les sondes alimentant le guide.
- Outre les inconvénients de la complexité et de l'encombrement, un troisième inconvénient se rajoute concernant la bande passante du dispositif, car elle est généralement étroite et par conséquent inadaptée à de nombreuses applications nécessitant une bande très large. Toutefois, une solution connue permet d'élargir la bande passante. Elle consiste à utiliser un guide d'onde du type «double ridge orthogonaux». Un tel guide est usiné de sorte qu'il présente des décrochements longitudinaux qui donnent une forme cannelée à la section du guide. La fabrication de tels guides est bien sûr plus complexe que celle de guides ordinaires et par conséquent plus onéreuse.
- Par ailleurs, le brevet US 2 773 254 décrit un déphaseur micro-onde permettant d'effectuer des décalages de phase de façon continue. Ce dispositif comporte un guide d'ondes circulaire dans lequel une antenne à simple spirale émet une onde en polarisation circulaire vers une deuxième antenne disposée en vis-à-vis dans ce guide; la première antenne est alimentée à partir d'une ligne coaxiale.
- Cependant, en considérant dans ce déphaseur le guide d'ondes circulaire et la première antenne simple spirale alimentée à partir d'une ligne coaxiale, il apparaît que, même si on passe ainsi d'un mode TEM à un mode guidé en polarisation circulaire, on n'obtient pas un fonctionnement à très large bande car on est limité pour la fréquence la plus basse à la fréquence minimale que peut rayonner l'antenne spirale simple, supérieure à la fréquence de coupure du guide d'ondes. De plus, les ondes à fréquence inférieure à cette fréquence minimale de l'antenne simple spirale qui peuvent être guidées dans le guide et les ondes à fréquence inférieure à la fréquence de coupure du guide qui peuvent être réfléchies par le guide créent des perturbations électromagnétiques à l'intérieur du guide.
- La présente invention a pour objet de remédier à ces inconvénients et propose un aérien comportant un dispositif excitateur de guide d'onde en polarisation circulaire comprenant une antenne à rayonnement unidirectionnel en polarisation circulaire alimentée directement par une ligne hyperfréquence, cette antenne ayant des dimensions adaptées pour que le rayonnement émis excite le guide, et la bande passante du guide étant très large puisqu'elle n'est plus limitée que par la fréquence de coupure du guide.
- L'invention a donc pour objet un aérien comportant un guide d'onde, une ligne hyperfréquence parcourue par une onde transverse électromagnétique, un élément rayonnant connecté à la ligne hyperfréquence, caractérisé en ce que la ligne hyperfréquence est constituée par un câble coaxial se terminant par une ligne bifilaire en ce que l'élément rayonnant est constitué par une antenne double spirale placée en amont d'une extrémité du guide à l'arrière de l'ouverture rayonnante du guide, les extrémités de chaque conducteur formant l'antenne spirale étant chargés par un absorbant, l'antenne spirale étant alimentée en son centre par les deux autres extrémités des conducteurs qui sont reliées à la ligne bifilaire, un plan réflecteur étant placé à l'arrière de l'antenne double spirale à l'extérieur du guide, de manière à ce que l'aérien ainsi constitué soit apte à rayonner à l'autre extrémité du guide une onde excitant le guide en polarisation circulaire sans perturbation dans le guide en dessous de la fréquence de coupure fc du guide, l'aérien se comportant comme un filtre passe-haut ayant pour fréquence minimale la fréquence de coupure du guide.
- D'autres particularités et avantages de l'invention apparaîtront clairement à la lecture de la description suivante présentée à titre d'exemple non limitatif et faite en regard des figures du dessin annexé sur lequel:
- -la figure 1 représente un dispositif d'excitation en mode circulaire de l'aérien selon l'invention;
- - les figures 2 et 3 représentent un élément rayonnant selon la figure 1, suivant un premier et un deuxième modes de réalisation;
- - la figure 4 représente l'aérien selon l'invention;
- - la figure 5 représente une variante de réalisation de l'aérien.
