[go: up one dir, main page]

EP0130274B1 - Process for the separation of deuterium and tritium from water by the use of ammonia or a mixture of hydrogen and nitrogen - Google Patents

Process for the separation of deuterium and tritium from water by the use of ammonia or a mixture of hydrogen and nitrogen Download PDF

Info

Publication number
EP0130274B1
EP0130274B1 EP84101943A EP84101943A EP0130274B1 EP 0130274 B1 EP0130274 B1 EP 0130274B1 EP 84101943 A EP84101943 A EP 84101943A EP 84101943 A EP84101943 A EP 84101943A EP 0130274 B1 EP0130274 B1 EP 0130274B1
Authority
EP
European Patent Office
Prior art keywords
tritium
deuterium
ammonia
enriched
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP84101943A
Other languages
German (de)
French (fr)
Other versions
EP0130274A3 (en
EP0130274A2 (en
Inventor
Charles Dr. Mandrin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sulzer AG
Original Assignee
Gebrueder Sulzer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gebrueder Sulzer AG filed Critical Gebrueder Sulzer AG
Publication of EP0130274A2 publication Critical patent/EP0130274A2/en
Publication of EP0130274A3 publication Critical patent/EP0130274A3/en
Application granted granted Critical
Publication of EP0130274B1 publication Critical patent/EP0130274B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D59/00Separation of different isotopes of the same chemical element
    • B01D59/28Separation by chemical exchange
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B4/00Hydrogen isotopes; Inorganic compounds thereof prepared by isotope exchange, e.g. NH3 + D2 → NH2D + HD
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the invention relates to a process for the separation of at least one heavy isotope of a hydrogen-containing compound or a hydrogen-containing mixture using an ammonia synthesis and a hydrogen-nitrogen mixture.
  • This process is a monothermal ammonia-hydrogen exchange process, whereby almost 100% deuterium-enriched ammonia is to be obtained as the starting product for the extraction of heavy water.
  • the exchange process in this case is associated with a process for the production of ammonia from hydrogen with a natural deuterium concentration and synthesis gas consisting of nitrogen as a quasi-parasitic process.
  • the invention has set itself the goal of at least largely separating both deuterium and tritium from water containing deuterium and tritium in order to obtain water depleted in deuterium and tritium.
  • the water source can be, for example, river water, water from a nuclear fuel processing plant or cooling water or a moderator of a nuclear reactor plant.
  • the focus of the invention should be the extraction of deuterium and tritium at least largely freed water.
  • Tritium is known to be a dangerous radioactive substance, and when using deuterium-poor water in agriculture it has been shown that such water has a growth-promoting effect.
  • the invention should make it possible to obtain water depleted in deuterium and tritium as the main product and by-products enriched in deuterium and tritium in an economical manner.
  • a by-product enriched with deuterium, e.g. B. hydrogen or water can then, for. B. form the feed of a conventional process for the extraction of heavy water after tritium has been separated from the product in a known manner.
  • This tritium can, for example, be stored or, after concentration, can be used in a known manner for nuclear fusion processes.
  • the invention has also set itself the goal of a method in which ammonia is not removed from the process as a product, but only the leakage losses occurring during the method have to be covered.
  • An embodiment of the invention can consist in that the portion of the ammonia enriched in deuterium and tritium is evaporated and brought into isotope exchange with a second water stream, the water being enriched in tritium and deuterium and obtained as a by-product, and that in deuterium and tritium depleted ammonia vapor is liquefied and combined with the ammonia from the first process step before it is broken down into hydrogen and nitrogen.
  • a further advantageous embodiment of the invention can consist in that at least a partial amount of the liquid ammonia enriched in deuterium and tritium is brought into an isotope exchange with a second gas mixture of hydrogen and nitrogen enriched in deuterium and tritium, and further enriched in deuterium and tritium, the second gas mixture resulting from the cleavage of the enriched ammonia, a subset of this gas mixture being obtained as a by-product enriched in deuterium and tritium, and in that the subset of the gas mixture depleted in deuterium and tritium during the isotope exchange with the gas mixture, which after the first process step liquefied and split into hydrogen and nitrogen, is brought together.
  • the 15 N isotope could then be used as a cooling gas for gas-cooled nuclear reactors or as a so-called cover gas for light and heavy water reactors.
  • Helium is an expensive gas and requires a high degree of tightness of a plant due to its high permeability.
  • FIG. 1 shows a schematic representation of a flow diagram for a process in which largely depleted water is obtained as the main product of deuterium and tritium and water enriched as a by-product of deuterium and tritium.
  • Fig. 2 shows a schematic representation of a flow diagram for a method in which water largely depleted in deuterium and tritium is obtained as the main product and hydrogen enriched in deuterium and tritium as a by-product. Nitrogen enriched in 1s N is produced as a further by-product.
  • a process for obtaining deuterium and tritium-depleted water as the main product and deuterium and tritium-enriched by-product from deuterium- and tritium-containing water is carried out according to FIG. 1 in the following manner:
  • the feed e.g. B. river water or deuterium- and tritium-containing wastewater is conveyed through a line 1 by means of a pump 2 into an isotope exchange tower 3 and brought into isotope exchange in countercurrent to ammonia vapor depleted in deuterium and tritium.
  • the water is largely depleted of deuterium and tritium.
  • This water which is used for agricultural or industrial purposes, still contains dissolved ammonia. This is not desirable for reasons of environmental protection, ammonia consumption, etc.
  • the ammonia portion is therefore removed in a column 4 adjoining the lower part of the exchange tower 3, the steam required for the separation being generated with the aid of a heat source in the bottom of the column 44.
  • This heat source can be designed, for example, as a coil 5 heated with steam.
  • the product freed from ammonia is removed through a line 6.
  • the ammonia vapor which leaves the top part of the exchange tower 3, and whose concentration of deuterium and tritium is slightly lower than the concentration of the feed water, contains water vapor, which must not be present in the further process stages.
  • the water vapor is therefore separated off in a rectification column 7 arranged above the exchange tower 3.
  • the anhydrous ammonia vapor is liquefied in a condenser 8 by means of a water-cooled coil 9.
  • Part of the condensate is fed through a line 10 into the column 7 as reflux.
  • the main part of the condensate is conveyed through a line 11 by means of a pump 12 into a cracking furnace 13 and converted therein into a synthesis gas mixture (N 2 + 3H 2 ) in a known manner.
  • This gas mixture is introduced into a 1-sotope exchange tower 14 and exchanged there in countercurrent with liquid ammonia. This isotope exchange can only take place if the liquid ammonia contains a dissolved catalyst, eg KNH 2 .
  • the hydrogen in the gas mixture becomes depleted of deuterium and tritium, while the ammonia accumulates on deuterium and tritium.
  • ammonia is then formed from the gas mixture in a synthesis plant.
  • the main part of the ammonia depleted in deuterium and tritium is conveyed by means of a pump 16 through a line 17 into the head part of the exchange tower 14.
  • ammonia which is enriched in deuterium and tritium during the exchange with the synthesis gas mixture and in which a catalyst is dissolved is removed from the exchange tower 14 through a line 18, expanded in a throttle valve 19 and introduced into a concentrator 20.
  • the remaining part of the ammonia formed in the synthesis plant 15 is withdrawn through line 21 and a part thereof is expelled through line 22, in which a throttle valve 23 is arranged, into an evaporator 24.
  • the ammonia vapor originating from this evaporator which is depleted in deuterium and tritium, is introduced through a line 25 into an exchange tower 26 and is brought into isotope exchange therein in countercurrent with liquid ammonia enriched in deuterium and tritium.
  • the ammonia vapor that accumulates here in deuterium and tritium is conveyed through a line 27 into a cooler 28 and condensed there by means of a cooling coil 29 through which water flows.
  • the condensate is removed through a line 30 and conveyed into the concentrator 20 by means of a pump 31.
  • the concentrator 20 consists of a partial evaporator, not shown, which generates a catalyst-free ammonia vapor stream from the liquids fed through the lines 30 and 18 and a condenser, not shown, which liquefies this vapor stream.
  • the liquefied ammonia enriched in deuterium and tritium is removed from the concentrator 20 through a line 32.
  • the partial evaporator installed in the concentrator 20 still produces an ammonia liquid enriched in catalyst and deuterium and tritium, which is removed from the concentrator 20 through a line 33, expanded by a throttle valve 34 and into the top part of the isotope exchange tower 26.
  • the ammonia depleted in deuterium and tritium, which contains dissolved catalyst, is removed from the exchange tower 26 at the bottom through a line 35 and conveyed into the exchange tower 14 by means of a pump 36.
  • ammonia stream withdrawn through line 21 of the ammonia synthesis 15, reduced by the partial amount withdrawn through line 22, is led away through line 37 and expanded through a throttle valve 38 into an evaporator 39.
  • the ammonia vapor depleted in deuterium and tritium is then used to initiate the first ver driving step into the isotope exchange tower 3 fed through a line 40.
  • the free ammonium vapor enriched in deuterium and tritium from the concentrator 20 through line 32 is expanded through a throttle valve 41 into an evaporator 42. From here the ammonia vapor is fed through a line 43 into an isotope exchange tower 44. At the head of the exchange tower 44, a second water stream, which can originate from the same source as the first water stream, is fed in through a line 45 by means of a pump 46 and is counteracted in an isotope exchange with ammonia vapor analogously to the exchange tower 3. In contrast to the first process step, since the ammonia vapor is depleted in deuterium and tritium, the water is enriched in deuterium and tritium.
  • a column 52 is arranged below the exchange tower 44 to separate the ammonia dissolved in the water, the steam required for the separation being generated with the aid of a heat source in the bottom of the column 52.
  • This heat source can be designed, for example, as a steam-heated coil 53.
  • the water freed from ammonia and enriched in deuterium and tritium is removed through a line 54.
  • This water can be used, for example, to feed a heavy water production plant or a tritium concentrating plant.
  • FIG. 2 shows a flow diagram for a method in which water which is largely depleted in deuterium and tritium is also produced as the main product.
  • hydrogen enriched in deuterium and tritium is obtained and as a third product, nitrogen enriched in 15 N is produced.
  • FIG. 2 which correspond to the system for carrying out a method according to FIG. 1 are designated with the same reference numerals to avoid repetitions, but which are provided with an apostrophe.
  • the entire plant is also independent of a synthesis plant for the industrial production of ammonia.
  • an equivalent amount of liquid ammonia which still contains dissolved catalyst, is withdrawn through a line 60 connected to the line 18 ′ and conveyed into an isotope exchange tower 62 by a pump 61.
  • the liquid ammonia is brought into isotope exchange in countercurrent with the synthesis gas mixture enriched in deuterium and tritium (N Z + 3H z ), the ammonia and the catalyst accumulating in deuterium and tritium, possibly up to pure ND 3 or pure NT 3 , while the synthesis gas mixture accumulates at 15 N.
  • the liquid depleted in deuterium and tritium and in 15 N in the isotope exchange tower 62 flows through a line 63 into a concentrator 64, which is similar to the concentrator 20 (FIG. 1) or 20 ′ (FIG. 2).
  • Two flows are generated in the concentrator 64, namely a liquid flow with a higher catalyst content than the liquid flow leaving the exchange tower 62.
  • This liquid stream is enriched in deuterium and tritium and possibly contains ND 3 and / or NT 3 and is depleted of 15 N, possibly even completely 15 N free and is introduced through a line 65 into a concentrator 20 'after expansion in a throttle valve 66, whose mode of operation corresponds to that of the concentrator 20 in FIG. 1.
  • a second stream of liquid formed in the concentrator 64 consists of NH 3 or ND 3 and / or NT 3 and is free of catalyst. In addition, it is impoverished at 15 N or even completely free of 15 N.
  • This second stream is conveyed by a pump 67 into a cracking furnace 68 and broken down therein into N z + 3H z or N 2 + 3D 2 and / or N 2 + 3T z .
  • the remaining amount of the fission products generated in the cracking furnace 68 is introduced through a line 72 into a hydrogen-nitrogen separation system 73 of a known type.
  • the process taking place in the separation plant can be carried out with the aid of low-temperature separation by liquefaction and distillation or by alternating, selective absorption or by selectively permeable membrane.
  • the introduced gas mixture is broken down into nitrogen and hydrogen, with line 74 withdrawing 15 N depleted or 15 N free hydrogen-free nitrogen. This nitrogen can continue to be used for industrial purposes.
  • Another possibility is to burn the product with oxygen to water containing deuterium or tritium.
  • the remaining partial flow is recirculated through a line 77 by means of a compressor 78 and mixed into the partial flow from line 69, the gas mixture being introduced through line 70 into the exchange tower 62.
  • ammonia depleted in deuterium and tritium by line 37 ', but enriched in 1s N, is expanded analogously to FIG. 1, evaporated and brought into isotope exchange with river water or river water containing deuterium or tritium, so that line 11' is flowed through by ammonia which is enriched at 15 N, the deuterium and tritium content corresponding to the deuterium and tritium concentration of the feed water.
  • the 15 N concentration of the synthesis gas mixture produced in the cracking furnace 13 ′ is relatively high when it emerges from the isotope exchange tower 14 ′, specifically because of the 15 N enrichment of the gas stream led out of the exchange tower 62, which is the same as that from the cracking furnace 13 'removed synthesis gas is admixed before entering the exchange tower 14'.
  • Part of the synthesis gas depleted in deuterium and tritium is branched off after the exchange tower 14 through a line 79 from the gas supplied to the ammonia synthesis system 15 'and introduced into a hydrogen-nitrogen separation system 80 of a known type.
  • the gas mixture is in the separation plant, which e.g. how the separation system 73 can be designed, broken down into two streams.
  • a second gas stream which mainly consists of hydrogen (but is not necessarily nitrogen-free), is mixed through line 82 by means of a compressor 83 into the gas stream introduced into the exchange tower.
  • the line 84 could alternatively also not be connected to the entry into the exchange tower 14 ', but also to the gas entry of the exchange tower 62.
  • the injection point of fresh nitrogen depends on the process optimization and especially on the desired ratio of the products 15 N, deuterium and tritium.
  • Such a series connection can also be replaced by a periodic mode of operation of a single installation, at least one product of a period being used to feed the subsequent period.
  • 300 m 3 / h of water with less than 10 ppm D / D + H should be produced for agricultural purposes.
  • the tritium concentration should be below 0.03 Ci / m 3 .
  • the plant should produce as much deuterium-enriched water or D 2 0 as possible.
  • 3000 m 3 / year waste water or 375 kg / h waste water with 200 Ci / m 3 T 2 0 and 150 ppm D / D + H are first mixed with 299 625 kg / h river water with 150 ppm D / D + H to get a Flow of 30,000 kg / h Form water with 0.25 Ci / m 3 T 2 O and 150 ppm D / D + H.
  • This water is used as a feed (cf. FIG. 1, reference number “1” and FIG. 2, reference number “1 '”) for a plant for carrying out a method according to claim 1.
  • Cases I and II correspond to all the features of claim 1, in that the ammonia mold throughput (see line “e") is greater than two thirds of the water mold throughput (see line “b”).
  • Case III does not meet the aforementioned conditions in that the ammonia mold throughput is less than two thirds of the water throughput.
  • the concentration in line 40 (FIG. 1) or 42 ′ (FIG. 2) is 1.2252 ppm in case III, which corresponds to a depletion factor of 123.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Fuel Cell (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Abtrennung von mindestens einem schweren Isotop einer Wasserstoff enthaltenden Verbindung oder eines Wasserstoff enthaltenden Gemisches unter Verwendung einer Ammoniaksynthese und einem Wasserstoff-Stickstoffgemisch.The invention relates to a process for the separation of at least one heavy isotope of a hydrogen-containing compound or a hydrogen-containing mixture using an ammonia synthesis and a hydrogen-nitrogen mixture.

