EP0133665B1 - Apparatus for the smashing at a distance of calculus - Google Patents
Apparatus for the smashing at a distance of calculus Download PDFInfo
- Publication number
- EP0133665B1 EP0133665B1 EP84108750A EP84108750A EP0133665B1 EP 0133665 B1 EP0133665 B1 EP 0133665B1 EP 84108750 A EP84108750 A EP 84108750A EP 84108750 A EP84108750 A EP 84108750A EP 0133665 B1 EP0133665 B1 EP 0133665B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- shock wave
- shock
- lens
- tube
- wave
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Images
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K9/00—Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers
- G10K9/12—Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers electrically operated
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K11/00—Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/18—Methods or devices for transmitting, conducting or directing sound
- G10K11/26—Sound-focusing or directing, e.g. scanning
- G10K11/30—Sound-focusing or directing, e.g. scanning using refraction, e.g. acoustic lenses
Definitions
- the invention relates to a device for the contactless smashing of a concrement located in the body of a living being with a shock wave generator which can be aligned with a target area in the body.
- Devices of this type are used in medicine, e.g. to destroy stones in the kidney of humans. They are particularly beneficial because they avoid any intervention in the body. It is not necessary to operate surgically. There is also no need to bring probes and devices to the concrement. A risk from infection or injury, e.g. when inserting the probe or operations, can not occur in contactless smashing.
- a device for crushing concrements is described in DE-AS 2351 247.
- a spark discharge is brought about between two electrodes in a first focal point.
- This causes a shock wave, the wavefront of which extends on all sides, i.e. spreads spherically.
- the waves are reflected on the wall of the ellipsoid of revolution. They collect in the second focal point of the ellipsoid of revolution.
- the reflected waves arrive simultaneously in this second focal point, in which the concrement is placed.
- the concrement is destroyed under the collision of the shock waves.
- the coupling between the ellipsoid of revolution and the body in which the concrement is located takes place via a thin film that lies against the body without an air gap.
- the focus chamber is filled with water.
- This device has the disadvantage that changes in the shock wave energy are possible only within small limits and only with considerable expenditure on equipment by changing the distance between the underwater electrodes.
- a further disadvantage is that the mutual distance between the electrodes for generating high-intensity shock waves generally has to be a few millimeters, as a result of which the shock wave source has no punctiform geometry and imaging errors can occur during focusing.
- the underwater electrodes wear heavily with each discharge, so that their lifespan is limited, which necessitates regular maintenance of the device.
- the device according to DE-AS 2351247 also entails the fact that the patient's body is separated from the high-voltage spark gap only by the coupling film which is in contact with the body and by the water. Damage to the coupling foil carries a certain risk for the patient.
- DE-OS 2 902 331 describes a device for transcutaneous, bloodless obliteration of small reticular and spider vein varices.
- controllable ultrasound elements are used as the wave generator, which are arranged parabolically so that their sound energies meet at a focal point in which the varice to be destroyed is placed.
- the entire arrangement of the ultrasonic elements is longitudinally displaceable by means of a worm drive and an adjusting screw. This allows different distances of the focal point from the applicator end to be set.
- the power of the ultrasound crystals is not sufficient to crush stones in the deep interior of a human body.
- the exact setting of the individual ultrasonic vibrators with regard to both the location and the energy is therefore not critical. Switching off individual ultrasonic crystals for the purpose of adjusting the ultrasonic energy in the focal point is not provided.
- DE-OS 3119 295 describes a device for destroying concrements in body cavities with the aid of a large-area ultrasound transducer as a vibration generator.
- a focusing ultrasonic transducer with a pulse peak power of at least 100 kW is used.
- An embodiment is also shown in which individual ring-shaped ultrasonic elements, which form the transducer, are arranged on a spherical surface. None is said about a change in performance according to the type and depth of the concretion.
- the effort for such a device, in particular with regard to the formation of the ring-shaped ultrasound elements should be considerable.
- shock tube As it is used in principle in the present invention, is described.
- a copper membrane is located in front of a flat coil, separated by an insulating film.
- a tube filled with water connects to this copper membrane.
- a voltage in the range of 2-20 kV to the flat coil, a magnetic field is induced in the copper membrane, which causes repulsive forces that suddenly push the membrane away from the coil.
- Such a shock wave tube is used e.g. for substance studies in chemistry.
- a device according to the preamble of claim 1 is known from JP-B 5 540 257.
- the object of the present invention is to increase the operational reliability of such a device, to obtain an image on a target area with the smallest possible imaging error and to reduce maintenance work.
- this object is achieved in that a shock wave generator, known per se and producing the flat shock wave, with an electrical coil and a membrane arranged in front of it is provided as the shock wave generator.
- this device uses a shock wave generator that generates plane waves, the shock waves coming from only one direction have to be bundled and focused.
- imaging errors are less likely than if spherical waves proceeding from a spark gap and traveling in all directions have to be focused.
- the temporal and spatial reproducibility of the shock wave is significantly improved when generated with a shock wave tube compared to the generation with a spark gap.
- there is no maintenance work due to wear and tear of the electrodes in a spark gap. Because a shock wave tube generates the shock waves with the help of electromagnetic forces and does not require a spark gap.
- a shock wave tube is constructed in such a way that it contains a copper membrane at one end of a tube filled with liquid, preferably with water, which is arranged in front of a flat coil, separated by an insulating film. Due to a current pulse in the flat coil, the copper membrane is repelled by it and thereby generates the shock wave in the liquid.
- the copper membrane itself and the pipe section adjoining it are usually connected to a common reference potential, i.e. they are grounded. There is therefore no high voltage at the coupling medium that conducts the shock wave, which increases the electrical safety of patient and staff.
- FIG. 1 shows a shock wave tube 1 known per se, consisting of a jacket 2, a flat coil 3 with two electrical connections 5 and 7, an insulating film 9, a copper membrane 11 and a metallic tube piece 13, in front of an acoustic converging lens 15 , which has a focal point F, placed.
- the pipe section 13 is filled with a liquid 14, e.g. filled with water.
- the shock wave tube 1 is coupled to a body 19 via a coupling medium 17 with water-like acoustic properties.
- the body 19, e.g. a patient has a concretion 23, e.g. a kidney stone.
- the converging lens 15 can be displaced relative to the jacket 2 of the shock tube 1 via a fine adjustment 24 with a bolt 24a and a locking edge 24b in the direction of a double arrow 25.
- the bolt 24a is guided in a slot-shaped recess 24c in the casing 2.
- the shock wave tube 1, the converging lens 15 and the fine adjustment 24 are mounted on a common frame, tripod or a mounting plate 26.
- This mounting plate 26 is mounted on a bearing 26a which can be pivoted on all sides and is displaceable in all spatial directions. As a result, the shock wave tube 1 can be aligned with the concretion 23 such that the focal point F lies in the concretion 23.
- the copper membrane 11 and the pipe section 13 are electrically connected to a protective potential such as earth 27, as is the one connection 7 of the flat coil 3.
- the other connection 5 of the flat coil 3 is connected to a supply and via a switch 29, which includes an auxiliary contact 31 Control unit 33 out.
- a high voltage U is generated in the supply and control unit 33 via a capacitor / resistance circuit (not shown). This can be several kilovolts, for example 20 kV. The voltage U can be adjustable.
- a control signal which is supplied from the supply and control unit 33 to the auxiliary contact 31 via a control line 35, causes the switch 29 to close.
- a part of the energy stored in the (not shown) capacitor of the supply and control unit 33 is discharged abruptly into the flat coil 3, which builds up a magnetic field very quickly.
- a current is induced in the copper membrane 11, which is opposite to the current in the flat coil 3 and a magnetic opposing field testifies. The copper membrane 11 is knocked away from the flat coil 3 by the force of the opposing field.
- This knocking away of the copper membrane 11 creates a flat shock wave, ie an abrupt compression in the liquid 14 upstream of the membrane 11.
- This shock wave shows a steep pressure increase, for example to 200 bar.
- the pressure wave gains steepness in its course through the pipe section 13, the converging lens 15 and the patient's body 19.
- the shock wave After passing through the converging lens 15, the shock wave is shaped such that it converges at the focal point F.