- Le dispositif d'excitation de guide d'onde en mode circulaire représenté sur la figure 1 permet de passer directement d'un mode transverse électromagnétique T.E.M. qui est le mode de propagation classique dans les lignes hyperfréquences, à un mode guidé en polarisation circulaire. Ce dispositif comprend un guide 1 circulaire d'axe longitudinal XX' et de diamètre D déterminé en fonction de la longueur d'onde de coupure λc désirée. Une extrémité 2 que l'on qualifiera d'entrée est placée devant un élément rayonnant 3, l'autre extrémité 4 que l'on qualifiera de sortie est ouverte.
- L'élément rayonnant 3 est constitué par une antenne émettant un rayonnement unidirectionnel en polarisation circulaire lorsqu'elle est alimentée par une onde transverse électromagnétique. L'alimentation est réalisée au moyen d'une ligne hyperfréquence 5. La ligne 5 peut être une ligne coaxiale, ou bifilaire ou microstrip.
- L'antenne excitatrice 3 émet donc une onde à polarisation circulaire dans la direction de l'ouverture 4. Une cavité 6 placée contre l'antenne 3 en amont de celle-ci et dans le prolongement du guide constitue un plan réflecteur permettant d'obtenir un rayonnement unidirectionnel de l'antenne 3.
- La figure 2 représente un exemple de réalisation d'élément rayonnant 3 en polarisation circulaire. Il s'agit d'une antenne double spirale logarithmique classique; une spirale d'Archimède ou une multi-spirale peut également convenir. L'antenne est réalisée à partir d'un centre d'expansion 0 et d'un taux d'expansion 2 donnés. L'alimentation s'effectue à partir des points A et B, les deux bras de l'antenne sont alimentés en opposition de phase pour obtenir un champ maximum dans la direction XX'. L'antenne est placée devant le plan réflecteur 6 représenté sur la figure 1 pour rayonner unidirectionnellement. La longueur d'un bras fixe la fréquence la plus basse, tandis que la largeur AB fixe la fréquence la plus élevée. La bande passante de ce type d'antenne est très large.
- La figure 3 représente un autre exemple de réalisation d'élément rayonnant 3. Il s'agit d'une antenne en hélice dont les dimensions sont choisies pour qu'elle rayonne axialement en polarisation circulaire. Les conditions à respecter pour le choix de la longueur, du diamètre et du pas de chaque spire afin d'obtenir un rayonnement unidirectionnel sont connues. Dans cette réalisation, un réflecteur n'est pas indispensable pour obtenir l'effet unidirectionnel, mais il est nécessaire pour l'adaptation de la ligne d'alimentation 5. L'antenne 3 peut par exemple être alimentée par une ligne coaxiale 5 dont la gaine est réunie au réflecteur 6.
- Dans ces deux exemples de réalisation, il faut bien entendu que les dimensions des antennes soient compatibles avec celles du guide qu'elles excitent afin que la totalité du rayonnement se fasse à l'intérieur du guide sans atténuation. Les longueurs d'onde doivent pour cela être inférieures à la longueur d'onde de coupure λc, ce qui conduit à une bande passante fc-fM, fM ne dépendant que de l'antenne excitatrice 3. Comme ces antennes ont une bande passante très large, le dispositif a lui-même une bande passante très large.
- La longueur d'onde de coupure λc d'un guide d'onde circulaire en mode de polarisation circulaire (TE 11) est déterminée par la relation (1) suivante: .
- (1) λc = 1,7 x D où D est le diamètre du guide.
- Le diamètre moyen Dm défini par le diamètre de la zone de rayonnement d'une antenne spirale est donné par la relation (2) suivante:
- (2) Dm = où λ est la longueur d'onde de l'onde rayonnée.
- On constate donc que pour des longueurs d'onde inférieures à λc, le diamètre Dm est toujours inférieur au diamètre D. Le rayonnement se fait donc entièrement dans le guide jusqu'à la coupure tant que les fréquences restent supérieures à la fréquence de coupure du guide. Le choix d'une antenne en spirale pour exciter un guide d'onde circulaire en polarisation circulaire est parfaitement compatible avec la relation (1).
- Dans le cas de l'antenne en hélice, on choisit un pas S d'hélice tel qu'il soit inférieur à (λo correspondant à fo, fréquence centrale de la bande), ainsi qu'un diamètre DH tel que la longueur de la circonférence CH soit comprise entre 0,7 λo et 1,7 λo, DH étant par conséquent compris entre 0,22 λo et 0,45 λo. Il résulte de ce choix que le déphasage entre des points rayonnants situés identiquement sur des spires adjacentes réalise la condition de rayonnement longitudinal, ce qui permet d'obtenir un maximum de rayonnement dans l'axe XX'. On constate comme dans le cas précédent que DH est toujours inférieur à D.