Ein derartiges Verfahren ist beispielsweise aus dem Buch «NUCLEAR CHEMICAL ENGINEE-RING / Second Edition von M. Benedict, Th.H. Pigford und H.W. Levi / McGraw-Hill Book Company, Seite 763 bis 765, bekannt.Such a method is described, for example, in the book «NUCLEAR CHEMICAL ENGINEE-RING / Second Edition by M. Benedict, Th.H. Pigford and H.W. Levi / McGraw-Hill Book Company, pages 763 to 765.

Bei diesem Verfahren handelt es sich um einen monothermen Ammoniak-Wasserstoff-Austauschprozeß, wobei nahezu hundertprozentig mit Deuterium angereichertes Ammoniak als Ausgangsprodukt für die Gewinnung von schwerem Wasser gewonnen werden soll. Der Austauschprozeß ist in diesem Fall mit einem Prozeß zur Gewinnung von Ammoniak aus Wasserstoff mit natürlicher Deuterium-Konzentration und Stickstoff bestehenden Synthesegas als quasi parasitärer Prozeß verbunden.This process is a monothermal ammonia-hydrogen exchange process, whereby almost 100% deuterium-enriched ammonia is to be obtained as the starting product for the extraction of heavy water. The exchange process in this case is associated with a process for the production of ammonia from hydrogen with a natural deuterium concentration and synthesis gas consisting of nitrogen as a quasi-parasitic process.

Demgegenüber hat sich die Erfindung zum Ziel gesetzt, aus Deuterium und Tritium enthaltendem Wasser sowohl Deuterium als auch Tritium mindestens weitgehend abzutrennen, um an Deuterium und Tritium verarmtes Wasser zu gewinnen.In contrast, the invention has set itself the goal of at least largely separating both deuterium and tritium from water containing deuterium and tritium in order to obtain water depleted in deuterium and tritium.

Bei der Wasserquelle kann es sich beispielsweise um Flußwasser, um Wasser einer nuklearen Brennstoffaufbereitungsanlage oder um Kühlwasser bzw. um einen Moderator einer Atomreaktoranlage handeln.The water source can be, for example, river water, water from a nuclear fuel processing plant or cooling water or a moderator of a nuclear reactor plant.