- the concrement 23 is placed there, and the focused shock wave releases part of its energy content to the concrement 23, which is brittle compared to the environment, by means of tensile or compressive forces. These forces break up the concrement 23 into several parts and thus cause it to be broken up.
- This explained crushing device offers the considerable advantage that the grounded copper membrane 11 and the grounded pipe section 13 do not represent a source of danger for the patient 19 or the operating personnel.
- the electrical safety of the device can be improved for the operating personnel by an additional insulating sheath (not shown), e.g. in the form of a plastic coating of the outer surface of the jacket 2, can be increased.
- an additional insulating sheath e.g. in the form of a plastic coating of the outer surface of the jacket 2
- a sack 37 filled with the coupling medium 17 is used at the point of entry of the shock wave in the patient 19, there is a double security for the patient 19 from the high electrical voltage. This security is determined on the one hand by the insulating bag wall and on the other hand by the insulating film 9 in front of the flat coil 3.
- the switch 29 can also be integrated in the supply and control unit 33. It can also be located away from the shock tube assembly. Since a spark gap does not necessarily have to be used for triggering, namely e.g. Vacuum or, more recently, SF6 switches are also out of the question, eliminating the need for complex maintenance and operating work that would be associated with the spark gap.
- FIG. 2 shows a shock wave tube 1 known per se, to which a system 40 of acoustic lenses for imaging a flat shock wave onto a concrement 23 in the body of a patient 19 is assigned.
- the acoustic lens system 40 consists of a diverging lens 42, a condenser 44 and a converging lens 46 and has a focal point F.
- the preferred material for the acoustic lens system 40 is acrylic glass or polystyrene.
- the plane shock wave generated in the shock wave tube 1 is widened in its cross section by the diverging lens 42. The shock wave is then directed in parallel by the capacitor 44 and then focused on the focal point F by the converging lens 46.
- the configurations of the shock wave tube 1 and the holding device described for FIG. 1 also apply to this embodiment of the imaging system.
- the entire system 40 of acoustic lenses can be displaced relative to the shock wave tube 1 in the axial direction of the double arrow 25.
- the advantage of this exemplary embodiment is that the shock wave enters the patient's body 19 over a larger cross section of the body surface. This makes it possible to keep the energy density in the patient's tissue, in particular on the body surface 48, low.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Acoustics & Sound (AREA)
- Multimedia (AREA)
- Surgical Instruments (AREA)
Description
Die Erfindung betrifft eine Einrichtung zum berührungslosen Zertrümmern eines im Körper eines Lebewesens befindlichen Konkrements mit einem Stosswellengenerator, der auf ein Zielgebiet im Körper ausrichtbar ist.The invention relates to a device for the contactless smashing of a concrement located in the body of a living being with a shock wave generator which can be aligned with a target area in the body.
Einrichtungen dieser Art werden in der Medizin eingesetzt, z.B. zum Zerstören von Steinen in der Niere des Menschen. Sie sind besonders vorteilhaft, da sie jeglichen Eingriff in den Körper vermeiden. Es ist nicht notwendig, operativ vorzugehen. Auch das Heranführen von Sonden und Geräten an das Konkrement entfällt. Eine Gefährdung durch Infektionen oder Verletzungen, z.B. beim Einführen der Sonde oder Operationen, kann beim berührungslosen Zertrümmern nicht auftreten.Devices of this type are used in medicine, e.g. to destroy stones in the kidney of humans. They are particularly beneficial because they avoid any intervention in the body. It is not necessary to operate surgically. There is also no need to bring probes and devices to the concrement. A risk from infection or injury, e.g. when inserting the probe or operations, can not occur in contactless smashing.
Eine Einrichtung zur Konkrementenzertrümmerung ist in der DE-AS 2351 247 beschrieben. Hier wird in einer Fokussierungskammer, die als Teil eines Rotationsellipsoids ausgebildet ist, in einem ersten Brennpunkt eine Funkenentladung zwischen zwei Elektroden herbeigeführt. Diese verursacht eine Stosswelle, deren Wellenfront sich nach allen Seiten, d.h. kugelförmig ausbreitet. An der Wand des Rotationsellipsoids werden die Wellen reflektiert. Sie sammeln sich im zweiten Brennpunkt des Rotationsellipsoids. In diesem zweiten Brennpunkt, in dem das Konkrement plaziert ist, treffen die reflektierten Wellen gleichzeitig ein. Unter dem gebündelten Anprall der Stosswellen wird das Konkrement zerstört. Die Ankopplung zwischen dem Rotationsellipsoid und dem Körper, in welchem sich das Konkrement befindet, geschieht über eine dünne Folie, die luftspaltlos am Körper anliegt. Die Fokussierungskammer ist mit Wassergefüllt.A device for crushing concrements is described in DE-AS 2351 247. In a focusing chamber, which is designed as part of an ellipsoid of revolution, a spark discharge is brought about between two electrodes in a first focal point. This causes a shock wave, the wavefront of which extends on all sides, i.e. spreads spherically. The waves are reflected on the wall of the ellipsoid of revolution. They collect in the second focal point of the ellipsoid of revolution. The reflected waves arrive simultaneously in this second focal point, in which the concrement is placed. The concrement is destroyed under the collision of the shock waves. The coupling between the ellipsoid of revolution and the body in which the concrement is located takes place via a thin film that lies against the body without an air gap. The focus chamber is filled with water.
Diese Einrichtung bringt den Nachteil mit sich, dass Änderungen der Stosswellenenergie nur in geringen Grenzen und nur mit einem erheblichen apparativen Aufwand durch Änderung des Abstands der Unterwasserelektroden möglich sind. Weiterhin ist nachteilig, dass der gegenseitige Abstand der Elektroden zur Erzeugung von intensitätsstarken Stosswellen in der Regel einige Millimeter betragen muss, wodurch die Stosswellenquelle keine punktförmige Geometrie besitzt und Abbildungsfehler bei der Fokussierung entstehen können. Ausserdem nutzen sich die Unterwasserelektroden bei jeder Entladung stark ab, so dass ihre Lebensdauer begrenzt ist, was eine regelmässige Wartung der Einrichtung erforderlich macht.This device has the disadvantage that changes in the shock wave energy are possible only within small limits and only with considerable expenditure on equipment by changing the distance between the underwater electrodes. A further disadvantage is that the mutual distance between the electrodes for generating high-intensity shock waves generally has to be a few millimeters, as a result of which the shock wave source has no punctiform geometry and imaging errors can occur during focusing. In addition, the underwater electrodes wear heavily with each discharge, so that their lifespan is limited, which necessitates regular maintenance of the device.
Obengenannte Umstände sind bereits in der DE-OS 2538960 erkannt. Gemäss dieser Druckschrift können die zitierten Nachteile dadurch behoben werden, dass anstelle der Funkenstrecke ein ausserhalb der Fokussierungskammer befindlicher Riesenimpulslaser eingesetzt wird. Dessen Strahl wird durch einen Strahlteiler aufgeweitet und dann durch ein in der Wand der Fokussierungskammer befindliches Linsensystem in einem Brennpunkt der rotationselliptischen Fokussierungskammer vereinigt. Hier wird eine Stosswelle ausgelöst, z.B. durch Konzentration des Energiebündels auf einen absorbierenden Stift oder eine stark absorbierende Flüssigkeit. Auch bei dieser Einrichtung wird ein schwierig herzustellender rotationselliptischer Reflexionskörper verwendet. Ausserdem ist der Wirkungsgrad einer solchen Einrichtung mit Laser als gering anzusehen.The above-mentioned circumstances are already recognized in DE-OS 2538960. According to this document, the disadvantages cited can be remedied by using a giant pulse laser located outside the focusing chamber instead of the spark gap. Its beam is expanded by a beam splitter and then combined in a focal point of the rotationally elliptical focusing chamber by a lens system located in the wall of the focusing chamber. A shock wave is triggered here, e.g. by concentrating the bundle of energy on an absorbent stick or a highly absorbent liquid. This device also uses a rotationally elliptical reflection body that is difficult to manufacture. In addition, the efficiency of such a device with a laser can be regarded as low.
Die Einrichtung nach der DE-AS 2351247 bringt ausserdem den Umstand mit sich, dass der Körper des Patienten nur durch die Koppelfolie, die am Körper anliegt, und durch das Wasser von der Hochspannungsfunkenstrecke getrennt ist. Beschädigungen der Koppelfolie bergen ein gewisses Risiko für den Patienten in sich.The device according to DE-AS 2351247 also entails the fact that the patient's body is separated from the high-voltage spark gap only by the coupling film which is in contact with the body and by the water. Damage to the coupling foil carries a certain risk for the patient.
In der DE-OS 2 902 331 ist ein Gerät zur transkutanen, unblutigen Verödung von kleinen retikulären und Besenreiser-Varicen beschrieben. Als Wellengenerator sind gleichzeitig ansteuerbare Ultraschallelemente verwendet, die parabolisch angeordnet sind, damit sich ihre Schallenergien in einem Brennpunkt treffen, in dem die zu zerstörende Varice plaziert ist. Die gesamte Anordnung der Ultraschallelemente ist mittels eines Schneckentriebes und einer Stellschraube längsverschiebbar. Hierdurch können verschiedene Abstände des Brennpunkts vom Applikatorende eingestellt werden. Bei diesem Gerät ist die Leistung der Ultraschallkristalle zum Zertrümmern von Konkrementen im tiefen Innern eines menschlichen Körpers nicht ausreichend. Die genaue Einstellung der einzelnen Ultraschallschwinger sowohl hinsichtlich des Ortes als auch der Energie ist daher unkritisch. Ein Abschalten einzelner Ultraschallkristalle zwecks Einstellung der Ultraschallenergie im Brennpunkt ist nicht vorgesehen.DE-OS 2 902 331 describes a device for transcutaneous, bloodless obliteration of small reticular and spider vein varices. At the same time, controllable ultrasound elements are used as the wave generator, which are arranged parabolically so that their sound energies meet at a focal point in which the varice to be destroyed is placed. The entire arrangement of the ultrasonic elements is longitudinally displaceable by means of a worm drive and an adjusting screw. This allows different distances of the focal point from the applicator end to be set. With this device, the power of the ultrasound crystals is not sufficient to crush stones in the deep interior of a human body. The exact setting of the individual ultrasonic vibrators with regard to both the location and the energy is therefore not critical. Switching off individual ultrasonic crystals for the purpose of adjusting the ultrasonic energy in the focal point is not provided.
In der DE-OS 3119 295 ist eine Einrichtung zum Zerstören von Konkrementen in Körperhöhlen unter Zuhilfenahme eines grossflächigen Ultraschallwandlers als Schwingungserzeuger beschrieben. Es kommt ein fokussierender Ultraschallwandler mit einer Pulsspitzenleistung von wenigstens 100 kW zur Anwendung. Hier besteht die Möglichkeit, verschiedene Zonen des Körpers, die auf dem Schallweg zum Konkrement liegen und dabei stören, durch Verändern derAbstrahlfläche auszublenden. Es wird auch eine Ausführungsform dargestellt, bei der einzelne ringförmige Ultraschallelemente, die den Wandler bilden, auf einer Kugeloberfläche angeordnet sind. Über eine Veränderung der Leistung entsprechend der Art und Tiefenlage des Konkrements ist nichts ausgesagt. Ausserdem dürfte der Aufwand für eine solche Einrichtung, insbesondere im Hinblick auf die Ausbildung der ringförmigen Ultraschallelemente, beträchtlich sein.DE-OS 3119 295 describes a device for destroying concrements in body cavities with the aid of a large-area ultrasound transducer as a vibration generator. A focusing ultrasonic transducer with a pulse peak power of at least 100 kW is used. Here it is possible to hide different zones of the body, which lie on the sound path to the calculus and interfere with it, by changing the radiation area. An embodiment is also shown in which individual ring-shaped ultrasonic elements, which form the transducer, are arranged on a spherical surface. Nothing is said about a change in performance according to the type and depth of the concretion. In addition, the effort for such a device, in particular with regard to the formation of the ring-shaped ultrasound elements, should be considerable.
Ausserdem ist anzumerken, dass bei einem solchen Ultraschallgerät nur begrenzte Spitzenleistungen der abgestrahlten Schallenergie möglich sind. Darüber hinaus ist bei einem solchen Gerät eine grosse Anzahl von Ultraschallwandlern erforderlich, was hohen Montage- und Steueraufwand erfordert. Ausserdem ist bei Ultraschallwandlern ein unerwünschtes pulsförmiges Unterschwingen zu beobachten, das nur mit erheblichem Aufwand zu reduzieren ist.In addition, it should be noted that with such an ultrasound device, only limited peak outputs of the emitted sound energy are possible. In addition, a large number of ultrasonic transducers is required in such a device, which requires high assembly and control costs. In addition, an undesirable pulse is in ultrasonic transducers To observe undershoots that can only be reduced with considerable effort.
In der Zeitschrift «Akustische Beihefte», 1962, Heft 1, Seiten 185-202, ist der Aufbau eines sogenannten «Stosswellenrohres», wie es im Prinzip in der vorliegenden Erfindung verwendet wird, beschrieben. Vor einer Flachspule, durch eine Isolierfolie getrennt, befindet sich eine Kupfermembran. An diese Kupfermembran schliesst ein mit Wasser gefülltes Rohr an. Durch Anlegen einer Spannung im Bereich 2-20 kV an die Flachspule wird in der Kupfermembran ein Magnetfeld induziert, welches Abstosskräfte bewirkt, die die Membran von der Spule schlagartig wegdrücken. Hierdurch entsteht eine ebene Schockwelle, die im wassergefüllten Rohr zu einer steilen Stosswelle wird und am Rohrende für Experimente zur Verfügung steht. Eingesetzt wird ein solches Stosswellenrohr z.B. zu Stoffuntersuchungen in der Chemie. Ferner ist eine Einrichtung gemäss Oberbegriff des Anspruchs 1 aus der JP-B 5 540 257 bekannt.In the magazine "Akustische Beihefte", 1962, Issue 1, pages 185-202, the structure of a so-called "shock tube", as it is used in principle in the present invention, is described. A copper membrane is located in front of a flat coil, separated by an insulating film. A tube filled with water connects to this copper membrane. By applying a voltage in the range of 2-20 kV to the flat coil, a magnetic field is induced in the copper membrane, which causes repulsive forces that suddenly push the membrane away from the coil. This creates a flat shock wave that becomes a steep shock wave in the water-filled pipe and is available for experiments at the end of the pipe. Such a shock wave tube is used e.g. for substance studies in chemistry. Furthermore, a device according to the preamble of claim 1 is known from JP-B 5 540 257.
Aufgabe vorliegender Erfindung ist es, bei einer derartigen Einrichtung die Betriebssicherheit zu erhöhen, eine Abbildung auf ein Zielgebiet mit möglichst kleinem Abbildungsfehler zu erhalten und Wartungsarbeiten zu reduzieren.The object of the present invention is to increase the operational reliability of such a device, to obtain an image on a target area with the smallest possible imaging error and to reduce maintenance work.
Diese Aufgabe wird erfindungsgemäss dadurch gelöst, dass als Stosswellengenerator ein an sich bekanntes, die ebene Stosswelle erzeugendes Stosswellenrohr mit elektrischer Spule und davor angeordneter Membran vorgesehen ist.According to the invention, this object is achieved in that a shock wave generator, known per se and producing the flat shock wave, with an electrical coil and a membrane arranged in front of it is provided as the shock wave generator.
Da diese Einrichtung einen Stosswellengenerator verwendet, der ebene Wellen erzeugt, müssen die nur aus einer Richtung kommenden Stosswellen gebündelt und fokussiert werden. Hierbei sind Abbildungsfehler weniger wahrscheinlich, als wenn von einer Funkenstrecke ausgehende, in alle Richtungen laufende Kugelwellen fokussiert werden müssen. Die zeitliche und räumliche Reproduzierbarkeit der Stosswelle ist bei Erzeugung mit einem Stosswellenrohr im Vergleich zur Erzeugung mit einer Funkenstrecke wesentlich verbessert. Ausserdem entfallen Wartungsarbeiten, die durch Verschleiss und Abbrand der Elektroden bei einer Funkenstrecke anfallen. Denn ein Stosswellenrohr erzeugt die Stosswellen mit Hilfe elektromagnetischer Kräfte und benötigt keine Funkenstrecke.Since this device uses a shock wave generator that generates plane waves, the shock waves coming from only one direction have to be bundled and focused. Here, imaging errors are less likely than if spherical waves proceeding from a spark gap and traveling in all directions have to be focused. The temporal and spatial reproducibility of the shock wave is significantly improved when generated with a shock wave tube compared to the generation with a spark gap. In addition, there is no maintenance work due to wear and tear of the electrodes in a spark gap. Because a shock wave tube generates the shock waves with the help of electromagnetic forces and does not require a spark gap.
Ein Stosswellenrohr ist so aufgebaut, dass es am einen Ende eines mit Flüssigkeit, bevorzugt mit Wasser gefüllten Rohres eine Kupfermembran enthält, die - durch eine Isolierfolie getrennt - vor einer Flachspule angeordnet ist. Aufgrund eines Stromimpulses in der Flachspule wird die Kupfermembran von dieser abgestossen und erzeugt dabei die Stosswelle in der Flüssigkeit. Die Kupfermebran selber und das an sie anschliessende Rohrstück werden in der Regel auf ein gemeinsames Bezugspotential gelegt, d.h. sie sind geerdet. Es liegt also keine Hochspannung an dem die Stosswelle leitenden Koppelmedium an, wodurch die elektrische Sicherheit von Patient und Personal erhöht ist.A shock wave tube is constructed in such a way that it contains a copper membrane at one end of a tube filled with liquid, preferably with water, which is arranged in front of a flat coil, separated by an insulating film. Due to a current pulse in the flat coil, the copper membrane is repelled by it and thereby generates the shock wave in the liquid. The copper membrane itself and the pipe section adjoining it are usually connected to a common reference potential, i.e. they are grounded. There is therefore no high voltage at the coupling medium that conducts the shock wave, which increases the electrical safety of patient and staff.
Weitere Vorteile und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung eines Ausführungsbeispiels anhand der Zeichnungen in Verbindung mit den Unteransprüchen. Es zeigen:
- Fig. 1 einen seitlichen Schnitt durch eine Zertrümmerungseinrichtung nach der Erfindung mit einer Sammellinse und
- Fig. 2 einen seitlichen Schnitt durch eine Zertrümmerungseinrichtung nach der Erfindung mit einem System akustischer Linsen.
- Fig. 1 shows a side section through a smashing device according to the invention with a converging lens and
- Fig. 2 shows a side section through a smashing device according to the invention with a system of acoustic lenses.
In Figur 1 ist ein an sich bekanntes Stosswellenrohr 1, bestehend aus einem Mantel 2, aus einer Flachspule 3 mit zwei elektrischen Anschlüssen 5 und 7, aus einer Isolierfolie 9, aus einer Kupfermembran 11 und aus einem metallischen Rohrstück 13, vor einer akustischen Sammellinse 15, die einen Brennpunkt F besitzt, plaziert. Das Rohrstück 13 ist mit einer Flüssigkeit 14, z.B. mit Wasser, gefüllt.FIG. 1 shows a shock wave tube 1 known per se, consisting of a jacket 2, a flat coil 3 with two
Über ein Koppelmedium 17 mit wasserähnlichen akustischen Eigenschaften ist das Stosswellenrohr 1 an einen Körper 19 angekoppelt. Der Körper 19, z.B. ein Patient, hat in seiner Niere 21 ein Konkrement 23, z.B. einen Nierenstein.The shock wave tube 1 is coupled to a
Die Sammellinse 15 ist über eine Feinregulierung 24 mit Bolzen 24a und Feststellrand 24b in Richtung eines Doppelpfeils 25 relativ zum Mantel 2 des Stosswellenrohrs 1 verschiebbar. Der Bolzen 24a wird dabei in einer schlitzförmigen Aussparung 24c im Mantel 2 geführt.The converging lens 15 can be displaced relative to the jacket 2 of the shock tube 1 via a
Das Stosswellenrohr 1, die Sammellinse 15 und die Feinregulierung 24 sind auf einem gemeinsamen Gestell, Stativ oder einer Montageplatte 26 montiert. Diese Montageplatte 26 ist auf einem Lager 26a angebracht, welches allseitig schwenkbar und in allen Raumrichtungen verschiebbar ist. Dadurch kann das Stosswellenrohr 1 auf das Konkrement 23 so ausgerichtet werden, dass der Brennpunkt F im Konkrement 23 liegt.The shock wave tube 1, the converging lens 15 and the
Die Kupfermembran 11 und das Rohrstück 13 sind elektrisch an ein Schutzpotential wie Erde 27 gelegt, ebenso der eine Anschluss 7 der Flachspule 3. Der andere Anschluss 5 der Flachspule 3 ist über einen Schalter 29, der einen Hilfskontakt 31 umfasst, in eine Versorgungs- und Steuereinheit 33 geführt.The copper membrane 11 and the
Über eine (nicht gezeigte) Kondensator/Widerstandsschaltung wird in der Versorgungs- und Steuereinheit 33 eine Hochspannung U erzeugt. Diese kann mehrere Kilovolt, z.B. 20 kV betragen. Die Spannung U kann dabei einstellbar sein. Ein Steuersignal, welches von der Versorgungs- und Steuereinheit 33 über eine Steuerleitung 35 an den Hilfskontakt 31 gegeben wird, bewirkt das Schliessen des Schalters 29. Ein Teil der in dem (nicht gezeigten) Kondensator der Versorgungs-und Steuereinheit 33 gespeicherten Energie entlädt sich dabei schlagartig in die Flachspule 3, die sehr schnell ein magnetisches Feld aufbaut. In der Kupfermembran 11 wird ein Strom induziert, der dem Strom in der Flachspule 3 entgegengerichtet ist und ein magnetisches Gegenfeld erzeugt. Durch die Kraftwirkung des Gegenfeldes wird die Kupfermembran 11 von der Flachspule 3 weggeschlagen. Dieses Wegschlagen der Kupfermembran 11 erzeugt eine ebene Stosswelle, d.h. eine schlagartige Kompression in der der Membran 11 vorgelagerten Flüssigkeit 14. Diese Stosswelle zeigt einen steilen Druckanstieg, z.B. auf 200 bar. Die Druckwelle gewinnt in ihrem Lauf durch das Rohrstück 13, die Sammellinse 15 und den Körper 19 des Patienten noch an Steilheit. Nach dem Durchgang durch die Sammellinse 15 ist die Stosswelle so geformt, dass sie im Brennpunkt F konvergiert. Dort ist das Konkrement 23 plaziert, und die fokussierte Stosswelle gibt einen Teil ihres Energieinhalts durch Zug- oder Druckkräfte an das im Vergleich zur Umgebung spröde Konkrement 23 ab. Diese Kräfte zerlegen das Konkrement 23 in mehrere Teile und bewirken so seine Zertrümmerung.A high voltage U is generated in the supply and
Je nach Grösse und Konsistenz des Konkrementes 23 muss dieser Einstrahlvorgang mehrmals wiederholt werden.Depending on the size and consistency of the
Diese erläuterte Zertrümmerungseinrichtung bietet den beachtlichen Vorteil, dass die geerdete Kupfermembran 11 und das geerdete Rohrstück 13 keine Gefahrenquelle für den Patienten 19 oder das Bedienungspersonal darstellen. Die elektrische Sicherheit der Einrichtung kann für das Bedienungspersonal durch eine (nicht gezeigte) zusätzliche isolierende Umhüllung, z.B. in Form einer Kunststoffbeschichtung der äusseren Fläche des Mantels 2, noch gesteigert werden. Bei Verwendung eines mit dem Koppelmedium 17 gefüllten Sacks 37 an der Eintrittsstelle der Stosswelle in den Patienten 19 ergibt sich eine doppelte Sicherheit für den Patienten 19 von der elektrischen Hochspannung. Diese Sicherheit wird zum einen durch die isolierende Sackwand und zum anderen durch die Isolierfolie 9 vor der Flachspule 3 bestimmt.This explained crushing device offers the considerable advantage that the grounded copper membrane 11 and the grounded
Der Schalter 29 kann im übrigen in der Versorgungs- und Steuereinheit 33 integriert sein. Er kann auch von der Stosswellenrohranordnung entfernt gelegen sein. Da zum Auslösen nicht notwendigerweise eine Funkenstrecke verwendet werden muss, es kommen nämlich z.B. auch Vakuum- oder neuerdings auch SF6-Schalter in Frage, entfallen aufwendige Wartungs- und Betriebsarbeiten, die mit der Funkenstrecke verbunden wären.The switch 29 can also be integrated in the supply and
Figur 2 zeigt ein an sich bekanntes Stosswellenrohr 1, dem ein System 40 akustischer Linsen zur Abbildung einer ebenen Stosswelle auf ein Konkrement 23 im Körper eines Patienten 19 zugeordnet ist. Das System 40 akustischer Linsen besteht aus einer Zerstreuungslinse 42, einem Kondensator 44 und einer Sammellinse 46 und hat einen Brennpunkt F. Das bevorzugte Material für das System 40 der akustischen Linsen ist Acrylglas oder Polystyrol. Die im Stosswellenrohr 1 erzeugte ebene Stosswelle wird durch die Zerstreuungslinse 42 in ihrem Querschnitt aufgeweitet. Die Stosswelle wird sodann durch den Kondensator 44 parallel gerichtet und danach durch die Sammellinse 46 auf den Brennpunkt F fokussiert.FIG. 2 shows a shock wave tube 1 known per se, to which a
Die zu Figur 1 beschriebenen Ausgestaltungen des Stosswellenrohrs 1 und der Haltevorrichtung gelten auch für diese Ausführungsform des Abbildungssystems. So ist hier das gesamte System 40 akustischer Linsen relativ zum Stosswellenrohr 1 in axialer Richtung des Doppelpfeils 25 verschiebbar.The configurations of the shock wave tube 1 and the holding device described for FIG. 1 also apply to this embodiment of the imaging system. Here, the
Vorteil dieses Ausführungsbeispiels ist, dass die Stosswelle über einen grösseren Querschnitt der Körperoberfläche in den Körper 19 des Patienten eintritt. Hierdurch ist es möglich, die Energiedichte im Gewebe des Patienten, insbesondere an der Körperoberfläche 48, klein zu halten.The advantage of this exemplary embodiment is that the shock wave enters the patient's
Claims (8)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19833328051 DE3328051A1 (en) | 1983-08-03 | 1983-08-03 | DEVICE FOR CONTACTLESS CRUSHING OF CONCRETE |
DE3328051 | 1983-08-03 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0133665A2 EP0133665A2 (en) | 1985-03-06 |
EP0133665A3 EP0133665A3 (en) | 1985-04-03 |
EP0133665B1 true EP0133665B1 (en) | 1988-06-22 |
Family
ID=6205689
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP84108750A Expired EP0133665B1 (en) | 1983-08-03 | 1984-07-24 | Apparatus for the smashing at a distance of calculus |
Country Status (3)
Country | Link |
---|---|
US (1) | US4674505A (en) |
EP (1) | EP0133665B1 (en) |
DE (2) | DE3328051A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19916891C1 (en) * | 1999-04-14 | 2000-08-31 | Siemens Ag | Equipment for generating acoustic waves incorporates a switching device and a high-voltage capacitor to be discharged by this switching device |
DE10207737C1 (en) * | 2002-02-22 | 2003-04-17 | Siemens Ag | Acoustic wave generation circuit has diode or diode module connected in parallel across HV capacitor |
Families Citing this family (133)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5143073A (en) * | 1983-12-14 | 1992-09-01 | Edap International, S.A. | Wave apparatus system |
USRE33590E (en) * | 1983-12-14 | 1991-05-21 | Edap International, S.A. | Method for examining, localizing and treating with ultrasound |
FR2578081B1 (en) * | 1985-02-28 | 1987-05-07 | Centre Nat Rech Scient | MULTI-LENS ACOUSTIC DEVICE WITH VARIABLE MAGNIFICATION AND FOCAL |
DE3662966D1 (en) * | 1985-05-28 | 1989-06-01 | Siemens Ag | Apparatus for the contactless disintegration of concrements |
JPS62336A (en) * | 1985-06-26 | 1987-01-06 | 八千代田工業株式会社 | Apparatus for crushing stone from outside of body by shock wave in liquid |
EP0229981B1 (en) * | 1985-12-20 | 1990-02-28 | Siemens Aktiengesellschaft | Method for controlling the focussing characteristics of an ultrasonic field and device for carrying out said method |
DE3545381C2 (en) * | 1985-12-20 | 1994-02-24 | Siemens Ag | Ultrasonic transducer for measuring the sound power of a focused ultrasonic field |
US4813402A (en) * | 1986-02-19 | 1989-03-21 | Siemens Aktiengesellschaft | Coupling member for a shock wave therapy device |
DE8608200U1 (en) * | 1986-03-25 | 1987-07-23 | Siemens AG, 1000 Berlin und 8000 München | Device for breaking stones |
DE3763009D1 (en) * | 1986-04-01 | 1990-07-12 | Siemens Ag | SHOCK WAVE SOURCE WITH IMPROVED FOCUS ZONE. |
DE3763615D1 (en) * | 1986-04-01 | 1990-08-16 | Siemens Ag | SHOCK WAVE SOURCE WITH INCREASED EFFICIENCY. |
US4796608A (en) * | 1986-06-16 | 1989-01-10 | Siemens Aktiengesellschaft | Shock wave generator for an apparatus for non-contacting disintegration of calculi in the body of a life form |
EP0258561A1 (en) * | 1986-07-08 | 1988-03-09 | Siemens Aktiengesellschaft | Shock-wave generator, particularly for lithotripsy |
US5095891A (en) * | 1986-07-10 | 1992-03-17 | Siemens Aktiengesellschaft | Connecting cable for use with a pulse generator and a shock wave generator |
EP0253053B1 (en) * | 1986-07-14 | 1994-04-27 | Siemens Aktiengesellschaft | Shock-wave generator for a device for non-contacting desintegration of concretions in a living body |
US4782821A (en) * | 1986-07-14 | 1988-11-08 | Siemens Aktiengesellschaft | Shock wave generator for an installation for non-contacting disintegration of calculi in the body of a life form |
DE3765336D1 (en) * | 1986-07-16 | 1990-11-08 | Siemens Ag | SHOCK SHAFT GENERATOR FOR GENERATING AN ACOUSTIC SHOCK SHAFT IMPULSE. |
DE3762459D1 (en) * | 1986-07-30 | 1990-05-31 | Siemens Ag | SENSOR FOR ACOUSTIC SHOCK SHAFT IMPULSES. |
US4813415A (en) * | 1986-08-18 | 1989-03-21 | Siemens Aktiengesellschaft | Sensor for evaluation of shock wave pulses |
DE8627238U1 (en) * | 1986-10-06 | 1988-02-04 | Siemens AG, 1000 Berlin und 8000 München | Shock wave source |
EP0263349A1 (en) * | 1986-10-06 | 1988-04-13 | Siemens Aktiengesellschaft | Shock wave generator |
DE3634378A1 (en) * | 1986-10-09 | 1988-04-21 | Wolf Gmbh Richard | ELECTROMAGNETIC CONVERTER, ESPECIALLY SOUND TRANSMITTER FOR MEDICAL APPLICATIONS |
EP0265742A1 (en) * | 1986-10-23 | 1988-05-04 | Siemens Aktiengesellschaft | Lithotripter with a locating device |
DE3777327D1 (en) * | 1986-10-24 | 1992-04-16 | Siemens Ag | LIQUID CIRCUIT FOR A DEVICE FOR THE CRUSHING OF CONCRETE IN THE BODY OF A LIVING BEING. |
EP0275460A1 (en) * | 1986-12-22 | 1988-07-27 | Siemens Aktiengesellschaft | Shock waves emitting head for the non-invasive fragmentation of concrements |
US4811725A (en) * | 1986-12-22 | 1989-03-14 | Siemens Aktiengesellschaft | Extracorporeal lithotripsy apparatus |
DE8701218U1 (en) * | 1987-01-26 | 1988-05-26 | Siemens AG, 1000 Berlin und 8000 München | Lithotripsy workstation |
DE3704909A1 (en) * | 1987-02-17 | 1988-08-25 | Wolf Gmbh Richard | DEVICE FOR SPACIOUS LOCATION AND DESTRUCTION OF INTERIOR OBJECTS WITH ULTRASOUND |
DE8709363U1 (en) * | 1987-07-07 | 1988-11-03 | Siemens AG, 1000 Berlin und 8000 München | Shock wave source |
US4928672A (en) * | 1987-07-31 | 1990-05-29 | Siemens Aktiengesellschaft | Shockwave source having a centrally disposed ultrasound locating system |
DE3739393C2 (en) * | 1987-11-20 | 1996-07-18 | Siemens Ag | Lithotripter with adjustable focus |
DE8801989U1 (en) * | 1988-02-16 | 1989-06-15 | Siemens AG, 1000 Berlin und 8000 München | Shock wave generator for contactless crushing of concretions |
DE3806532A1 (en) * | 1988-03-01 | 1989-09-14 | Wolf Gmbh Richard | DEVICE FOR PRODUCING THE GROWTH OF PATHOLOGICAL TISSUE OR THE LIKE RESTRICTING OR OBLIGATING OR RESOLVING ULTRASONIC SIGNAL FORMS FOR AN ULTRASONIC SENDING ARRANGEMENT |
US5209221A (en) * | 1988-03-01 | 1993-05-11 | Richard Wolf Gmbh | Ultrasonic treatment of pathological tissue |
EP0355177A1 (en) * | 1988-08-17 | 1990-02-28 | Siemens Aktiengesellschaft | Apparatus for the contactless desintegration of concrements in a living thing body |
EP0355175A1 (en) * | 1988-08-17 | 1990-02-28 | Siemens Aktiengesellschaft | Apparatus for the contactless disintegration of concrements in the body of a living being |
US5078144A (en) * | 1988-08-19 | 1992-01-07 | Olympus Optical Co. Ltd. | System for applying ultrasonic waves and a treatment instrument to a body part |
EP0359863B1 (en) * | 1988-09-23 | 1994-05-04 | Siemens Aktiengesellschaft | High voltage generator and method for producing a high-voltage pulse with a large current for driving a shock-wave generator |
DE3900433A1 (en) * | 1989-01-10 | 1990-07-12 | Schubert Werner | Method and device for treating disorders with ultrasonic waves |
EP0381796B1 (en) * | 1989-02-10 | 1995-08-09 | Siemens Aktiengesellschaft | Ultrasonic sensor |
EP0405282A1 (en) * | 1989-06-30 | 1991-01-02 | Siemens Aktiengesellschaft | Apparatus for treatment of a living body with focused shockwaves |
EP0405000B1 (en) * | 1989-06-30 | 1994-11-09 | Siemens Aktiengesellschaft | Patient-supporting table having a supporting plate provided with a recess |
DE58908635D1 (en) * | 1989-06-30 | 1994-12-15 | Siemens Ag | Patient support table with a cut-out support plate and a base part supporting the support plate. |
EP0404997A1 (en) * | 1989-06-30 | 1991-01-02 | Siemens Aktiengesellschaft | Patient-supporting device having a swivelling patient-supporting plate |
US4945898A (en) * | 1989-07-12 | 1990-08-07 | Diasonics, Inc. | Power supply |
US5065761A (en) * | 1989-07-12 | 1991-11-19 | Diasonics, Inc. | Lithotripsy system |
EP0412202A1 (en) * | 1989-08-11 | 1991-02-13 | Siemens Aktiengesellschaft | Shock wave generator to produce focused shock waves with a reflector shaped as a paraboloid of revolution |
EP0441997B1 (en) * | 1990-02-12 | 1995-12-27 | Siemens Aktiengesellschaft | Medical ultrasonic applicator for use in an acoustic shock-wave-conducting propagation-medium |
DE59005639D1 (en) * | 1990-06-13 | 1994-06-09 | Siemens Ag | Electrically driven acoustic shock wave generator. |
DE4130796A1 (en) * | 1990-09-27 | 1992-04-02 | Siemens Ag | ELECTRICALLY DRIVABLE SHOCK WAVE SOURCE |
DE4032357C1 (en) * | 1990-10-12 | 1992-02-20 | Dornier Medizintechnik Gmbh, 8000 Muenchen, De | |
EP0483396B1 (en) * | 1990-10-29 | 1999-12-22 | Siemens Aktiengesellschaft | Acoustic pressure impulse generator |
DE4034533C1 (en) * | 1990-10-30 | 1992-01-30 | Siemens Ag, 8000 Muenchen, De | |
DE4037160A1 (en) * | 1990-11-22 | 1992-05-27 | Dornier Medizintechnik | ACOUSTIC FOCUSING DEVICE |
DE4102447C1 (en) * | 1991-01-28 | 1992-04-09 | Siemens Ag, 8000 Muenchen, De | |
US5350352A (en) * | 1991-02-21 | 1994-09-27 | Siemens Aktiengesellschaft | Acoustic pressure pulse generator |
DE4110102A1 (en) * | 1991-03-27 | 1992-10-01 | Siemens Ag | ELECTROMAGNETIC PRESSURE PULSE SOURCE |
DE4118443C2 (en) * | 1991-06-05 | 2000-04-06 | Siemens Ag | Acoustic pressure pulse generator |
DE4122223C1 (en) * | 1991-07-04 | 1992-10-01 | Siemens Ag, 8000 Muenchen, De | Acoustic, focussed, pressure pulse generator - has presser pulse source, pulse reflector, and acoustic lens between reflector and focus |
DE4130761A1 (en) * | 1991-09-16 | 1993-03-18 | Siemens Ag | DEVICE FOR TREATING A LIVING BEING WITH ACOUSTIC WAVES |
IL100750A (en) * | 1992-01-24 | 1996-01-31 | Avner Spector | Apparatus particularly useful for treating osteoporosis |
DE4212809C2 (en) * | 1992-04-16 | 1996-08-14 | Siemens Ag | Therapy device for treating a living being with focused acoustic waves |
DE4213586C2 (en) * | 1992-04-24 | 1995-01-19 | Siemens Ag | Therapy device for treatment with focused acoustic waves |
DE4229630C2 (en) * | 1992-09-04 | 1994-06-16 | Siemens Ag | Acoustic lens |
DE4232683C1 (en) * | 1992-09-29 | 1994-04-28 | Siemens Ag | Ultrasound therapy device with X=ray imaging system - has carrier for acoustic wave source and patient table each adjusted to adjust acoustic wave focus position. |
DE4241161C2 (en) * | 1992-12-07 | 1995-04-13 | Siemens Ag | Acoustic therapy facility |
US5393296A (en) * | 1992-12-09 | 1995-02-28 | Siemens Aktiengesellschaft | Method for the medical treatment of pathologic bone |
EP0683657B2 (en) * | 1993-02-10 | 2005-06-15 | Siemens Aktiengesellschaft | Apparatus for analgesic therapy and/or for influencing the vegetative nervous system |
DE4306460C2 (en) * | 1993-03-02 | 1995-04-20 | Siemens Ag | Therapy device for treatment with focused acoustic waves |
DE4306459C1 (en) * | 1993-03-02 | 1994-04-28 | Siemens Ag | Ultrasound therapy device using X-ray imaging - uses mounting allowing X-ray imaging from two different directions, with corresponding adjustment of acoustic wave focus |
DE4315282C2 (en) * | 1993-05-07 | 1999-10-07 | Siemens Ag | Use of an acoustic pressure pulse source |
DE4325212C2 (en) * | 1993-07-27 | 1996-04-11 | Siemens Ag | Medical device |
DE4325214C2 (en) * | 1993-07-27 | 1996-02-29 | Siemens Ag | Urological workplace |
DE4325213C2 (en) * | 1993-07-27 | 1996-11-21 | Siemens Ag | Therapy device for treatment with acoustic waves |
DE4327509A1 (en) * | 1993-08-16 | 1995-02-23 | Siemens Ag | Method and device for the mechanical strength testing of components |
DE4329167C2 (en) * | 1993-08-30 | 1996-06-05 | Siemens Ag | Medical device with a device part |
DE4447665B4 (en) * | 1994-01-14 | 2004-04-29 | Siemens Ag | Medical device with an X-ray diagnostic device for generating X-ray silhouettes |
DE19538054C1 (en) * | 1995-10-12 | 1996-12-05 | Siemens Ag | Therapeutic unit with patient support plate, for e.g. shock wave generator used to break up kidney stones |
US20090318840A1 (en) * | 1996-12-30 | 2009-12-24 | Daniele Kenny | Neoplastic cell destruction device and method utilizing low frequency sound waves to disrupt or displace cellular materials |
US20050228319A1 (en) * | 1996-12-30 | 2005-10-13 | Kenny Daniele J | Neoplasm cell destruction device |
US20090318839A1 (en) * | 1996-12-30 | 2009-12-24 | Daniele Kenny | Neoplastic cell destruction device and method utilizing low frequency sound waves to disrupt or displace cellular materials |
US20090318838A1 (en) * | 1996-12-30 | 2009-12-24 | Daniele Kenny | Neoplastic cell destruction device and method utilizing low frequency sound waves to disrupt or displace cellular materials |
DE19723499C1 (en) * | 1997-06-05 | 1998-08-13 | Dornier Medizintechnik | Shock wave source based on electromagnetic principle |
DE19743376A1 (en) * | 1997-09-30 | 1999-04-22 | Siemens Ag | Acoustic wave therapy device for lithotripsy or pain treatment |
US6312434B1 (en) | 1999-04-14 | 2001-11-06 | Northgate Technologies, Inc. | Device for producing a shock wave to impact an object |
US7048699B2 (en) * | 2001-09-12 | 2006-05-23 | Moshe Ein-Gal | Non-cylindrical acoustic wave device |
US6869407B2 (en) * | 2001-09-12 | 2005-03-22 | Moshe Ein-Gal | Acoustic wave device |
AU2002339418A1 (en) * | 2001-11-20 | 2003-06-10 | Mia Norman Andersen | Method and product for depiction of the heart |
DE10158519B4 (en) * | 2001-11-29 | 2005-01-13 | Dornier Medtech Holding International Gmbh | Shock and shock wave therapy device |
DE10215416B4 (en) * | 2002-04-08 | 2020-10-29 | Ferton Holding S.A. | Medical device for the treatment of biological tissue |
US20030199857A1 (en) * | 2002-04-17 | 2003-10-23 | Dornier Medtech Systems Gmbh | Apparatus and method for manipulating acoustic pulses |
DE10225709B4 (en) * | 2002-06-10 | 2005-09-22 | Siemens Ag | Bellows for coupling a source of acoustic waves to a living being |
DE10229112B4 (en) * | 2002-06-28 | 2004-07-15 | Siemens Ag | Circuit for an electromagnetic source for generating acoustic waves |
DE10234144A1 (en) * | 2002-07-26 | 2004-02-05 | Dornier Medtech Gmbh | lithotripter |
DE102005037043C5 (en) * | 2005-08-05 | 2017-12-14 | Dornier Medtech Systems Gmbh | Shock wave therapy device with image acquisition |
US20070239074A1 (en) * | 2006-02-15 | 2007-10-11 | Moshe Ein-Gal | Line focusing acoustic wave source |
US7770689B1 (en) * | 2009-04-24 | 2010-08-10 | Bacoustics, Llc | Lens for concentrating low frequency ultrasonic energy |
US8776625B2 (en) * | 2010-05-21 | 2014-07-15 | Focus-In-Time, LLC | Sonic resonator system for use in biomedical applications |
CA2809746C (en) * | 2010-08-27 | 2019-02-12 | Socpra Sciences Et Genie S.E.C. | Mechanical wave generator and method thereof |
US11865371B2 (en) * | 2011-07-15 | 2024-01-09 | The Board of Regents of the University of Texas Syster | Apparatus for generating therapeutic shockwaves and applications of same |
DE102012013534B3 (en) | 2012-07-05 | 2013-09-19 | Tobias Sokolowski | Apparatus for repetitive nerve stimulation for the degradation of adipose tissue by means of inductive magnetic fields |
US11491342B2 (en) * | 2015-07-01 | 2022-11-08 | Btl Medical Solutions A.S. | Magnetic stimulation methods and devices for therapeutic treatments |
US10709894B2 (en) | 2015-07-01 | 2020-07-14 | Btl Medical Technologies S.R.O. | Aesthetic method of biological structure treatment by magnetic field |
US10569095B1 (en) | 2015-07-01 | 2020-02-25 | Btl Medical Technologies S.R.O. | Aesthetic method of biological structure treatment by magnetic field |
US10821295B1 (en) | 2015-07-01 | 2020-11-03 | Btl Medical Technologies S.R.O. | Aesthetic method of biological structure treatment by magnetic field |
US10478634B2 (en) | 2015-07-01 | 2019-11-19 | Btl Medical Technologies S.R.O. | Aesthetic method of biological structure treatment by magnetic field |
US10471269B1 (en) | 2015-07-01 | 2019-11-12 | Btl Medical Technologies S.R.O. | Aesthetic method of biological structure treatment by magnetic field |
US10695576B2 (en) | 2015-07-01 | 2020-06-30 | Btl Medical Technologies S.R.O. | Aesthetic method of biological structure treatment by magnetic field |
US10493293B2 (en) | 2015-07-01 | 2019-12-03 | Btl Medical Technologies S.R.O. | Aesthetic method of biological structure treatment by magnetic field |
US20180001107A1 (en) | 2016-07-01 | 2018-01-04 | Btl Holdings Limited | Aesthetic method of biological structure treatment by magnetic field |
US11266850B2 (en) | 2015-07-01 | 2022-03-08 | Btl Healthcare Technologies A.S. | High power time varying magnetic field therapy |
US10549109B2 (en) | 2015-07-01 | 2020-02-04 | Btl Medical Technologies S.R.O. | Aesthetic method of biological structure treatment by magnetic field |
US10695575B1 (en) | 2016-05-10 | 2020-06-30 | Btl Medical Technologies S.R.O. | Aesthetic method of biological structure treatment by magnetic field |
US9937358B2 (en) | 2015-07-01 | 2018-04-10 | Btl Holdings Limited | Aesthetic methods of biological structure treatment by magnetic field |
US10478633B2 (en) | 2015-07-01 | 2019-11-19 | Btl Medical Technologies S.R.O. | Aesthetic method of biological structure treatment by magnetic field |
US10549110B1 (en) | 2015-07-01 | 2020-02-04 | Btl Medical Technologies S.R.O. | Aesthetic method of biological structure treatment by magnetic field |
US10569094B2 (en) | 2015-07-01 | 2020-02-25 | Btl Medical Technologies S.R.O. | Aesthetic method of biological structure treatment by magnetic field |
US11253717B2 (en) | 2015-10-29 | 2022-02-22 | Btl Healthcare Technologies A.S. | Aesthetic method of biological structure treatment by magnetic field |
US11247039B2 (en) | 2016-05-03 | 2022-02-15 | Btl Healthcare Technologies A.S. | Device including RF source of energy and vacuum system |
US11464993B2 (en) | 2016-05-03 | 2022-10-11 | Btl Healthcare Technologies A.S. | Device including RF source of energy and vacuum system |
US10709895B2 (en) | 2016-05-10 | 2020-07-14 | Btl Medical Technologies S.R.O. | Aesthetic method of biological structure treatment by magnetic field |
US11534619B2 (en) | 2016-05-10 | 2022-12-27 | Btl Medical Solutions A.S. | Aesthetic method of biological structure treatment by magnetic field |
US10583287B2 (en) | 2016-05-23 | 2020-03-10 | Btl Medical Technologies S.R.O. | Systems and methods for tissue treatment |
US10556122B1 (en) | 2016-07-01 | 2020-02-11 | Btl Medical Technologies S.R.O. | Aesthetic method of biological structure treatment by magnetic field |
TWI653026B (en) | 2018-01-08 | 2019-03-11 | 寶健科技股份有限公司 | Shock-wave head for shifting focal point |
CN110038225A (en) * | 2018-01-15 | 2019-07-23 | 宝健科技股份有限公司 | Varifocal seismic wave head and its Zooming method |
CN113286630B (en) | 2019-04-11 | 2024-08-02 | 比特乐医疗方案股份有限公司 | Method and device for cosmetic treatment of biological structures by means of radio frequency and magnetic energy |
US12156689B2 (en) | 2019-04-11 | 2024-12-03 | Btl Medical Solutions A.S. | Methods and devices for aesthetic treatment of biological structures by radiofrequency and magnetic energy |
US11878167B2 (en) | 2020-05-04 | 2024-01-23 | Btl Healthcare Technologies A.S. | Device and method for unattended treatment of a patient |
JP2023515722A (en) | 2020-05-04 | 2023-04-13 | ビーティーエル ヘルスケア テクノロジーズ エー.エス. | Devices and methods for unattended care of patients |
WO2023062563A1 (en) | 2021-10-13 | 2023-04-20 | Btl Medical Solutions A.S. | Devices for aesthetic treatment of biological structures by radiofrequency and magnetic energy |
US11896816B2 (en) | 2021-11-03 | 2024-02-13 | Btl Healthcare Technologies A.S. | Device and method for unattended treatment of a patient |
GB2621187B (en) * | 2022-08-05 | 2024-12-11 | First Light Fusion Ltd | Component for manipulating an input shockwave |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5540257B2 (en) * | 1977-01-13 | 1980-10-16 | ||
EP0131653A1 (en) * | 1983-07-19 | 1985-01-23 | N.V. Optische Industrie "De Oude Delft" | Apparatus for the non-contact disintegration of stony objects present in a body by means of sound shockwaves |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3168659A (en) * | 1960-01-11 | 1965-02-02 | Gen Motors Corp | Variable focus transducer |
US3245251A (en) * | 1962-03-02 | 1966-04-12 | Transformatoren & Roentgenwerk | Ultrasonic diagnostic testing apparatus |
US3982223A (en) * | 1972-07-10 | 1976-09-21 | Stanford Research Institute | Composite acoustic lens |
US3934460A (en) * | 1973-08-06 | 1976-01-27 | General Electric Company | Apparatus for focusing and collimating ultrasonic waves |
CH574734A5 (en) * | 1973-10-12 | 1976-04-30 | Dornier System Gmbh | |
US3958559A (en) * | 1974-10-16 | 1976-05-25 | New York Institute Of Technology | Ultrasonic transducer |
US4001766A (en) * | 1975-02-26 | 1977-01-04 | Westinghouse Electric Corporation | Acoustic lens system |
DE2538960C2 (en) * | 1975-09-02 | 1985-04-11 | Dornier System Gmbh, 7990 Friedrichshafen | Device for the contactless smashing of calculus in a living being |
US4131025A (en) * | 1976-07-26 | 1978-12-26 | Rca Corporation | Pulse-echo ultrasonic-imaging display system |
US4333347A (en) * | 1978-07-24 | 1982-06-08 | Mannesmann Aktiengesellschaft | Stimulating electro-acoustical transducers |
DE2902331A1 (en) * | 1979-01-22 | 1980-07-31 | Gerhart Dr Med Tepohl | Medical instrument for varicose vein treatment - has ring of crystals to concentrate ultrasonic energy on treatment zone, with focus adjustment |
DE2913251C2 (en) * | 1979-04-03 | 1985-08-01 | Richard Wolf Gmbh, 7134 Knittlingen | Device for the contact-free crushing of stones in body cavities |
US4315514A (en) * | 1980-05-08 | 1982-02-16 | William Drewes | Method and apparatus for selective cell destruction |
US4423637A (en) * | 1980-12-18 | 1984-01-03 | Soloway Mahlon R | Ultrasonic testing instrument and method |
DE3119295A1 (en) * | 1981-05-14 | 1982-12-16 | Siemens AG, 1000 Berlin und 8000 München | DEVICE FOR DESTROYING CONCRETE IN BODIES |
-
1983
- 1983-08-03 DE DE19833328051 patent/DE3328051A1/en not_active Withdrawn
-
1984
- 1984-07-24 US US06/634,021 patent/US4674505A/en not_active Expired - Lifetime
- 1984-07-24 EP EP84108750A patent/EP0133665B1/en not_active Expired
- 1984-07-24 DE DE8484108750T patent/DE3472209D1/en not_active Expired
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5540257B2 (en) * | 1977-01-13 | 1980-10-16 | ||
EP0131653A1 (en) * | 1983-07-19 | 1985-01-23 | N.V. Optische Industrie "De Oude Delft" | Apparatus for the non-contact disintegration of stony objects present in a body by means of sound shockwaves |
Non-Patent Citations (2)
Title |
---|
Akustische Beihefte, Vol. 12 (1962), Heft 1, S. 185-202 * |
EP-A- 013 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19916891C1 (en) * | 1999-04-14 | 2000-08-31 | Siemens Ag | Equipment for generating acoustic waves incorporates a switching device and a high-voltage capacitor to be discharged by this switching device |
DE10207737C1 (en) * | 2002-02-22 | 2003-04-17 | Siemens Ag | Acoustic wave generation circuit has diode or diode module connected in parallel across HV capacitor |
Also Published As
Publication number | Publication date |
---|---|
US4674505A (en) | 1987-06-23 |
EP0133665A3 (en) | 1985-04-03 |
DE3328051A1 (en) | 1985-02-14 |
DE3472209D1 (en) | 1988-07-28 |
EP0133665A2 (en) | 1985-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0133665B1 (en) | Apparatus for the smashing at a distance of calculus | |
EP0133946B1 (en) | Apparatus for the contactless disintegration of concrements | |
EP0701731B1 (en) | Device for the treatment of biological tissue and concretions in the body | |
DE3328039C2 (en) | FACILITIES FOR THE CONTACTLESS SMASHING OF A CONCERMENT IN THE BODY OF A LIVING BEING | |
DE69631555T2 (en) | DEVICE FOR CRUSHING CONCRETE | |
EP0300315B1 (en) | Shock wave generator for an apparatus for non-contact disintegration of concrements, present in a body | |
DE3119295C2 (en) | ||
EP0188750B1 (en) | Shock sound waves apparatus for the disintegration of calculi | |
EP0308644B1 (en) | Focusing ultrasonic transducer | |
DE4213586C2 (en) | Therapy device for treatment with focused acoustic waves | |
DE4110102C2 (en) | ||
EP0209053A2 (en) | Method and apparatus for the non-contacting disintegration of concretions in a living body | |
EP0183236A2 (en) | Apparatus for the contactless disintegration of concrements in the bodies of living beings | |
DE2538960A1 (en) | Therapeutic destruction of concretions by impulse laser - uses elliptical focussing chamber with shock waves produced at focal point | |
EP0372119B2 (en) | Lithotripter | |
DE69018853T2 (en) | Device for destroying concretions. | |
EP0400196A1 (en) | Shock wave transducer for the destruction of concretions | |
EP0167670B1 (en) | Device for comminuting concrements inside a living body | |
EP0441997B1 (en) | Medical ultrasonic applicator for use in an acoustic shock-wave-conducting propagation-medium | |
EP0240797B1 (en) | Shockwave generator with increased efficiency | |
EP0483396B1 (en) | Acoustic pressure impulse generator | |
EP0243650B1 (en) | Shockwave generator with an improved focus zone | |
DE8322413U1 (en) | Device for the contactless smashing of concrements | |
DE4039408A1 (en) | SHOCK WAVE GENERATOR WITH A REFLECTOR | |
DE3328066A1 (en) | Crushing device for concrements in the body of a living being |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Designated state(s): DE FR GB NL |
|
AK | Designated contracting states |
Designated state(s): DE FR GB NL |
|
17P | Request for examination filed |
Effective date: 19850426 |
|
17Q | First examination report despatched |
Effective date: 19860613 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB NL |
|
REF | Corresponds to: |
Ref document number: 3472209 Country of ref document: DE Date of ref document: 19880728 |
|
ET | Fr: translation filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20030708 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20030710 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20030725 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20030916 Year of fee payment: 20 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20040723 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20040724 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 |
|
NLV7 | Nl: ceased due to reaching the maximum lifetime of a patent |