- Sur la figure 4 on a représenté l'aérien et son dispositif d'excitation de guide d'onde. L'aérien tel qu'il est représenté sur cette figure est vu en coupe.
- L'élément rayonnant 3 est constitué par une antenne double spirale logarithmique imprimée sur un substrat par exemple. Le support de cet élément rayonnant 3 peut d'ailleurs servir également de support à des composants micro-électroniques pour des applications particulières. En effet, il est aisé de placer une diode détectrice entre les points A et B de la double spirale et ainsi d'effectuer la fonction détection à la réception. On peut placer des diodes PIN entre les deux bras, légèrement écartées du centre pour réaliser une modulation du signal reçu par l'antenne. On peut aussi placer des condensateurs en série sur chaque bras entre le centre et les diodes PIN permettant le découplage entre le courant de modulation et la tension détectée.
- Un dispositif de connexion 7 est placé à l'arrière de la cavité 6. Il permet de relier une ligne coaxiale 5 à l'antenne excitatrice 3. Le dispositif de connexion 7 comprend une prise coaxiale 8 et un adaptateur 9 permettant de passer progressivement d'une ligne coaxiale à une ligne microstrip puis bifilaire. La ligne bifilaire alimente directement l'antenne excitatrice aux points A et B.
- L'antenne 3 est chargée en ses extrémités 10 par un absorbant 11 plaqué sur le circuit support de l'antenne pour absorber l'énergie non rayonnée.
- La sortie 4 du guide constitue ainsi une ouverture rayonnante.
- Pour améliorer le rendement de l'adaptation de l'aérien, on a interposé à l'entrée du guide et en son centre un disque métallique 12 à une distance d voisine de Io de l'antenne excitatrice, λo correspondant à la longueur d'onde de la fréquence centrale fa de la bande passante de travail de l'aérien.
- La figure 5 représente une variante de réalisation selon la figure 4. L'aérien vu en coupe est identique à celui de la figure 4 à la différence près que le guide est rempli d'un matériau diélectrique 13 dont la constante diélectrique est supérieure à 1. Le milieu dans lequel se propagent les ondes est modifié et permet de réduire les dimensions du guide. La forme du diélectrique au droit de l'embouchure est choisie de manière à répondre au diagramme de rayonnement que l'on s'est imposé. Cette forme est également choisie de manière à obtenir un aérodynamisme compatible avec l'implantation de l'aérien. Sur cette figure on a représenté une antenne diélectrique en forme de cône qui est parfaitement compatible avec une implantation sur un avion par exemple.
- L'aérien représenté sur la figure 5 a pour avantage de présenter les mêmes caractéristiques que celui qui est représenté sur la figure 4 tout en ayant un encombrement réduit car les dimensions du guide sont réduites. Cette variante présente également l'avantage d'obtenir une protection contre des contraintes extérieures sur le guide et ainsi d'assurer les mêmes fonctions que celles d'un radôme.
- En conclusion, l'aérien selon l'invention comporte un dispositif d'excitation de guide d'onde en polarisation circulaire peu encombrant qui permet le passage direct d'un mode de polarisation transverse électromagnétique à un mode de polarisation circulaire et qui lui permet des ondes en polarisation circulaire et large bande. Pour cela, on utilise un élément rayonnant 3 en polarisation circulaire qui excite le guide d'onde en mode circulaire et qui est alimenté par une ligne hyperfréquence 5 dans laquelle le mode de propagation est transverse électromagnétique. De ce fait, la bande passante du dispositif est déterminée par la bande passante de l'antenne excitatrice 3 d'une part et la fréquence de coupure du guide d'autre part. L'ouverture du guide sert d'élément rayonnant et le guide sert de filtre passe-haut. Dans le cas où l'élément rayonnant 3 est une antenne double spirale, on peut utiliser cette antenne comme support de composants micro-électroniques.
Claims (6)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8400500 | 1984-01-13 | ||
FR8400500A FR2558307B1 (fr) | 1984-01-13 | 1984-01-13 | Dispositif d'excitation d'un guide d'onde en mode circulaire et aerien comportant un tel dispositif |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0149400A2 EP0149400A2 (fr) | 1985-07-24 |
EP0149400A3 EP0149400A3 (en) | 1985-08-14 |
EP0149400B1 true EP0149400B1 (fr) | 1989-10-18 |
Family
ID=9300099
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP84402741A Expired EP0149400B1 (fr) | 1984-01-13 | 1984-12-27 | Aérien comportant un dispositif d'excitation en mode circulaire |
Country Status (5)
Country | Link |
---|---|
US (1) | US4743918A (fr) |
EP (1) | EP0149400B1 (fr) |
DE (1) | DE3480249D1 (fr) |
FR (1) | FR2558307B1 (fr) |
GR (1) | GR850079B (fr) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2623020B1 (fr) * | 1987-11-05 | 1990-02-16 | Alcatel Espace | Dispositif d'excitation d'un guide d'onde en polarisation circulaire par une antenne plane |
JPH0548320A (ja) * | 1991-08-20 | 1993-02-26 | Sumitomo Electric Ind Ltd | 受信装置 |
FR2764738B1 (fr) | 1997-06-13 | 1999-08-27 | Thomson Csf | Dispostif d'emission ou de reception integre |
FR2776888B1 (fr) | 1998-03-27 | 2000-06-16 | Thomson Csf | Structure de circuits electroniques a encombrement optimise en fonction du volume disponible |
DE102005002505A1 (de) * | 2005-01-19 | 2006-07-27 | Robert Bosch Gmbh | Vorrichtung zum Aussenden und Empfangen elektromagnetischer Strahlung |
KR100958959B1 (ko) * | 2008-04-29 | 2010-05-20 | 엘에스엠트론 주식회사 | 종단 급전 평면형 스파이럴 안테나 |
US9105972B2 (en) * | 2009-08-20 | 2015-08-11 | Antennasys, Inc. | Directional planar spiral antenna |
PL2410609T3 (pl) * | 2010-07-23 | 2016-09-30 | Antena planarna z pokryciem | |
US9281550B2 (en) * | 2013-07-16 | 2016-03-08 | L&J Engineering, Inc. | Wave mode converter |
CN106450626A (zh) * | 2016-11-25 | 2017-02-22 | 厦门大学 | 基于螺旋形枝节结构的人工表面等离激元波导 |
CN112838358B (zh) * | 2020-12-31 | 2022-03-25 | 华南理工大学 | 一种基于3d打印技术的双向辐射同旋向双圆极化天线 |
US12085758B1 (en) * | 2022-04-29 | 2024-09-10 | Lockheed Martin Corporation | Twist feed radio frequency polarizer |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2746018A (en) * | 1951-10-02 | 1956-05-15 | Sichak William | Microwave phase shifter |
US2773254A (en) * | 1953-04-16 | 1956-12-04 | Itt | Phase shifter |
US2863145A (en) * | 1955-10-19 | 1958-12-02 | Edwin M Turner | Spiral slot antenna |
US3296620A (en) * | 1963-11-20 | 1967-01-03 | Ellsworth N Rodda | Convertible horn radiator-coupler for separable missile |
US3375474A (en) * | 1965-10-08 | 1968-03-26 | Martin Marietta Corp | Microwave waveguide to coax coupling system |
US3568206A (en) * | 1968-02-15 | 1971-03-02 | Northrop Corp | Transmission line loaded annular slot antenna |
US3623118A (en) * | 1969-07-01 | 1971-11-23 | Raytheon Co | Waveguide-fed helical antenna |
US3757345A (en) * | 1971-04-08 | 1973-09-04 | Univ Ohio State | Shielded end-fire antenna |
FR2242784B1 (fr) * | 1973-08-31 | 1977-05-13 | Thomson Csf | |
US4011566A (en) * | 1975-07-25 | 1977-03-08 | The United States Of America As Represented By The Secretary Of The Air Force | In-line coax-to waveguide transition using dipole |
US4319248A (en) * | 1980-01-14 | 1982-03-09 | American Electronic Laboratories, Inc. | Integrated spiral antenna-detector device |
-
1984
- 1984-01-13 FR FR8400500A patent/FR2558307B1/fr not_active Expired
- 1984-12-27 DE DE8484402741T patent/DE3480249D1/de not_active Expired
- 1984-12-27 EP EP84402741A patent/EP0149400B1/fr not_active Expired
-
1985
- 1985-01-09 US US06/689,848 patent/US4743918A/en not_active Expired - Fee Related
- 1985-01-11 GR GR850079A patent/GR850079B/el unknown
Also Published As
Publication number | Publication date |
---|---|
DE3480249D1 (en) | 1989-11-23 |
US4743918A (en) | 1988-05-10 |
EP0149400A2 (fr) | 1985-07-24 |
GR850079B (fr) | 1985-05-13 |
EP0149400A3 (en) | 1985-08-14 |
FR2558307A1 (fr) | 1985-07-19 |
FR2558307B1 (fr) | 1988-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0320404B1 (fr) | Antenne de type hélice et son procédé de réalisation | |
EP1325537B1 (fr) | Perfectionnement aux sources d'emission / reception d'ondes electromagnetiques pour antenne a multireflecteurs | |
EP0149400B1 (fr) | Aérien comportant un dispositif d'excitation en mode circulaire | |
FR2647269A1 (fr) | Systeme d'antenne a fentes | |
EP1416586B1 (fr) | Antenne pourvue d'un assemblage de matériaux filtrant | |
FR2619658A1 (fr) | Antenne a fentes | |
FR2641904A1 (fr) | Dispositif d'antenne pour une polarisation circulaire | |
EP0013222A1 (fr) | Déphaseur hyperfréquence à diodes et antenne à balayage électronique comportant un tel déphaseur | |
CA2019181A1 (fr) | Element rayonnant diplexant | |
EP0082751B1 (fr) | Radiateur d'ondes électromagnétiques et son utilisation dans une antenne à balayage électronique | |
WO2016034656A1 (fr) | Antenne a diagramme de rayonnement mecaniquement reconfigurable | |
EP3180816B1 (fr) | Source multibande a cornet coaxial avec systemes de poursuite monopulse pour antenne a reflecteur | |
EP0467818A1 (fr) | Elément de transition entre guides d'ondes électromagnétiques, notamment entre un guide d'ondes circulaire et un guide d'ondes coaxial | |
EP0020196B1 (fr) | Antenne réseau hyperfréquence du type disque avec son dispositif d'alimentation, et application aux radars d'écartométrie | |
EP0377155A1 (fr) | Dispositif rayonnant bifréquence | |
EP0065467A1 (fr) | Radiateur d'onde électromagnétique polarisée circulairement | |
EP1152483B1 (fr) | Elément rayonnant hyperfréquence bi-bande | |
FR2519476A1 (fr) | Dispositif d'alimentation d'un element rayonnant | |
FR2638288A1 (fr) | Antenne a fentes | |
FR2490025A1 (fr) | Antenne du type cornet monomode ou multimode comprenant au moins deux voies radar et fonctionnant dans le domaine des hyperfrequences | |
EP2092592B1 (fr) | Coupleur à bande de fonctionnement ultra large de jonction à mode orthogonal | |
EP0047684A1 (fr) | Antenne pour missile et missile comprenant une telle antenne | |
EP0881706A1 (fr) | Source à deux voies pour antenne à optique focalisante | |
EP0093058B1 (fr) | Dispositif d'excitation d'une source de révolution rainurée hyperfréquence bi-bande | |
EP0895298A1 (fr) | Antenne à polarisation circulaire un sens |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Designated state(s): DE GB IT SE |
|
AK | Designated contracting states |
Designated state(s): DE GB IT SE |
|
17P | Request for examination filed |
Effective date: 19851024 |
|
17Q | First examination report despatched |
Effective date: 19870304 |
|
RAP3 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: THOMSON-CSF |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE GB IT SE |
|
ITF | It: translation for a ep patent filed | ||
REF | Corresponds to: |
Ref document number: 3480249 Country of ref document: DE Date of ref document: 19891123 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19911121 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19911122 Year of fee payment: 8 Ref country code: DE Payment date: 19911122 Year of fee payment: 8 |
|
ITTA | It: last paid annual fee | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19921227 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19921228 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19921227 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19930901 |
|
EUG | Se: european patent has lapsed |
Ref document number: 84402741.7 Effective date: 19930709 |