Im Vordergrund soll bei der Erfindung die Gewinnung von Deuterium und Tritium mindestens weitgehend befreitem Wasser stehen. Tritium ist bekanntlich ein gefährlicher, radioaktiver Stoff, und bei der Verwendung von deuteriumarmem Wasser in der Landwirtschaft hat es sich gezeigt, daß derartiges Wasser wachstumsfördernd wirkt.The focus of the invention should be the extraction of deuterium and tritium at least largely freed water. Tritium is known to be a dangerous radioactive substance, and when using deuterium-poor water in agriculture it has been shown that such water has a growth-promoting effect.

Als Nebenprodukte bei Isotopen-Austauschprozessen entstehen neben den an Isotopen abgereicherten Produkten an diesen Isotopen gegenüber der Speisung angereicherte Nebenprodukte.As by-products in isotope exchange processes, in addition to the products depleted in isotopes, these by-products are enriched in these isotopes.

Im vorliegenden Fall soll die Erfindung es ermöglichen, auf wirtschaftliche Weise an Deuterium und Tritium verarmtes Wasser als Hauptprodukt und an Deuterium bzw. Tritium angereicherte Nebenprodukte zu gewinnen.In the present case, the invention should make it possible to obtain water depleted in deuterium and tritium as the main product and by-products enriched in deuterium and tritium in an economical manner.

Ein mit Deuterium angereichertes Nebenprodukt, z. B. Wasserstoff oder Wasser kann dann z. B. das Feed eines Prozesses üblicher Art zur Gewinnung von schwerem Wasser bilden, nachdem Tritium von dem Produkt in bekannter Weise abgetrennt worden ist. Dieses Tritium kann beispielsweise gelagert oder aber nach einer Aufkonzentrierung in bekannter Weise für Kernfusionsprozesse verwendet werden.A by-product enriched with deuterium, e.g. B. hydrogen or water can then, for. B. form the feed of a conventional process for the extraction of heavy water after tritium has been separated from the product in a known manner. This tritium can, for example, be stored or, after concentration, can be used in a known manner for nuclear fusion processes.

Da bei der Erfindung eine Ammoniaksynthese verwendet wird, hat sich die Erfindung weiterhin ein Verfahren zum Ziel gesetzt, wobei Ammoniak nicht als Produkt aus dem Prozeß herausgeführt wird, sondern nur die während des Verfahrens auftretenden Leckverluste gedeckt werden müssen.Since an ammonia synthesis is used in the invention, the invention has also set itself the goal of a method in which ammonia is not removed from the process as a product, but only the leakage losses occurring during the method have to be covered.

Die der Erfindung zugrundeliegende Aufgabe wird mit Hilfe der im Kennzeichen des Anspruchs 1 angegebenen Verfahrensschritte gelöst. Die Begründung für die angegebenen Moldurchsätze von Ammoniak und Wasser wird am Ende der Beschreibung anhand eines Zahlenbeispiels erläutert.The object on which the invention is based is achieved with the aid of the method steps specified in the characterizing part of claim 1. The reason for the stated mold throughputs of ammonia and water is explained at the end of the description using a numerical example.

Eine Ausführungsform der Erfindung kann darin bestehen, daß die an Deuterium und Tritium angereicherte Teilmenge des Ammoniaks verdampft und in Isotopenaustausch mit einem zweiten Wasserstrom gebracht wird, wobei das Wasser an Tritium und Deuterium angereichert und als Nebenprodukt gewonnen wird, und daß der an Deuterium und Tritium abgereicherte Ammoniakdampf verflüssigt und mit dem, aus dem ersten Verfahrensschritt stammenden Ammoniak vor seiner Aufspaltung in Wasserstoff und Stickstoff zusammengeführt wird.An embodiment of the invention can consist in that the portion of the ammonia enriched in deuterium and tritium is evaporated and brought into isotope exchange with a second water stream, the water being enriched in tritium and deuterium and obtained as a by-product, and that in deuterium and tritium depleted ammonia vapor is liquefied and combined with the ammonia from the first process step before it is broken down into hydrogen and nitrogen.

Eine weitere vorteilhafte Ausführungsform der Erfindung kann darin bestehen, daß mindestens eine Teilmenge des an Deuterium und Tritium angereicherten flüssigen Ammoniaks mit einem zweiten, an Deuterium und Tritium angereicherten Gasgemisch aus Wasserstoff und Stickstoff in Isotopenaustausch gebracht wird und hierbei an Deuterium und Tritium weiter angereichert wird, wobei das zweite Gasgemisch aus der Spaltung des angereicherten Ammoniaks entstanden ist, wobei eine Teilmenge dieses Gasgemisches als an Deuterium und Tritium angereichertes Nebenprodukt anfällt, und daß die während des Isotopenaustausches an Deuterium und Tritium abgereicherte Teilmenge des Gasgemisches mit dem Gasgemisch, welches nach dem ersten Verfahrensschritt verflüssigt und in Wasserstoff und Stickstoff aufgespalten ist, zusammengeführt wird.A further advantageous embodiment of the invention can consist in that at least a partial amount of the liquid ammonia enriched in deuterium and tritium is brought into an isotope exchange with a second gas mixture of hydrogen and nitrogen enriched in deuterium and tritium, and further enriched in deuterium and tritium, the second gas mixture resulting from the cleavage of the enriched ammonia, a subset of this gas mixture being obtained as a by-product enriched in deuterium and tritium, and in that the subset of the gas mixture depleted in deuterium and tritium during the isotope exchange with the gas mixture, which after the first process step liquefied and split into hydrogen and nitrogen, is brought together.

In Weiterbildung der Erfindung soll diese es auch ermöglichen, das Isotop 1sN als Nebenprodukt auf wirtschaftlichere Weise als bisher zu gewinnen.In a further development of the invention, this should also make it possible to obtain the isotope 1s N as a by-product in a more economical way than before.

Das Isotop 15N könnte dann als Kühlgas für gasgekühlte Kernreaktoren oder als sogenanntes Deckgas für Leicht- und Schwerwasserreaktoren verwendet werden.The 15 N isotope could then be used as a cooling gas for gas-cooled nuclear reactors or as a so-called cover gas for light and heavy water reactors.

Bis jetzt wurden nur Kohlendioxid und Helium als Kühlgase eingesetzt und nur Helium als Deckgas für Leicht- und Schwerwasserreaktoren. Kohlendioxid ist wegen seiner chemischen Instabilität unter Strahlung nur in einem Temperaturbereich von ca. 600 bis 700°C geeignet. Als Deckgas für Wasserreaktoren ist Kohlendioxid wegen seiner Löslichkeit in Wasser nicht verwendbar, da es eine korrosive saure Lösung bildet.So far, only carbon dioxide and helium have been used as cooling gases and only helium as cover gas for light and heavy water reactors. Because of its chemical instability under radiation, carbon dioxide is only suitable in a temperature range of approx. 600 to 700 ° C. Because of its solubility in water, carbon dioxide cannot be used as cover gas for water reactors because it forms a corrosive acidic solution.

Helium ist ein teures Gas und erfordert einen hohen Dichtheitsgrad einer Anlage aufgrund seiner hohen Permeabilität.Helium is an expensive gas and requires a high degree of tightness of a plant due to its high permeability.

Bisher wurde das Isotop 1sN nicht industriell eingesetzt, da es nur unter einem unwirtschaftlich hohen Kostenaufwand gewonnen werden konnte, z. B. durch Destillation von Stickstoff oder von flüssigem Ammoniak.So far, the isotope 1s N has not been used industrially, since it could only be obtained at an uneconomically high cost, e.g. B. by distillation of nitrogen or liquid ammonia.

Die Erfindung wird im Folgenden anhand von zwei Ausführungsbeispielen erläutert.The invention is explained below using two exemplary embodiments.

Fig. 1 zeigt in schematischer Darstellungsweise ein Fließschema für ein Verfahren, bei welchem als Hauptprodukt an Deuterium und Tritium weitgehend verarmtes Wasser und als Nebenprodukt an Deuterium und Tritium angereichertes Wasser gewonnen wird.1 shows a schematic representation of a flow diagram for a process in which largely depleted water is obtained as the main product of deuterium and tritium and water enriched as a by-product of deuterium and tritium.

Fig. 2 zeigt in schematischer Darstellungsweise ein Fließschema für ein Verfahren, bei welchem als Hauptprodukt ebenfalls weitgehend an Deuterium und Tritium verarmtes Wasser und als Nebenprodukt an Deuterium und Tritium angereicherter Wasserstoff gewonnen wird. Als weiteres Nebenprodukt wird an 1sN angereicherter Stickstoff erzeugt.Fig. 2 shows a schematic representation of a flow diagram for a method in which water largely depleted in deuterium and tritium is obtained as the main product and hydrogen enriched in deuterium and tritium as a by-product. Nitrogen enriched in 1s N is produced as a further by-product.

Ein Verfahren zur Gewinnung von an Deuterium und Tritium abgereicherten Wasser als Hauptprodukt und an Deuterium und Tritium angereichertem Nebenprodukt aus deuterium- und tritiumhaltigem Wasser wird gemäß Fig. 1 in der folgenden Weise durchgeführt:A process for obtaining deuterium and tritium-depleted water as the main product and deuterium and tritium-enriched by-product from deuterium- and tritium-containing water is carried out according to FIG. 1 in the following manner:

Die Speisung, z. B. Flußwasser oder deuterium-und tritiumhaltiges Abwasser wird durch eine Leitung 1 mittels einer Pumpe 2 in einen Isotopenaustauschturm 3 gefördert und hierin im Gegenstrom zu an Deuterium und Tritium abgereicherten Ammoniakdampf in Isotopenaustausch gebracht.The feed, e.g. B. river water or deuterium- and tritium-containing wastewater is conveyed through a line 1 by means of a pump 2 into an isotope exchange tower 3 and brought into isotope exchange in countercurrent to ammonia vapor depleted in deuterium and tritium.

Hierbei wird das Wasser an Deuterium und Tritium weitgehend verarmt. Dieses für landwirtschaftliche oder industrielle Zwecke dienende Wasser enthält noch gelöstes Ammoniak. Dieses ist aus Gründen des Umweltschutzes, des Ammoniakverbrauchs usw. nicht erwünscht. Deshalb wird der Ammoniakanteil in einer, an den unteren Teil des Austauschturmes 3 anschließenden Kolonne 4 entfernt, wobei der für die Abtrennung erforderliche Dampf mit Hilfe einer Wärmequelle im Sumpf der Kolonne 44 erzeugt wird. Diese Wärmequelle kann beispielsweise als eine mit Dampf beheizte Schlange 5 ausgebildet sein. Das von Ammoniak befreite Produkt wird durch eine Leitung 6 entnommen.The water is largely depleted of deuterium and tritium. This water, which is used for agricultural or industrial purposes, still contains dissolved ammonia. This is not desirable for reasons of environmental protection, ammonia consumption, etc. The ammonia portion is therefore removed in a column 4 adjoining the lower part of the exchange tower 3, the steam required for the separation being generated with the aid of a heat source in the bottom of the column 44. This heat source can be designed, for example, as a coil 5 heated with steam. The product freed from ammonia is removed through a line 6.

Der Ammoniakdampf, der den Kopfteil des Austauschturmes 3 verläßt, und dessen Konzentration an Deuterium und Tritium etwas geringer als die Konzentration des Speisewassers ist, enthält Wasserdampf, der in den weiteren Verfahrensstufen nicht vorhanden sein darf.The ammonia vapor, which leaves the top part of the exchange tower 3, and whose concentration of deuterium and tritium is slightly lower than the concentration of the feed water, contains water vapor, which must not be present in the further process stages.

Daher wird der Wasserdampf in einer oberhalb des Austauschturmes 3 angeordneten Rektifikationskolonne 7 abgetrennt. Der wasserfreie Ammoniakdampf wird in einem Kondensator 8 mittels einer wassergekühlten Schlange 9 verflüssigt.The water vapor is therefore separated off in a rectification column 7 arranged above the exchange tower 3. The anhydrous ammonia vapor is liquefied in a condenser 8 by means of a water-cooled coil 9.

Ein Teil des Kondensats wird durch eine Leitung 10 in die Kolonne 7 als Rücklauf eingespeist. Der Hauptteil des Kondensats wird durch eine Leitung 11 mittels einer Pumpe 12 in einen Cracking-Ofen 13 gefördert und darin in bekannter Weise in ein Synthesegasgemisch (N2 + 3H2) umgewandelt. Dieses Gasgemisch wird in einen 1-sotopenaustauschturm 14 eingeleitet und dort im Gegenstrom zu flüssigem Ammoniak in Austausch gebracht. Dieser Isotopenaustausch kann nur dann stattfinden, wenn das flüssige Ammoniak einen gelösten Katalysator, z.B. KNH2, enthält. Hierbei verarmt der Wasserstoff des Gasgemisches an Deuterium und Tritium, während sich das Ammoniak an Deuterium und Tritium anreichert.Part of the condensate is fed through a line 10 into the column 7 as reflux. The main part of the condensate is conveyed through a line 11 by means of a pump 12 into a cracking furnace 13 and converted therein into a synthesis gas mixture (N 2 + 3H 2 ) in a known manner. This gas mixture is introduced into a 1-sotope exchange tower 14 and exchanged there in countercurrent with liquid ammonia. This isotope exchange can only take place if the liquid ammonia contains a dissolved catalyst, eg KNH 2 . The hydrogen in the gas mixture becomes depleted of deuterium and tritium, while the ammonia accumulates on deuterium and tritium.

Aus dem Gasgemisch wird dann in einer Syntheseanlage 15 Ammoniak gebildet. Der Hauptteil des an Deuterium und Tritium verarmten Ammoniaks wird mittels einer Pumpe 16 durch eine Leitung 17 in den Kopfteil des Austauschturmes 14 gefördert.15 ammonia is then formed from the gas mixture in a synthesis plant. The main part of the ammonia depleted in deuterium and tritium is conveyed by means of a pump 16 through a line 17 into the head part of the exchange tower 14.

Das sich während des Austausches mit dem Synthesegasgemisch an Deuterium und Tritium anreichernde Ammoniak, in welchem ein Katalysator gelöst ist, wird durch eine Leitung 18 aus dem Austauschturm 14 entnommen, in einem Drosselventil 19 entspannt und in einen Konzentrator 20 eingeleitet.The ammonia which is enriched in deuterium and tritium during the exchange with the synthesis gas mixture and in which a catalyst is dissolved is removed from the exchange tower 14 through a line 18, expanded in a throttle valve 19 and introduced into a concentrator 20.

Die restliche Teilmenge des in der Syntheseanlage 15 gebildeten Ammoniaks wird durch Leitung 21 entnommen und eine Teilmenge hiervon durch eine Leitung 22, in welcher ein Drosselventil 23 angeordnet ist, in einen Verdampfer 24 entspannt. Der aus diesem Verdampfer stammende Ammoniakdampf, der an Deuterium und Tritium verarmt ist, wird durch eine Leitung 25 in einen Austauschturm 26 eingeleitet und hierin im Gegenstrom mit flüssigem, an Deuterium und Tritium angereicherten Ammoniak in Isotopenaustausch gebracht. Der sich hierbei an Deuterium und Tritium anreichernde Ammoniakdampf wird durch eine Leitung 27 in einen Kühler 28 gefördert und dort mittels einer von Wasser durchströmten Kühlschlange 29 kondensiert. Das Kondensat wird durch eine Leitung 30 entnommen und mittels einer Pumpe 31 in den Konzentrator 20 gefördert.The remaining part of the ammonia formed in the synthesis plant 15 is withdrawn through line 21 and a part thereof is expelled through line 22, in which a throttle valve 23 is arranged, into an evaporator 24. The ammonia vapor originating from this evaporator, which is depleted in deuterium and tritium, is introduced through a line 25 into an exchange tower 26 and is brought into isotope exchange therein in countercurrent with liquid ammonia enriched in deuterium and tritium. The ammonia vapor that accumulates here in deuterium and tritium is conveyed through a line 27 into a cooler 28 and condensed there by means of a cooling coil 29 through which water flows. The condensate is removed through a line 30 and conveyed into the concentrator 20 by means of a pump 31.

Der Konzentrator 20 besteht aus einem nicht dargestellten Teilverdampfer, der aus den durch die Leitungen 30 und 18 eingespeisten Flüssigkeiten einen Katalysator freien Ammoniakdampfstrom erzeugt und aus einem nicht dargestellten Kondensator, der diesen Dampfstrom verflüssigt.The concentrator 20 consists of a partial evaporator, not shown, which generates a catalyst-free ammonia vapor stream from the liquids fed through the lines 30 and 18 and a condenser, not shown, which liquefies this vapor stream.

Das verflüssigte, an Deuterium und Tritium angereicherte Ammoniak wird dem Konzentrator 20 durch eine Leitung 32 entnommen.The liquefied ammonia enriched in deuterium and tritium is removed from the concentrator 20 through a line 32.

Der im Konzentrator 20 eingebaute Teilverdampfer produziert andererseits noch eine an Katalysator und Deuterium und Tritium angereicherte Ammoniakflüssigkeit, die durch eine Leitung 33 dem Konzentrator 20 entnommen, durch ein Drosselventil 34 und in den Kopfteil des Isotopenaustauschturmes 26 entspannt wird.The partial evaporator installed in the concentrator 20, on the other hand, still produces an ammonia liquid enriched in catalyst and deuterium and tritium, which is removed from the concentrator 20 through a line 33, expanded by a throttle valve 34 and into the top part of the isotope exchange tower 26.

Das an Deuterium und Tritium verarmte Ammoniak, welches gelösten Katalysator enthält, wird dem Austauschturm 26 am Boden durch eine Leitung 35 entnommen und mittels einer Pumpe 36 in den Austauschturm 14 gefördert.The ammonia depleted in deuterium and tritium, which contains dissolved catalyst, is removed from the exchange tower 26 at the bottom through a line 35 and conveyed into the exchange tower 14 by means of a pump 36.

Der durch Leitung 21 der Ammoniaksynthese 15 entnommene Ammoniakstrom wird, vermindert um die durch Leitung 22 entnommene Teilmenge, durch Leitung 37 weggeführt und durch ein Drosseiventi) 38 in einen Verdampfer 39 entspannt. Der an Deuterium und Tritium verarmte Ammoniakdampf wird sodann zur Einleitung des ersten Verfahrensschrittes in den Isotopenaustauschturm 3 durch eine Leitung 40 eingespeist.The ammonia stream withdrawn through line 21 of the ammonia synthesis 15, reduced by the partial amount withdrawn through line 22, is led away through line 37 and expanded through a throttle valve 38 into an evaporator 39. The ammonia vapor depleted in deuterium and tritium is then used to initiate the first ver driving step into the isotope exchange tower 3 fed through a line 40.

Der dem Konzentrator 20 durch Leitung 32 entnommene Katalysator freie, an Deuterium und Tritium angereicherte Ammoniakdampf wird durch ein Drosselventil 41 in einen Verdampfer 42 entspannt. Von hier aus wird der Ammoniakdampf durch eine Leitung 43 in einen Isotopenaustauschturm 44 eingespeist. Am Kopf des Austauschturmes 44 wird ein zweiter Wasserstrom, der aus der gleichen Quelle wie der erste Wasserstrom stammen kann, durch eine Leitung 45 mittels einer Pumpe 46 eingespeist und im Gegenstrom analog zu dem Austauschturm 3 mit Ammoniakdampf in Isotopenaustausch gebracht. Im Gegensatz zu dem ersten Verfahrensschritt wird, da der Ammoniakdampf an Deuterium und Tritium abgereichert ist, das Wasser an Deuterium und Tritium angereichert.The free ammonium vapor enriched in deuterium and tritium from the concentrator 20 through line 32 is expanded through a throttle valve 41 into an evaporator 42. From here the ammonia vapor is fed through a line 43 into an isotope exchange tower 44. At the head of the exchange tower 44, a second water stream, which can originate from the same source as the first water stream, is fed in through a line 45 by means of a pump 46 and is counteracted in an isotope exchange with ammonia vapor analogously to the exchange tower 3. In contrast to the first process step, since the ammonia vapor is depleted in deuterium and tritium, the water is enriched in deuterium and tritium.

Zur Abtrennung des Wasserdampfes wird der an Deuterium und Tritium verarmte Ammoniakdampf in eine Rektifikationskolonne 47 eingeleitet und der von Wasserdampf befreite Ammoniakdampf in einem Kondensator 48, in welchem eine von Kühlmittel durchströmte Schlange 49 ange- ordnet ist, verflüssigt. Ein Teil des Kondensats wird durch Leitung 50 als Rücklauf in die Rektifikationskolonne 47 zurückgeführt, während die wesentlich größere Menge des Kondensats durch eine Leitung 51 entnommen und mit dem aus dem Kondensator 9 durch Leitung 11 entnommenen Kondensat zusammengeführt.For the separation of the water vapor depleted of deuterium and tritium ammonia vapor is introduced into a rectification column 47 and the freed from water vapor, ammonia vapor in a condenser 48, in which a flow-through coolant line 49 is - is arranged, liquefied. A portion of the condensate is returned through line 50 to the rectification column 47 as reflux, while the much larger amount of the condensate is withdrawn through line 51 and combined with the condensate withdrawn from condenser 9 through line 11.

Unterhalb des Austauschturmes 44 ist zur Abtrennung des im Wasser gelösten Ammoniaks eine Kolonne 52 angeordnet, wobei der für die Abtrennung erforderliche Dampf mit Hilfe einer Wärmequelle im Sumpf der Kolonne 52 erzeugt wird. Diese Wärmequelle kann beispielsweise als eine mit Dampf beheizte Schlange 53 ausgebildet sein.A column 52 is arranged below the exchange tower 44 to separate the ammonia dissolved in the water, the steam required for the separation being generated with the aid of a heat source in the bottom of the column 52. This heat source can be designed, for example, as a steam-heated coil 53.

Das von Ammoniak befreite, an Deuterium und Tritium angereicherte Wasser wird durch eine Leitung 54 entnommen. Dieses Wasser kann beispielsweise als Speisung einer Schwerwasserproduktionsanlage oder einer Tritium-Konzentrieranlage verwendet werden.The water freed from ammonia and enriched in deuterium and tritium is removed through a line 54. This water can be used, for example, to feed a heavy water production plant or a tritium concentrating plant.

Fig. 2 zeigt, wie bereits erwähnt, ein Fließschema für ein Verfahren, bei welchem als Hauptprodukt ebenfalls weitgehend an Deuterium und Tritium verarmtes Wasser erzeugt wird. Als weiteres Produkt wird an Deuterium und Tritium angereicherter Wasserstoff gewonnen und als drittes Produkt an 15N angereicherter Stickstoff erzeugt.As already mentioned, FIG. 2 shows a flow diagram for a method in which water which is largely depleted in deuterium and tritium is also produced as the main product. As a further product, hydrogen enriched in deuterium and tritium is obtained and as a third product, nitrogen enriched in 15 N is produced.

Die mit der Anlage zur Durchführung eines Verfahrens entsprechend der Fig. 1 übereinstimmenden Anlagenelemente in Fig. 2 sind zur Vermeidung von Wiederholungen mit den gleichen Bezugsziffern bezeichnet, die jedoch mit einem Apostroph versehen sind.The system elements in FIG. 2 which correspond to the system for carrying out a method according to FIG. 1 are designated with the same reference numerals to avoid repetitions, but which are provided with an apostrophe.

Ihre Funktionsweise entspricht derjenigen der Fig. 1. So wird in eine Austauschkolonne 3' z.B. Flußwasser oder deuterium- und tritiumhaltiges Abwasser eingeleitet und als mindestens weitgehend von Deuterium und Tritium befreites Wasser durch Leitung 6 entnommen.Their mode of operation corresponds to that of Fig. 1. For example, in an exchange column 3 ' River water or deuterium- and tritium-containing wastewater is introduced and removed as line at least largely freed from deuterium and tritium through line 6.

Die Gesamtanlage ist ebenfalls unabhängig von einer Syntheseanlage zur industriellen Erzeugung von Ammoniak.The entire plant is also independent of a synthesis plant for the industrial production of ammonia.

Anstelle der Anlage gemäß Fig. 1 wird bei einer Anlage entsprechend der Fig. 2 kein katalysatorfreies an Deuterium und Tritium angereichertes Ammoniak entnommen und zur Erzeugung von deuterium- und tritiumhaltigem Wasser dienendes Austauschmittel verwendet.Instead of the plant according to FIG. 1, no catalyst-free ammonia enriched in deuterium and tritium is taken from a plant according to FIG. 2 and exchange medium used to produce deuterium and tritium-containing water is used.

Abweichend von dieser Maßnahme wird im vorliegenden Fall durch eine mit der Leitung 18' verbundene Leitung 60 eine äquivalente Menge von flüssigem Ammoniak entnommen, welches noch gelösten Katalysator enthält, und durch eine Pumpe 61 in einen Isotopenaustauschturm 62 gefördert. In letzterem wird das flüssige Ammoniak mit an Deuterium und Tritium angereicherten Synthesegasgemisch (NZ + 3Hz) im Gegenstrom in Isotopenaustausch gebracht, wobei sich das Ammoniak und der Katalysator an Deuterium und Tritium anreichert und zwar eventuell bis zu reinem ND3 bzw. reinem NT3, während sich das Synthesegasgemisch an 15N anreichert.Deviating from this measure, in the present case, an equivalent amount of liquid ammonia, which still contains dissolved catalyst, is withdrawn through a line 60 connected to the line 18 ′ and conveyed into an isotope exchange tower 62 by a pump 61. In the latter, the liquid ammonia is brought into isotope exchange in countercurrent with the synthesis gas mixture enriched in deuterium and tritium (N Z + 3H z ), the ammonia and the catalyst accumulating in deuterium and tritium, possibly up to pure ND 3 or pure NT 3 , while the synthesis gas mixture accumulates at 15 N.

Die im Isotopenaustauschturm 62 an Deuterium und Tritium und an 15N abgereicherte Flüssigkeit strömt durch eine Leitung 63 in einen Konzentrator 64, der ähnlich wie der Konzentrator 20 (Fig. 1) bzw. 20' (Fig. 2) ausgebildet ist.The liquid depleted in deuterium and tritium and in 15 N in the isotope exchange tower 62 flows through a line 63 into a concentrator 64, which is similar to the concentrator 20 (FIG. 1) or 20 ′ (FIG. 2).

Im Konzentrator 64 werden zwei Ströme erzeugt, und zwar ein Flüssigkeitsstrom mit einem höheren Katalysatorgehalt als der den Austauschturm 62 verlassende Flüssigkeitsstrom. Dieser Flüssigkeitsstrom ist an Deuterium und Tritium angereichert und enthält eventuell ND3 und/oder NT3 und ist an 15N verarmt, eventuell sogar vollständig 15N frei und wird durch eine Leitung 65 nach Entspannung in einem Drosselventil 66 in einen Konzentrator 20' eingeleitet, dessen Arbeitsweise derjenigen des Konzentrators 20 in Fig. 1 entspricht.Two flows are generated in the concentrator 64, namely a liquid flow with a higher catalyst content than the liquid flow leaving the exchange tower 62. This liquid stream is enriched in deuterium and tritium and possibly contains ND 3 and / or NT 3 and is depleted of 15 N, possibly even completely 15 N free and is introduced through a line 65 into a concentrator 20 'after expansion in a throttle valve 66, whose mode of operation corresponds to that of the concentrator 20 in FIG. 1.

Ein zweiter, im Konzentrator 64 entstandener Flüssigkeitsstrom besteht aus NH3 bzw. ND3 und/ oder NT3 und ist frei von Katalysator. Außerdem ist es an 15N verarmt oder sogar völlig frei von 15N.A second stream of liquid formed in the concentrator 64 consists of NH 3 or ND 3 and / or NT 3 and is free of catalyst. In addition, it is impoverished at 15 N or even completely free of 15 N.

Dieser zweite Strom wird von einer Pumpe 67 in einen Cracking-Ofen 68 gefördert und hierin in Nz + 3Hz bzw. N2 + 3D2 und/oder N2 + 3Tz zerlegt.This second stream is conveyed by a pump 67 into a cracking furnace 68 and broken down therein into N z + 3H z or N 2 + 3D 2 and / or N 2 + 3T z .

Die Hauptmenge dieser Gase wird durch Leitungen 69 und 70 in den Isotopenaustauschturm 62 zurückgeführt und dort in der vorstehend beschriebenen Weise an- 15N an- und an Deuterium und Tritium abgereichert. Das Gas wird anschließend durch eine Leitung 71 mit dem aus dem Cracking-Ofen 13' stammenden Synthesegas zusammengeführt.The majority of these gases are returned through lines 69 and 70 to the isotope exchange tower 62, where they accumulate at 15 N and deplete in deuterium and tritium in the manner described above. The gas is then brought together through a line 71 with the synthesis gas originating from the cracking furnace 13 '.

Die restliche Menge der im Cracking-Ofen 68 erzeugten Spaltprodukte wird durch eine Leitung 72 in eine Wasserstoff-Stickstoff-Trennanlage 73 bekannter Bauart eingeleitet. Z. B. kann der in der Trennanlage stattfindende Prozeß mit Hilfe einer Tieftemperaturtrennung durch Verflüssigung und Destillation oder durch alternierende, selektive Absorption oder durch selektiv permeable Membrane erfolgen.The remaining amount of the fission products generated in the cracking furnace 68 is introduced through a line 72 into a hydrogen-nitrogen separation system 73 of a known type. For example, the process taking place in the separation plant can be carried out with the aid of low-temperature separation by liquefaction and distillation or by alternating, selective absorption or by selectively permeable membrane.

In der Trennanlage 73 wird das eingeleitete Gasgemisch in Stickstoff und Wasserstoff zerlegt, wobei durch die Leitung 74 an 15N verarmter bzw. 15N freier wasserstofffreier Stickstoff entnommen wird. Dieser Stickstoff kann für industrielle Zwekke weiter verwendet werden.In the separating system 73, the introduced gas mixture is broken down into nitrogen and hydrogen, with line 74 withdrawing 15 N depleted or 15 N free hydrogen-free nitrogen. This nitrogen can continue to be used for industrial purposes.

Ein Teil des durch die Leitung 75 entnommenen stickstoffsfreien Wasserstoffs, der an Deuterium und Tritium angereichert ist, kann durch Leitung 76 als Produkt entnommen werden. Es besteht dann die Möglichkeit, dieses Produkt in nicht dargestellter Weise durch mindestens eine weitere, nachgeschaltete Stufe an Deuterium bzw. Tritium anzureichern.A portion of the nitrogen-free hydrogen withdrawn through line 75, enriched in deuterium and tritium, can be withdrawn as product through line 76. There is then the possibility of enriching this product in a manner not shown with at least one further, subsequent stage of deuterium or tritium.

Eine andere Möglichkeit besteht darin, das Produkt mit Sauerstoff zu deuterium- bzw. tritiumhaltigem Wasser zu verbrennen. Der restliche Teilstrom wird durch eine Leitung 77 mittels eines Kompressors 78 rezirkuliert und dem Teilstrom aus Leitung 69 zugemischt, wobei das Gasgemisch durch Leitung 70 in den Austauschtürm 62 eingeleitet wird.Another possibility is to burn the product with oxygen to water containing deuterium or tritium. The remaining partial flow is recirculated through a line 77 by means of a compressor 78 and mixed into the partial flow from line 69, the gas mixture being introduced through line 70 into the exchange tower 62.

Das durch Leitung 37' an Deuterium und Tritium verarmte, aber an 1sN angereicherte Ammoniak wird analog zu Fig. 1 entspannt, verdampft und als Austauschmittel mit Flußwasser oder deuterium-oder tritiumhaltigem Flußwasser in Isotopenaustausch gebracht, so daß die Leitung 11' von Ammoniak durchströmt wird, welches an 15N angereichert ist, wobei der Deuterium- und Tritium-Gehalt der Deuterium- und Tritium-Konzentration des Speisewassers entspricht.The ammonia depleted in deuterium and tritium by line 37 ', but enriched in 1s N, is expanded analogously to FIG. 1, evaporated and brought into isotope exchange with river water or river water containing deuterium or tritium, so that line 11' is flowed through by ammonia which is enriched at 15 N, the deuterium and tritium content corresponding to the deuterium and tritium concentration of the feed water.

Die 15N-Konzentration des im Cracking-Ofen 13' erzeugten Synthesegasgemisches ist bei seinem Austritt aus dem lsotopenaustauschturm 14' relatif hoch, und zwar aufgrund der 15N-Anreicherung des aus dem Austauschturm 62 herausgeführten Gasstromes, welcher dem aus dem Cracking-Ofen 13' entnommenen Synthesegas zugemischt wird, vor dem Eintritt in den Austauschturm 14'.The 15 N concentration of the synthesis gas mixture produced in the cracking furnace 13 ′ is relatively high when it emerges from the isotope exchange tower 14 ′, specifically because of the 15 N enrichment of the gas stream led out of the exchange tower 62, which is the same as that from the cracking furnace 13 'removed synthesis gas is admixed before entering the exchange tower 14'.

Ein Teil des an Deuterium und Tritium verarmten Synthesegases wird nach dem Austauschturm 14 durch eine Leitung 79 von dem der AmmoniakSynthese-Anlage 15' zugeführten Gas abgezweigt und in eine Wasserstoff-Stickstoff-Trennanlage 80 bekannter Bauart eingeleitet.Part of the synthesis gas depleted in deuterium and tritium is branched off after the exchange tower 14 through a line 79 from the gas supplied to the ammonia synthesis system 15 'and introduced into a hydrogen-nitrogen separation system 80 of a known type.

Das Gasgemisch wird in der Trennanlage, die z.B. wie die Trennanlage 73 ausgebildet sein kann, in zwei Ströme zerlegt.The gas mixture is in the separation plant, which e.g. how the separation system 73 can be designed, broken down into two streams.

Ein erster, an 15N angereicherter StickstoffStrom, der vorzugsweise wasserstofffrei ist, wird durch eine Leitung 81 entnommen.A first nitrogen stream enriched with 15 N, which is preferably hydrogen-free, is withdrawn through a line 81.

Ein zweiter Gasstrom, der vorwiegend aus Wasserstoff besteht (aber nicht unbedingt stickstofffrei ist), wird durch Leitung 82 mittels eines Kompressors 83 dem in den Austauschturm eingeleiteten Gasstrom zugemischt.A second gas stream, which mainly consists of hydrogen (but is not necessarily nitrogen-free), is mixed through line 82 by means of a compressor 83 into the gas stream introduced into the exchange tower.

Zur Kompensation des durch Leitung 81 aus der Anlage entnommenen Produktstromes und des durch Leitung 74 entnommenen Stickstoffs wird im Ausführungsbeispiel Stickstoff mit natürlicher Konzentration an 1sN durch die Leitung 84 in die Anlage eingespeist.To compensate for the product stream withdrawn from the system through line 81 and the nitrogen withdrawn through line 74, nitrogen with a natural concentration of 1s N is fed through line 84 into the system in the exemplary embodiment.

Die Leitung 84 könnte auch alternativ nicht am Eintritt in den Austauschturm 14', sondern auch an den Gaseintritt des Austauschturmes 62 angeschlossen sein. Die Einspritzstelle von frischem Stickstoff hängt von der Prozeßoptimierung ab und besonders von dem gewünschten Verhältnis der Produkte 15N, Deuterium und Tritium.The line 84 could alternatively also not be connected to the entry into the exchange tower 14 ', but also to the gas entry of the exchange tower 62. The injection point of fresh nitrogen depends on the process optimization and especially on the desired ratio of the products 15 N, deuterium and tritium.

Zusammenfassend ist festzustellen, daß im Ausführungsbeispiel gemäß Fig. 2 ein Verbrauch von Flußwasser oder deuterium- und tritiumhaltigem Abwasser und Stickstoffgas stattfindet, während als Hauptprodukte durch Leitung 6' an Deuterium und Tritium mindestens weitgehend befreites Wasser, durch Leitung 81 an 15N angereicherter Stickstoff und durch Leitung 76 an Deuterium und Tritium angereicherter Wasserstoff entnommen werden und an 15N verarmter Stickstoff als Nebenprodukt entsteht, der durch Leitung 74 entnommen wird.In summary, it can be stated that in the exemplary embodiment according to FIG. 2, river water or deuterium- and tritium-containing waste water and nitrogen gas are consumed, while the main products through line 6 'of deuterium and tritium are at least largely freed water, through line 81 nitrogen enriched with 15 N and Hydrogen enriched in deuterium and tritium can be withdrawn through line 76 and nitrogen, which is depleted in 15 N, is formed as a by-product, which is removed through line 74.

Es tritt nur ein äußerst geringer Verbrauch von Ammoniak im wesentlichen aufgrund von undichten Stellen in der Anlage auf.There is only an extremely low consumption of ammonia, essentially due to leaks in the system.

Abschließend sei noch darauf hingewiesen, daß es von Vorteil sein kann, mehrere identische Anlagen, sei es gemäß Fig. 1 oder sei es gemäß Fig. 2 in Serie zu schalten, um je nach Bedarf Produkte, die an den betreffenden Isotopen starken an- oder stärker abgereichert sind, zu gewinnen.In conclusion, it should also be pointed out that it can be advantageous to connect several identical plants, be it according to FIG. 1 or be it according to FIG. 2 in series, in order, as required, to produce products which are strongly associated with the isotopes concerned are more depleted to win.

Eine solche Serienschaltung kann auch durch eine periodische Betriebsweise einer einzigen Anlage ersetzt werden, wobei mindestens ein Produkt einer Periode als Speisung der anschließenden Periode verwendet werden.Such a series connection can also be replaced by a periodic mode of operation of a single installation, at least one product of a period being used to feed the subsequent period.

Werden absolut reine Produkte, wie z. B. von Deuterium und Tritium vollständig befreites Wasser, reines Isotop 15N usw. benötigt, so können auch den Produktentnahmen geeignete Endanreicherungs- oder Abreicherungsstufen, wie sie in der Praxis üblich sind, nachgeschaltet werden.Are absolutely pure products, such as B. from deuterium and tritium completely freed water, pure isotope 15 N, etc. needed, the product withdrawals suitable final enrichment or depletion stages, as are common in practice, can be connected downstream.

ZahlenbeispielNumerical example

Anlage für die gleichzeitige Abreicherung von Deuterium und Tritium und die Gewinnung von an Deuterium angereichertem Wasser bzw. Schwerwasser.Plant for the simultaneous depletion of deuterium and tritium and the extraction of water or heavy water enriched with deuterium.

Angenommene Leistungen:Accepted services: 1. Tritiumentfernung aus Abwasser:1. Tritium removal from wastewater:

3000 m3/Jahr Abwasser mit 200 Ci/m3 Tritiumgehalt, das aus einer Kernbrennstoffwiederaufbereitungsanlage von 1400 t/Jahr anfällt, soll auf die nach Gesetz erlaubte Konzentration von 0.03 Ci/ m3 gebracht werden.3000 m 3 / year of wastewater with 200 Ci / m 3 tritium content, which arises from a nuclear fuel reprocessing plant of 1400 t / year, should be brought to the concentration of 0.03 Ci / m 3 permitted by law.

2. Deuteriumfreies Wasser:2. Deuterium-free water:

300 m3/h Wasser mit weniger als 10 ppm D/D+ H soll für landwirtschaftliche Zwecke produziert werden. Die Tritiumkonzentration soll unter 0.03 Ci/m3 liegen.300 m 3 / h of water with less than 10 ppm D / D + H should be produced for agricultural purposes. The tritium concentration should be below 0.03 Ci / m 3 .

3. Schwerwasser:3. Heavy water:

Die Anlage sollte möglichst viel an Deuterium angereichertes Wasser oder D20 produzieren.The plant should produce as much deuterium-enriched water or D 2 0 as possible.

Lösung der Aufgabenstellung:Solution of the task:

3000 m3/Jahr Abwasser oder 375 kg/h Abwasser mit 200 Ci/m3 T20 und 150 ppm D/D+H werden zuerst mit 299 625 kg/h Flußwasser mit 150 ppm D/D+H gemischt, um einen Strom von 30 000 kg/h Wasser mit 0.25 Ci/m3 T2O und 150 ppm D/D + H zu bilden.3000 m 3 / year waste water or 375 kg / h waste water with 200 Ci / m 3 T 2 0 and 150 ppm D / D + H are first mixed with 299 625 kg / h river water with 150 ppm D / D + H to get a Flow of 30,000 kg / h Form water with 0.25 Ci / m 3 T 2 O and 150 ppm D / D + H.

Dieses Wasser wird als Speisung verwendet (vergl. Fig. 1, Bezugsziffer «1» und Fig. 2, Bezugsziffer «1'») für eine Anlage zur Durchführung eines Verfahrens gemäß Anspruch 1.This water is used as a feed (cf. FIG. 1, reference number “1” and FIG. 2, reference number “1 '”) for a plant for carrying out a method according to claim 1.

Die folgende Tabelle zeigt Zahlenbeispiele für drei Fälle. Die Fälle I und II entsprechen allen Merkmalen des Anspruchs 1, indem der Ammoniak-Moldurchsatz (vergl. Zeile «e») größer ist als zwei Drittel des Wasser-Moldurchsatzes (vergl. Zeile «b»). Der Fall III entspricht nicht den vorgenannten Bedingungen, indem der Ammoniak-Moldurchsatz kleiner als zwei Drittel des Wasserdurchsatzes ist.The following table shows numerical examples for three cases. Cases I and II correspond to all the features of claim 1, in that the ammonia mold throughput (see line "e") is greater than two thirds of the water mold throughput (see line "b"). Case III does not meet the aforementioned conditions in that the ammonia mold throughput is less than two thirds of the water throughput.

Figure imgb0001
Figure imgb0001
Figure imgb0002
Figure imgb0002

Aus dem Zahlenbeispiel geht hervor, daß man das Speisewasser bis auf 10 ppm abreichern kann mit nur 20 Trennstufen, wenn die Moldurchsätze entsprechend dem Kennzeichen des Anspruchs 1 gewählt sind (Fall I und II).The numerical example shows that the feed water can be depleted to 10 ppm with only 20 separation stages if the mold throughputs are selected in accordance with the characterizing part of claim 1 (cases I and II).

Die entsprechenden Konzentrationen in der Leitung 40 (Fig. 1) bzw. 42' (Fig.2) sind 8,79 und 5,207 ppm, was einem Abreicherungsfaktor von 12,8 (Fall I) und 24,3 (Fall II) in dem Turm 14 bzw. 14' entspricht. Der Fall III, der die Angaben bezüglich des Moldurchsatzes gemäß Anspruch 1 nicht erfüllt, kann überhaupt nicht die vorgeschlagene Abreicherung auf 10 ppm erreichen.The corresponding concentrations in line 40 (FIG. 1) and 42 '(FIG. 2) are 8.79 and 5.207 ppm, which is a depletion factor of 12.8 (case I) and 24.3 (case II) in the Tower 14 or 14 'corresponds. Case III, which does not meet the information regarding mold throughput according to claim 1, cannot achieve the proposed depletion to 10 ppm at all.

Selbst um 20 ppm zu erreichen, brauchte man gemäß Zahlenbeispiel 50 Trennstufen anstatt 20.Even to reach 20 ppm, according to the numerical example, 50 separation stages were required instead of 20.

Die Konzentration in der Leitung 40 (Fig. 1) bzw. 42' (Fig. 2) ist im Fall III 1,2252 ppm, was einem Abreicherungsfaktor von 123 entspricht.The concentration in line 40 (FIG. 1) or 42 ′ (FIG. 2) is 1.2252 ppm in case III, which corresponds to a depletion factor of 123.

Ähnliche Verhältnisse gelten für Tritium, wie . aus der Tabelle ersichtlich ist.Similar ratios apply to tritium, such as. can be seen from the table.

Claims (4)

1. A process for separating at least one heavy isotope from a compound containing hydrogen or from a mixture containing hydrogen, using an ammonia synthesis and a mixture of hydrogen and nitrogen, characterised in that in a first step of the process water containing deuterium and tritium is brought into isotopic exchange with ammonia vapour depleted of tritium and deuterium, the molar throughput of ammonia being chosen to be more than two-thirds the molar throughput of water, and during the isotopic exchange between the two streams the water is virtually entirely depleted of tritium and deuterium and is recovered as the, produkt, whereas the ammonia vapour becomes enriched with deuterium and tritium, but by the end of the first step of the process has a lesser concentration of deuterium and tritium than the water brought into isotopic exchange, and in that the ammonia vapour is then liquefied and in a second step of the process is broken down into a mixture comprising hydrogen and nitrogen, and in that in a third step of the process the gas mixture is depleted of deuterium and tritium by isotopic exchange with liquid ammonia that has been depleted of deuterium and tritium, the liquid ammonia having been obtained by synthesisation from the depleted gas mixture and containing a dissolved catalyst, and one portion of the synthesised ammonia being evaporated and returned as the exchange stream to the first stage of the process, whereas the other portion of the ammonia enriched in the third step of the process is processed further.
2. The process according to claim 1, characterised in that the portion of ammonia that has been enriched with deuterium and tritium is evaporated and brought into isotopic exchange with a second stream of water, the water being enriched with tritium and deuterium and recovered as a by-product, and in that the ammonia vapour that has been depleted of deuterium and tritium is liquefied and combined with the ammonia from the first step of the process before its breakdown into hydrogen and nitrogen.
3. The process according to claim 1, characterised in that at least one portion of the liquid ammonia that has been enriched with deuterium and tritium is brought into isotopic exchange with a second gas mixture of hydrogen and nitrogen that has been enriched with deuterium and tritium, and in doing so is further enriched with deuterium and tritium, the second gas mixture having resulted from breaking down the enriched ammonia, one portion of said gas mixture being produced as a deuterium and tritium enriched by-product, and in that the portion of the gas mixture that was depleted of deuterium and tritium during the isotopic exchange is combined with the gas mixture that was liquefied after the first step of the process and split into hydrogen and nitrogen.
4. The process according to claim 3, charac-. terised in that the deuterium and tritium enriched by-product is split into nitrogen and into hydrogen enriched with deuterium and tritium, and at least partially separated into pure nitrogen and pure. hydrogen, the pure nitrogen being removed, and one portion of the deuterium and tritium enriched hydrogen is used as the starting product for a further processing operation, while the larger portion is combined with the second gas mixture, and in that furthermore before the third step of the process nitrogen with a natural 1sN concentration is combined with the first gas mixture and after the third step of the process one portion of the gas mixture that became enriched with 15N during the isotopic exchange is broken down into nitrogen enriched with 15N and into a stream consisting essentially of hydrogen, which stream is returned once more to the gas mixture stream before the third step of the process, while the nitrogen enriched with 15N is recovered as a (by-)product.
EP84101943A 1983-05-05 1984-02-24 Process for the separation of deuterium and tritium from water by the use of ammonia or a mixture of hydrogen and nitrogen Expired - Lifetime EP0130274B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH2453/83 1983-05-05
CH245383A CH654489B (en) 1983-05-05 1983-05-05

Publications (3)

Publication Number Publication Date
EP0130274A2 EP0130274A2 (en) 1985-01-09
EP0130274A3 EP0130274A3 (en) 1987-09-30
EP0130274B1 true EP0130274B1 (en) 1990-01-10

Family

ID=4234168

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84101943A Expired - Lifetime EP0130274B1 (en) 1983-05-05 1984-02-24 Process for the separation of deuterium and tritium from water by the use of ammonia or a mixture of hydrogen and nitrogen

Country Status (6)

Country Link
US (1) US4564515A (en)
EP (1) EP0130274B1 (en)
JP (1) JPH0624610B2 (en)
CA (1) CA1213417A (en)
CH (1) CH654489B (en)
DE (1) DE3480998D1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6348153B1 (en) 1998-03-25 2002-02-19 James A. Patterson Method for separating heavy isotopes of hydrogen oxide from water
US20050286676A1 (en) * 2004-06-29 2005-12-29 Lahoda Edward J Use of isotopically enriched nitride in actinide fuel in nuclear reactors
US6984327B1 (en) 2004-11-23 2006-01-10 Patterson James A System and method for separating heavy isotopes of hydrogen oxide from water
CN104084042B (en) * 2014-07-18 2017-04-12 上海化工研究院 A full-cycle, dual-feed energy-saving system for the production of stable isotope 15N
JP7487083B2 (en) * 2020-12-04 2024-05-20 大陽日酸株式会社 Method and apparatus for producing deuterated ammonia
CN115215498B (en) * 2022-08-02 2023-09-12 苏州思萃同位素技术研究所有限公司 Device, method and application for hydrogen isotope wastewater treatment and resource utilization

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE581674A (en) * 1958-08-13
GB1066470A (en) * 1965-03-10 1967-04-26 Atomic Energy Authority Uk Improvements in or relating to isotopic exchange processes
CH495282A (en) * 1968-05-08 1970-08-31 Sulzer Ag Process and plant for the production of heavy water by further processing of ammonia enriched with deuterium
CH567431A5 (en) * 1971-12-01 1975-10-15 Sulzer Ag Concn of deuterium using ammonia - in counter-current circulating system contg. scrubbers, synthesizer and cracking unit
CH620408A5 (en) * 1976-05-13 1980-11-28 Sulzer Ag
CH620176A5 (en) * 1976-05-13 1980-11-14 Sulzer Ag

Also Published As

Publication number Publication date
DE3480998D1 (en) 1990-02-15
EP0130274A3 (en) 1987-09-30
CA1213417A (en) 1986-11-04
JPS59206033A (en) 1984-11-21
CH654489B (en) 1986-02-28
EP0130274A2 (en) 1985-01-09
JPH0624610B2 (en) 1994-04-06
US4564515A (en) 1986-01-14

Similar Documents

Publication Publication Date Title
DE69100469T2 (en) Method and plant for producing a gaseous component from a gaseous mixture.
DE69723769T2 (en) Direct injection of oxygen in the manufacture of nitric acid
EP0067439B1 (en) Process and device for the stepwise enrichment of deuterium and/or tritium in a substance suitable for isotope exchange between deuterium or tritium and hydrogen
EP0130274B1 (en) Process for the separation of deuterium and tritium from water by the use of ammonia or a mixture of hydrogen and nitrogen
DE2542705B1 (en) PROCESS AND PLANT FOR THE PRODUCTION OF WATER ENRICHED WITH DEUTERIUM IN THE PRODUCTION OF HYDROGEN
EP0070919B1 (en) Process for producing deuterium enriched water during the production of hydrogen
DE2431531C2 (en) Process for the selective absorption of ammonia from a gas mixture
DE2015834A1 (en) Process for the extraction of deuterium from hydrogen gas in a bithermal process
AT401048B (en) METHOD AND DEVICE FOR REMOVING AMMONIUM COMPOUNDS FROM WASTEWATER
DE3009724A1 (en) METHOD FOR TREATING A GAS FLOW CONTAINING NITROXIDE
DE1091092B (en) Process for the catalytic exchange of deuterium between gases containing hydrogen and ammonia
DE1916570A1 (en) Process for isotope enrichment
DE2013721C3 (en) Process and plant for the production of water or hydrogen enriched with deuterium
DE2714968A1 (en) PROCESS AND SYSTEM FOR EXTRACTION OF AMMONIA AND HEAVY WATER
DE2226065C3 (en) Process for increasing the deuterium content in hydrogen in the production of a hydrogen-containing gas by conversion
DE1237546B (en) Process for obtaining water enriched with deuterium
DE2905585A1 (en) PROCESS FOR SEPARATION OF THE HYDROGEN ISOTOPES H, D, T IN ORDER TO SELECTIVELY REMOVE INDIVIDUAL ISOTOPES FROM A MIXTURE
DE3033290A1 (en) METHOD FOR PRODUCING DEUTERIUM-ENRICHED WATER WHEN RECOVERING HYDROGEN
AT232958B (en) Process for the production of deuterium by distilling hydrogen
DE2950911A1 (en) Hydrogen isotope mixture separation process - splits water into currents for exchange with deuterium and protium
DE1468207A1 (en) Process for the production of urea
DE3033289A1 (en) METHOD FOR PRODUCING DEUTERIUM-ENRICHED WATER WHEN RECOVERING HYDROGEN
DE1567721C3 (en) Process for purifying chlorine by absorption and desorption in a solvent and subsequent liquefaction
DE1120431B (en) Process for the production of water or hydrogen enriched in deuterium in the course of the ammonia synthesis
DE1147203B (en) Process for the production of water or hydrogen enriched with deuterium

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19880225

17Q First examination report despatched

Effective date: 19890302

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

ITF It: translation for a ep patent filed
REF Corresponds to:

Ref document number: 3480998

Country of ref document: DE

Date of ref document: 19900215

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19950116

Year of fee payment: 12

Ref country code: DE

Payment date: 19950116

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19950120

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19960224

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19960224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19961031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19961101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST