EP0121868B1 - Endotoxin-detecting device - Google Patents
Endotoxin-detecting device Download PDFInfo
- Publication number
- EP0121868B1 EP0121868B1 EP84103474A EP84103474A EP0121868B1 EP 0121868 B1 EP0121868 B1 EP 0121868B1 EP 84103474 A EP84103474 A EP 84103474A EP 84103474 A EP84103474 A EP 84103474A EP 0121868 B1 EP0121868 B1 EP 0121868B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- endotoxin
- tube
- reaction tube
- detecting device
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000007788 liquid Substances 0.000 claims description 40
- 239000002158 endotoxin Substances 0.000 claims description 37
- 239000003153 chemical reaction reagent Substances 0.000 claims description 23
- 239000012528 membrane Substances 0.000 claims description 17
- 239000011541 reaction mixture Substances 0.000 description 10
- 239000000203 mixture Substances 0.000 description 6
- 238000001879 gelation Methods 0.000 description 5
- 238000005070 sampling Methods 0.000 description 5
- 238000001514 detection method Methods 0.000 description 4
- 239000006166 lysate Substances 0.000 description 4
- 238000007789 sealing Methods 0.000 description 4
- 206010037660 Pyrexia Diseases 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000004040 coloring Methods 0.000 description 3
- 230000027950 fever generation Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 241001529572 Chaceon affinis Species 0.000 description 2
- 102000010911 Enzyme Precursors Human genes 0.000 description 2
- 108010062466 Enzyme Precursors Proteins 0.000 description 2
- 241000239218 Limulus Species 0.000 description 2
- 241000283973 Oryctolagus cuniculus Species 0.000 description 2
- 210000000601 blood cell Anatomy 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000009500 colour coating Methods 0.000 description 1
- 239000002274 desiccant Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229920006008 lipopolysaccharide Polymers 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229920005670 poly(ethylene-vinyl chloride) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920000131 polyvinylidene Polymers 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/16—Reagents, handling or storing thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/04—Closures and closing means
- B01L2300/041—Connecting closures to device or container
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0832—Geometry, shape and general structure cylindrical, tube shaped
- B01L2300/0838—Capillaries
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/04—Moving fluids with specific forces or mechanical means
- B01L2400/0403—Moving fluids with specific forces or mechanical means specific forces
- B01L2400/0406—Moving fluids with specific forces or mechanical means specific forces capillary forces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/04—Moving fluids with specific forces or mechanical means
- B01L2400/0475—Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
- B01L2400/0481—Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure squeezing of channels or chambers
Definitions
- This invention relates to an endotoxin-detecting device.
- endotoxin is lipopolysaccharide present in a cell wall of Gram-negative bacteria. Even a very small amount of endotoxin causes various physiologic activities such as pyrexia. The pyrexia of a living organism caused by endotoxin has been a serious problem in the medical, pharmaceutical and sanitary fields. In recent years, it has been proposed to carry out an endotoxin detection using an endotoxin reagent composed of either amebocyte lysate extracted from blood cells of a horseshoe crab or a mixture of a color producing agent and proenzyme separated from the amebocyte lysate. This method is commonly referred to as "limulus test" in the trade. This method enables endotoxin to be detected much more quickly in comparison with a conventional endotoxin-detecting method in which a small amount of a specimen liquid is applied to a rabbit to see whether the rabbit is subjected to pyrexia.
- Such detection devices comprise a reaction container such as a tube holding the above-mentioned endotoxin .reagent.
- a specimen liquid to be examined must be transferred to the reaction container by the use of an endotoxin-free sampling tube such as a pipette and a syringe. Therefore, the operation of the conventional endotoxin-detecting devices is rather cumbersome, and in addition there is the risk that the specimen liquid may be contaminated by endotoxin during the transfer of the specimen liquid to the reaction container.
- the present invention comprises an endotoxin-detecting device comprising a transparent reaction tube containing an endotoxin reagent in the freeze-dried form, which is characterized in that said endotoxin reagent is disposed intermediate and spaced from the opposite ends of said reaction tube and is hermetically sealed in said reaction tube, said reaction tube having a diameter between 0.1 and 5 mm.
- reaction tube is sealed at opposite ends thereof by either a heat sealing or closure members such as caps and plugs.
- the opposite ends of the reaction tube when in use, are opened, and one of the open ends is dipped in a specimen liquid so that the specimen liquid is drawn into the reaction tube by the capillary action.
- the specimen liquid so introduced dissolves the endotoxin reagent to form a mixture which is heated to a predetermined temperature to react the reagent with the specimen liquid.
- the reaction mixture in the reaction tube is gelated, becomes turbid or is colored in proportion to the concentration of the endotoxin contained in the specimen liquid.
- the reaction tube is of such a diameter that the specimen liquid introduced into the reaction tube is not caused to flow therefrom when it is held horizontally.
- the reaction tube has a diameter between 0.1 and 5 mm.
- the reaction tube may be provided at one end thereof with a suction means for positively drawing the specimen liquid into the reaction tube.
- the reaction tube can be made of any material so long as it has such a transparency that the inside of the reaction tube can be inspected from outside it.
- the endotoxin reagent is composed of either amebocyte lysate extracted from blood cells of a horseshoe crab or a mixture of a color producing agent and proenzyme separated from the amebocyte lysate.
- the endotoxin reagent is preferably in the freeze-dried form.
- a stabilizing agent may be added to the endotoxin agent.
- An endotoxin-detecting device shown in FIG. 1 comprises a straight reaction tube 1 of a uniform diameter having opposite closed ends, and an endotoxin reagent 2 sealed in the reaction tube 1 and disposed intermediate the opposite ends thereof.
- the tube 1 is made of a transparent material such as glass, polymethyl methacrylate and polystyrene.
- the tube 1 has a small diameter of 0.1 to 5 mm.
- a notch or a line of cut may be formed circumferentially in each of the opposite end portions of the tube 1 to facilitate the removal of these end portions from the tube 1.
- the tube 1 may have opposite open ends which are sealed by closure members such as plugs and caps, respectively.
- closure members such as plugs and caps, respectively.
- One or both of the opposite end portions of the tube 1 may have either smaller or larger diameter that the major portion extending between these opposite end portions.
- the reaction tube 1 may be formed into a U-shape.
- the opposite ends of the tube 1 are first removed or cut off so that the tube has opposite open ends. Then, one of these open ends is dipped in a specimen liquid so that the specimen liquid is introduced into the tube 1 by the capillary action. The specimen liquid introduced into the reaction tube 1 dissolves the endotoxin reagent 2 to form a mixture. Then, the tube 1 holding the mixture is placed in a dry warming device to heat the mixture to a predetermined temperature so that the endotoxin reagent 2 is caused to react with the specimen liquid. Then, the tube 1 is tilted to see whether the reaction mixture in the tube 1 is subjected to gelation.
- the reaction tube 1 is observed to determine whether the reaction mixture in the tube 1 is subjected to turbidity of coloring.
- the degree of gelation and turbidity of the reaction mixture are proportional to the concentration of endotoxin in the specimen liquid. Thus, the concentration of the endotoxin can be easily determined.
- the tube 1 serves as both a sampling tube and a reaction tube.
- the endotoxin-detecting device according to the present invention obviates the need for a separate endotoxin-free sampling tube for taking the specimen liquid. Therefore, with this endotoxin-detecting device, the specimen liquid does not need to be transferred from a sampling tube to a reaction tube, so that the detection of endotoxin can be carried out easily. In addition, the risk of contamination of the specimen liquid by endotoxin can be substantially reduced.
- the reaction tube 1 is of such a small diameter that it holds a relatively small amount of specimen liquid. Therefore, the amount of the reagent for endotoxin in the tube can be small.
- FIG. 2 shows a modified endotoxin-detecting device which differs from the endotoxin-detecting device of FIG. 1 in that a transparent tube 1 has a colored portion 3 extending along the length thereof.
- the colored portion 3 is formed by a color coating applied to a half of the outer circumferential surface of the tube 1 and extending substantially along the entire length thereof.
- the colored portion has a white color.
- the colored portion 3 may be provided on one fourths to three fourths of the outer circumferential surface of the tube 1.
- the colored portion 3 does not necessarily be provided substantially along the entire length thereof, and it may be provided only at the area of the reaction tube 1 where an endotoxin reagent 2 is positioned.
- the colored portion 3 may be formed by a colored film adhesively bonded to the outer circumferential surface of the reaction tube 1. Further, the colored coating or the colored film may be applied to the inner circumferential surface of the tube 1. The color of the colored portion 3 may be other than a white color so long as it is opaque.
- a specimen liquid is introduced into the reaction tube 1 in the same manner as described above for the endotoxin-detecting device of FIG. 1.
- the colored portion 3 the gelation and coloring of the reaction mixture of the reagent 2 and the specimen liquid can be easily observed with the naked eye if they develop.
- FIG. 3 shows another modified endotoxin-detecting device which differs from the endotoxin-detecting device of FIG. 1 in that a reaction tube 1 has an open end to which a suction member 4 is attached.
- the suction member 4 is in the form of a bulb and is made of an elastic material such as rubber and a synthetic resin.
- the suction member 4 is snugly fitted on the open end of the reaction tube 1 in an air-tight manner and is fixed thereto.
- the suction member 4 may be formed integrally with the reaction tube 1.
- the closed end of the reaction tube 1 is first removed, and the suction member 4 is squeezed by fingers. Then, the end of the tube 1 remote from the suction member 4 is dipped in a specimen liquid, and the pressure on the suction member 4 is reduced or released so that the specimen liquid is drawn into the reaction tube 1 by suction. Then, the gelation and coloring of the reaction mixture of an endotoxin reagent 2 and the specimen liquid are observed in the same manner as described above for the endotoxin-detecting device of FIG. 1 to determine the concentration of endotoxin contained in the specimen liquid.
- the suction member 4 the liquid specimen can be introduced into the tube 1 easily and positively.
- the suction member 4 may be of any shape so long as it can draw the specimen liquid into the reaction tube 1 by suction. Also, the tube 1 may have a colored portion for facilitating the observation of the reaction mixture in the tube 1, as described above for the endotoxin-detecting device of FIG. 2.
- FIG. 4 shows a further modified endotoxin-detecting device which differs from the endotoxin-detecting device of FIG. 1 in that a reaction tube 1 is provided with a graduated scale 5.
- a notch or a line 6 of cut is formed circumferentially in each of the opposite end portions of the tube 1 to facilitate the removal of the opposite end portions from the tube 1.
- the graduated scale 5 comprises a pair of lines each formed circumferentially around the reaction tube 1 and disposed intermediate an endotoxin reagent 2 and a respective one of the notches 6.
- a plurality of scale lines 5 may be provided on the tube 1 between the reagent 2 and a respective one of the notches 6.
- the scale lines 5 may be replaced by dots.
- the reaction tube 1 may have regions of a transparent color which replace the scale lines 5. Further, although the reagent 2 is received in the tube 1 at a central portion thereof, the reagent may be disposed at any position between the opposite scale lines 6.
- the opposite ends of the tube 1 are broken off from the reaction tube 1 at the respective notches 3.
- one of the opened ends of the reaction tube 1 is dipped in a specimen liquid to draw it into the tube 1 up to the scale line 5 by the capillary action.
- the gelation and turbidity of a reaction mixture of the reagent 2 and the specimen liquid are observed to determine the concentration of endotoxin in the specimen liquid.
- the reaction tube 1 may have a colored portion for facilitating the observation of the reaction mixture in the tube 1, as described above for the endotoxin-detecting device of FIG. 2. Also, the reaction tube 1 may be provided at one end with a suction member for positively drawing the specimen liquid into the tube 1, as described above for the endotoxin-detecting device of FIG. 3.
- FIG. 5 shows a still further modified endotoxin-detecting device which differs from the endotoxin-detecting device of FIG. 1 in that a reaction tube 1 has opposite open ends and in that the reaction tube 1 is hermetically sealed in a membrane container 7.
- the membrane container 7 comprises a pair of identical rectangular films 7a and 7b between which the tube 1 is sandwiched, the films 7a and 7b being hermetically sealed or bonded together along their entire peripheral margins by either heat-sealing or a suitable adhesive, thereby providing a peripheral sealed portion 8.
- a triangular notch 9 is formed in the peripheral sealed portion 8 for facilitating the tearing of the membrane container 7 when in use.
- the notch 9 may be replaced by a slit.
- Each of the films 7a and 7b comprises a film impermeable to moisture, such as a laminated aluminum film incorporating a polymer, a polyvinylidene film, a polyolefin film and an ethylene vinyl chloride copolymer film.
- the membrane container 7 may be made of a single square film folded in two, with three open sides of the folded film being sealed.
- the membrane container 7 may be made of a film tube with opposite open ends being sealed, in which case a fused portion is formed on the membrane container in which fused portion the notch 9 is provided.
- the membrane container 7 may be vacuum sealed.
- a desiccant may be contained in the membrane container 7 together with the reaction tube 1.
- a plurality of reaction tubes 1 may be sealed in the membrane container 7 as shown in FIG. 7.
- the membrane container 7 obviates the need for directly closing the opposite open ends of the reaction tube 1 by either heat-sealing or closure members such as caps and plugs after an endotoxin reagent 2 is filled in the tube 1. Therefore, the risk of contamination of the reaction tube 1 by endotoxin when sealing the tube 1 can be substantially reduced.
- the inner and outer surfaces of the membrane container 7 can be preserved in an endotoxin-free condition. And, in the case where a plurality of reaction tubes 1 are sealed, much time and labor can be saved.
- the reaction tube 1 may have a colored portion for facilitating the observation of the reaction mixture in the tube 1, as described above for the endotoxin-detecting device of FIG. 2. Also, the reaction tube 1 may be provided at one end with a suction member for positively drawing the specimen liquid into the tube 1, as described above for the endotoxin-detecting device of FIG. 3. Further, the tube 1 may be provided with a graduated scale for introducing a constant amount of the specimen liquid into the tube 1, as described above for the endotoxin-detecting device of FIG. 4.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Dispersion Chemistry (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Hematology (AREA)
- Clinical Laboratory Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
Description
- This invention relates to an endotoxin-detecting device.
- It is believed that endotoxin is lipopolysaccharide present in a cell wall of Gram-negative bacteria. Even a very small amount of endotoxin causes various physiologic activities such as pyrexia. The pyrexia of a living organism caused by endotoxin has been a serious problem in the medical, pharmaceutical and sanitary fields. In recent years, it has been proposed to carry out an endotoxin detection using an endotoxin reagent composed of either amebocyte lysate extracted from blood cells of a horseshoe crab or a mixture of a color producing agent and proenzyme separated from the amebocyte lysate. This method is commonly referred to as "limulus test" in the trade. This method enables endotoxin to be detected much more quickly in comparison with a conventional endotoxin-detecting method in which a small amount of a specimen liquid is applied to a rabbit to see whether the rabbit is subjected to pyrexia.
- Various endotoxin-detecting devices for carrying out the above-mentioned limulus test have heretofore been proposed. Such detection devices comprise a reaction container such as a tube holding the above-mentioned endotoxin .reagent. For carrying out the endotoxin detection, a specimen liquid to be examined must be transferred to the reaction container by the use of an endotoxin-free sampling tube such as a pipette and a syringe. Therefore, the operation of the conventional endotoxin-detecting devices is rather cumbersome, and in addition there is the risk that the specimen liquid may be contaminated by endotoxin during the transfer of the specimen liquid to the reaction container.
- It is therefore an object of this invention to provide an endotoxin-detecting device which obviates the need for a separate sampling tube for transferring a specimen liquid to a reaction tube, thereby overcoming the above difficulties of the prior art.
- The present invention comprises an endotoxin-detecting device comprising a transparent reaction tube containing an endotoxin reagent in the freeze-dried form, which is characterized in that said endotoxin reagent is disposed intermediate and spaced from the opposite ends of said reaction tube and is hermetically sealed in said reaction tube, said reaction tube having a diameter between 0.1 and 5 mm.
- The reaction tube is sealed at opposite ends thereof by either a heat sealing or closure members such as caps and plugs.
- The opposite ends of the reaction tube, when in use, are opened, and one of the open ends is dipped in a specimen liquid so that the specimen liquid is drawn into the reaction tube by the capillary action. The specimen liquid so introduced dissolves the endotoxin reagent to form a mixture which is heated to a predetermined temperature to react the reagent with the specimen liquid. The reaction mixture in the reaction tube is gelated, becomes turbid or is colored in proportion to the concentration of the endotoxin contained in the specimen liquid. Thus, the presence of endotoxin in the specimen liquid can be easily detected. The reaction tube is of such a diameter that the specimen liquid introduced into the reaction tube is not caused to flow therefrom when it is held horizontally. Therefore, the reaction tube has a diameter between 0.1 and 5 mm. The reaction tube may be provided at one end thereof with a suction means for positively drawing the specimen liquid into the reaction tube. The reaction tube can be made of any material so long as it has such a transparency that the inside of the reaction tube can be inspected from outside it.
- The endotoxin reagent is composed of either amebocyte lysate extracted from blood cells of a horseshoe crab or a mixture of a color producing agent and proenzyme separated from the amebocyte lysate. In view of preservation stability, the endotoxin reagent is preferably in the freeze-dried form. A stabilizing agent may be added to the endotoxin agent.
- FIG. 1 is a cross-sectional view of an endotoxin-detecting device provided in accordance with the present invention;
- FIG. 2 to 4 are views similar to FIG. 1 but showing modified endotoxin-detecting devices, respectively;
- FIG. 5 is a cross-sectional view of another modified endotoxin-detecting device having a membrane container;
- FIG. 6 is a cross-sectional view of the endotoxin-detecting device of FIG. 5 taken along the line VI-VI of FIG. 5; and
- FIG. 7 is a view similar to FIG. 5 but showing a plurality of reaction tubes sealed in the membrane container.
- The invention will now be described with reference to the drawings in which like reference numerals designate corresponding parts in several views.
- An endotoxin-detecting device shown in FIG. 1 comprises a straight reaction tube 1 of a uniform diameter having opposite closed ends, and an
endotoxin reagent 2 sealed in the reaction tube 1 and disposed intermediate the opposite ends thereof. The tube 1 is made of a transparent material such as glass, polymethyl methacrylate and polystyrene. The tube 1 has a small diameter of 0.1 to 5 mm. - A notch or a line of cut may be formed circumferentially in each of the opposite end portions of the tube 1 to facilitate the removal of these end portions from the tube 1. The tube 1 may have opposite open ends which are sealed by closure members such as plugs and caps, respectively. One or both of the opposite end portions of the tube 1 may have either smaller or larger diameter that the major portion extending between these opposite end portions. The reaction tube 1 may be formed into a U-shape.
- For determining the concentration of endotoxin contained in a specimen liquid to be examined, the opposite ends of the tube 1 are first removed or cut off so that the tube has opposite open ends. Then, one of these open ends is dipped in a specimen liquid so that the specimen liquid is introduced into the tube 1 by the capillary action. The specimen liquid introduced into the reaction tube 1 dissolves the
endotoxin reagent 2 to form a mixture. Then, the tube 1 holding the mixture is placed in a dry warming device to heat the mixture to a predetermined temperature so that theendotoxin reagent 2 is caused to react with the specimen liquid. Then, the tube 1 is tilted to see whether the reaction mixture in the tube 1 is subjected to gelation. At the same time, the reaction tube 1 is observed to determine whether the reaction mixture in the tube 1 is subjected to turbidity of coloring. The degree of gelation and turbidity of the reaction mixture are proportional to the concentration of endotoxin in the specimen liquid. Thus, the concentration of the endotoxin can be easily determined. - As described above, the tube 1 serves as both a sampling tube and a reaction tube. Thus, the endotoxin-detecting device according to the present invention obviates the need for a separate endotoxin-free sampling tube for taking the specimen liquid. Therefore, with this endotoxin-detecting device, the specimen liquid does not need to be transferred from a sampling tube to a reaction tube, so that the detection of endotoxin can be carried out easily. In addition, the risk of contamination of the specimen liquid by endotoxin can be substantially reduced. Further, the reaction tube 1 is of such a small diameter that it holds a relatively small amount of specimen liquid. Therefore, the amount of the reagent for endotoxin in the tube can be small.
- FIG. 2 shows a modified endotoxin-detecting device which differs from the endotoxin-detecting device of FIG. 1 in that a transparent tube 1 has a
colored portion 3 extending along the length thereof. Thecolored portion 3 is formed by a color coating applied to a half of the outer circumferential surface of the tube 1 and extending substantially along the entire length thereof. The colored portion has a white color. Thecolored portion 3 may be provided on one fourths to three fourths of the outer circumferential surface of the tube 1. Thecolored portion 3 does not necessarily be provided substantially along the entire length thereof, and it may be provided only at the area of the reaction tube 1 where anendotoxin reagent 2 is positioned. Also, thecolored portion 3 may be formed by a colored film adhesively bonded to the outer circumferential surface of the reaction tube 1. Further, the colored coating or the colored film may be applied to the inner circumferential surface of the tube 1. The color of thecolored portion 3 may be other than a white color so long as it is opaque. - A specimen liquid is introduced into the reaction tube 1 in the same manner as described above for the endotoxin-detecting device of FIG. 1. By virtue of the provision of the
colored portion 3, the gelation and coloring of the reaction mixture of thereagent 2 and the specimen liquid can be easily observed with the naked eye if they develop. - FIG. 3 shows another modified endotoxin-detecting device which differs from the endotoxin-detecting device of FIG. 1 in that a reaction tube 1 has an open end to which a suction member 4 is attached. The suction member 4 is in the form of a bulb and is made of an elastic material such as rubber and a synthetic resin. The suction member 4 is snugly fitted on the open end of the reaction tube 1 in an air-tight manner and is fixed thereto. The suction member 4 may be formed integrally with the reaction tube 1.
- In operation, the closed end of the reaction tube 1 is first removed, and the suction member 4 is squeezed by fingers. Then, the end of the tube 1 remote from the suction member 4 is dipped in a specimen liquid, and the pressure on the suction member 4 is reduced or released so that the specimen liquid is drawn into the reaction tube 1 by suction. Then, the gelation and coloring of the reaction mixture of an
endotoxin reagent 2 and the specimen liquid are observed in the same manner as described above for the endotoxin-detecting device of FIG. 1 to determine the concentration of endotoxin contained in the specimen liquid. By virtue of the provision of the suction member 4, the liquid specimen can be introduced into the tube 1 easily and positively. The suction member 4 may be of any shape so long as it can draw the specimen liquid into the reaction tube 1 by suction. Also, the tube 1 may have a colored portion for facilitating the observation of the reaction mixture in the tube 1, as described above for the endotoxin-detecting device of FIG. 2. - FIG. 4 shows a further modified endotoxin-detecting device which differs from the endotoxin-detecting device of FIG. 1 in that a reaction tube 1 is provided with a graduated scale 5. A notch or a
line 6 of cut is formed circumferentially in each of the opposite end portions of the tube 1 to facilitate the removal of the opposite end portions from the tube 1. The graduated scale 5 comprises a pair of lines each formed circumferentially around the reaction tube 1 and disposed intermediate anendotoxin reagent 2 and a respective one of thenotches 6. A plurality of scale lines 5 may be provided on the tube 1 between thereagent 2 and a respective one of thenotches 6. Also, the scale lines 5 may be replaced by dots. Alternatively, the reaction tube 1 may have regions of a transparent color which replace the scale lines 5. Further, although thereagent 2 is received in the tube 1 at a central portion thereof, the reagent may be disposed at any position between theopposite scale lines 6. - In operation, the opposite ends of the tube 1 are broken off from the reaction tube 1 at the
respective notches 3. Then, one of the opened ends of the reaction tube 1 is dipped in a specimen liquid to draw it into the tube 1 up to the scale line 5 by the capillary action. Then, the gelation and turbidity of a reaction mixture of thereagent 2 and the specimen liquid are observed to determine the concentration of endotoxin in the specimen liquid. By virtue of the provision of the graduated scale 5, a constant amount of the specimen liquid is always introduced into the reaction tube 1, so that the concentration of endotoxin in the specimen liquid can be accurately determined with reproducible results. - The reaction tube 1 may have a colored portion for facilitating the observation of the reaction mixture in the tube 1, as described above for the endotoxin-detecting device of FIG. 2. Also, the reaction tube 1 may be provided at one end with a suction member for positively drawing the specimen liquid into the tube 1, as described above for the endotoxin-detecting device of FIG. 3.
- FIG. 5 shows a still further modified endotoxin-detecting device which differs from the endotoxin-detecting device of FIG. 1 in that a reaction tube 1 has opposite open ends and in that the reaction tube 1 is hermetically sealed in a
membrane container 7. - The
membrane container 7 comprises a pair of identical rectangular films 7a and 7b between which the tube 1 is sandwiched, the films 7a and 7b being hermetically sealed or bonded together along their entire peripheral margins by either heat-sealing or a suitable adhesive, thereby providing a peripheral sealedportion 8. Atriangular notch 9 is formed in the peripheral sealedportion 8 for facilitating the tearing of themembrane container 7 when in use. Thenotch 9 may be replaced by a slit. Each of the films 7a and 7b comprises a film impermeable to moisture, such as a laminated aluminum film incorporating a polymer, a polyvinylidene film, a polyolefin film and an ethylene vinyl chloride copolymer film. - The
membrane container 7 may be made of a single square film folded in two, with three open sides of the folded film being sealed. Alternatively, themembrane container 7 may be made of a film tube with opposite open ends being sealed, in which case a fused portion is formed on the membrane container in which fused portion thenotch 9 is provided. Also, themembrane container 7 may be vacuum sealed. A desiccant may be contained in themembrane container 7 together with the reaction tube 1. A plurality of reaction tubes 1 may be sealed in themembrane container 7 as shown in FIG. 7. - The provision of the
membrane container 7 obviates the need for directly closing the opposite open ends of the reaction tube 1 by either heat-sealing or closure members such as caps and plugs after anendotoxin reagent 2 is filled in the tube 1. Therefore, the risk of contamination of the reaction tube 1 by endotoxin when sealing the tube 1 can be substantially reduced. In addition, the inner and outer surfaces of themembrane container 7 can be preserved in an endotoxin-free condition. And, in the case where a plurality of reaction tubes 1 are sealed, much time and labor can be saved. - The reaction tube 1 may have a colored portion for facilitating the observation of the reaction mixture in the tube 1, as described above for the endotoxin-detecting device of FIG. 2. Also, the reaction tube 1 may be provided at one end with a suction member for positively drawing the specimen liquid into the tube 1, as described above for the endotoxin-detecting device of FIG. 3. Further, the tube 1 may be provided with a graduated scale for introducing a constant amount of the specimen liquid into the tube 1, as described above for the endotoxin-detecting device of FIG. 4.
Claims (7)
Applications Claiming Priority (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP49492/83U | 1983-04-01 | ||
JP4949283U JPS59154661U (en) | 1983-04-01 | 1983-04-01 | Endotoxin detection measurement equipment |
JP77125/83U | 1983-05-23 | ||
JP7712583U JPS59183660U (en) | 1983-05-23 | 1983-05-23 | Endotoxin detection measurement equipment |
JP97421/83U | 1983-06-24 | ||
JP9742183U JPS6022200U (en) | 1983-06-24 | 1983-06-24 | Endotoxin detection measurement equipment |
JP100450/83U | 1983-06-29 | ||
JP10045083U JPS608875U (en) | 1983-06-29 | 1983-06-29 | Endotoxin detection measurement equipment |
JP201596/83U | 1983-12-28 | ||
JP20159683U JPS60109051U (en) | 1983-12-28 | 1983-12-28 | Endotoxin detection measurement equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0121868A1 EP0121868A1 (en) | 1984-10-17 |
EP0121868B1 true EP0121868B1 (en) | 1988-06-22 |
Family
ID=27522803
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP84103474A Expired EP0121868B1 (en) | 1983-04-01 | 1984-03-29 | Endotoxin-detecting device |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0121868B1 (en) |
CA (1) | CA1236396A (en) |
DE (1) | DE3472301D1 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DK255887D0 (en) * | 1987-05-20 | 1987-05-20 | Claus Koch | IMMUNOASSAY |
US5578455A (en) * | 1993-03-19 | 1996-11-26 | Tanabe Seiyaku Co., Ltd. | Method for determining endotoxin and apparatus therefor |
JP5118849B2 (en) | 2003-03-17 | 2013-01-16 | チャールズ リバー ラボラトリーズ, インコーポレイテッド | Methods and compositions for detection of microbial contaminants |
WO2007078268A2 (en) | 2004-12-02 | 2007-07-12 | Charles River Laboratories, Inc. | Methods and compositions for the detection and/or quantification of gram positive bacterial contaminants |
EP1836492B1 (en) | 2005-01-13 | 2008-12-31 | Charles River Laboratories, Inc. | Method for classifying a microorganism in a biological sample |
CA3078625C (en) | 2017-10-09 | 2023-01-17 | Terumo Bct Biotechnologies, Llc | Lyophilization container and method of using same |
CN111077307B (en) * | 2018-10-21 | 2022-08-23 | 厦门鲎试剂生物科技股份有限公司 | Novel method for rapidly detecting sepsis by using gram-negative bacterial infection |
US11609042B2 (en) | 2019-03-14 | 2023-03-21 | Terumo Bct Biotechnologies, Llc | Multi-part lyophilization container and method of use |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4273557A (en) * | 1980-03-31 | 1981-06-16 | Mallinckrodt, Inc. | Limulus lysate procedure for determining endotoxins |
-
1984
- 1984-03-27 CA CA000450571A patent/CA1236396A/en not_active Expired
- 1984-03-29 DE DE8484103474T patent/DE3472301D1/en not_active Expired
- 1984-03-29 EP EP84103474A patent/EP0121868B1/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
DE3472301D1 (en) | 1988-07-28 |
CA1236396A (en) | 1988-05-10 |
EP0121868A1 (en) | 1984-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DK169741B1 (en) | Sample container for body fluid samples | |
EP0239058B1 (en) | Container for receiving a culture medium of microorganisms | |
US3579303A (en) | System for handling specimens and other substances in medicine and physical sciences | |
US3752743A (en) | Biological indicator | |
US2904474A (en) | Process and means for carrying out bacteriological operations | |
US20010008614A1 (en) | Sample collection system and method of use thereof | |
JP4183508B2 (en) | Integrated filtration and detection device | |
US20140302617A1 (en) | Sample collection system and method for use thereof | |
US20080286748A1 (en) | Blood collection tube with surfactant | |
CN105836240B (en) | Po Guan mechanisms, include the Po Guan mechanisms leakproofness test tube component and its application | |
JP3436312B2 (en) | Apparatus and method for sample dialysis | |
US20110204084A1 (en) | Sample Collection System and Method for Use Thereof | |
US3614856A (en) | Gas transfer device | |
JP2000225111A (en) | Container for component separation of fluid sample | |
JPS6118698B2 (en) | ||
EP0121868B1 (en) | Endotoxin-detecting device | |
US6054326A (en) | Fluid testing and analysing device and method | |
CA2566762C (en) | Dialysis device with air chamber | |
US20060210447A1 (en) | Blood collection and testing improvements | |
US20040184965A1 (en) | Testing cup | |
JPH023170Y2 (en) | ||
JPH023169Y2 (en) | ||
JPH0216287Y2 (en) | ||
JP3943622B2 (en) | Bacteria culture vessel | |
US20250073718A1 (en) | Sample container that can be closed with a nonwoven fabric, use of the sample container for drying and processing the sample of a biological material, and method for processing the sample |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB |
|
17P | Request for examination filed |
Effective date: 19841206 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REF | Corresponds to: |
Ref document number: 3472301 Country of ref document: DE Date of ref document: 19880728 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19930309 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19930319 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19930324 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19940329 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19940329 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19941130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19941201 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |