ARBEITSMASCHINE WORKING MACHINE
Die Erfindung bezieht sich auf eine Arbeitsmaschine mit ei¬ nem Druckzylinder und einem gas-oder dampfförmigen Arbeits¬ medium, welche durch äußere Zufuhr von Wärme bei höherer Temperatur und Abfuhr von Wärmeenergie bei tieferer Tempe¬ ratur mechanische Leistung abgibt. Diese Art von Wärmekraft¬ maschinen sind seit langem bekannt als Dampfkraftmaschinen,. Gasturbinen mit geschlossenem Kreislauf und als Stirling- Motoren. Nachteilig ist bei den genannten Beispielen der komplizierte Aufbau und bei der Dampfmaschine der verhält¬ nismäßig schlechte Wirkungsgrad. Der Erfindung liegt die Aufgabe zugrunde, eine thermische Arbeitsmaschine zu schaf¬ fen, die einfach konstruiert und aufgebaut ist, mit einem höheren Wirkungsgrad arbeitet und eine lange Lebensdauer auf- weist.The invention relates to a working machine with a pressure cylinder and a gaseous or vaporous working medium, which emits mechanical power by external supply of heat at a higher temperature and removal of heat energy at a lower temperature. These types of heat engines have long been known as steam engines. Closed-circuit gas turbines and as Stirling engines. A disadvantage of the examples mentioned is the complicated structure and, in the case of the steam engine, the relatively poor efficiency. The invention is based on the object of creating a thermal working machine which is of simple construction and construction, works with a higher degree of efficiency and has a long service life.
Die Erfindung löst diese Aufgabe dadurch, daß der Druck¬ zylinder durch einen periodisch hin- und herbewegten Ver¬ drängerkolben in zwei Arbeitsräume abgeteilt wird, die über einen thermischen Regenerator miteinander verbunden sind, daß Druckzyl.inder und thermischer Regenerator mit einem dampf-oder gasförmigen Arbe smedium relativ hohen Druckes gefüllt sind, daß einer der Arbeitsräume durch Wärmezufuhr auf eine höhere Temperatur gebracht, der andere durch Küh¬ lung auf eine niedrigere Temperatur gehalten wird, daß we- nigstens ein Arbeitsraum über zwei entgegengesetzt wirksa¬ me Rückschlagventile mit zwei Druckbehältern verbunden ist und daß die Druckbehälter mit unterschiedl chen Drücken des gas- oder dampfförmigen Arbeitsmediums über eine Expansions¬ maschine verbunden sind. Die Arbeitsmaschine nach der Erfindung bietet den Vorteil, daß sie verhältnismäßig einfach konzipiert ist, daß der Ver¬ drängerkolben lediglich das Arbeitsmedium über den parallel- liegenden thermischen Regenerator hin- und herschieben muß, wofür eine einfache und langlebige Abdichtung der Kolben- führung und eine geringe Antriebsleistung ausreicht. Wegen der hohen anwendbaren Temperaturen im "heissen" Arbeits¬ raum von z.B.600 bis 800°C und von Umgebungstemperatur imThe invention solves this problem in that the pressure cylinder is divided into two working spaces by a periodically reciprocating displacement piston which are connected to one another via a thermal regenerator, that pressure cylinder and thermal regenerator with a vaporous or gaseous one Arbe smedium are filled relatively high pressure, that one of the work rooms brought to a higher temperature by supplying heat, the other is kept at a lower temperature by cooling, that at least one work room is connected to two pressure vessels via two oppositely effective check valves and that the pressure vessels are connected to different pressures of the gaseous or vaporous working medium via an expansion machine. The working machine according to the invention has the advantage that it is relatively simple in design, that the displacement piston only has to push the working medium back and forth over the parallel thermal regenerator, for which purpose a simple and long-lasting sealing of the piston guide and a low level Drive power is sufficient. Because of the high applicable temperatures in the "hot" work area of e.g. 600 to 800 ° C and the ambient temperature in the
O PI
- ά -O PI - ά -
kalten Arbeitsraum ist ein hoher thermodynamischer Wirkungs¬ grad erzielbar.cold working space a high thermodynamic efficiency can be achieved.
Weitere Ausgestaltungen und Einzelheiten der Erfindung ergeben sich aus den Unteransprüchen.Further refinements and details of the invention emerge from the subclaims.
Die Erfindung wird nachfolgend anhand eines in der Zeich- nung dargestellten Ausführungsbeispiels näher erläutert. In der Zeichnung zeigen:The invention is explained in more detail below on the basis of an exemplary embodiment shown in the drawing. The drawing shows:
Fig.l eine schematische Darstellung zur Erläuterung des Prinzips der Erfindung; Fig.2 eine schematische Ansicht der gesamten Arbeits- maschine nach der Erfindung undFig.l is a schematic representation to explain the principle of the invention; 2 shows a schematic view of the entire work machine according to the invention and
Fig.3 einen Vertikalschnitt der Arbeitsmaschine nach der Erfindung. In Fig.l besitzt der Druckzylinder 1, der mit einem gas- oder dampfförmigen Arbeitsmedium vor, 10 bis 100 bar Druck ge- f llt ist, einen Verdrängerkolben 2, der über die druckdicht durch den Zylinderboden 3 geführte Kolbenstange 4 durch ei¬ nen Kurbeltrieb 5 periodisch zwischen dem oberen und unteren Totpunkt bewegt wird. Die beiden durch den am kälten Ende mit dem 0-Ring 6 abgedichteten Ve'ßrängerkolben abgeteilten Ar- beϊtsräume 7 und 8 sind über den thermischen Regenerator 9 miteinander verbunden; in ihnen herrschrt daher derselbe Druck des Arbeitsmediums. Bei de r Aufwärtsbewegung des Verdränger¬ kolbens 2 wird das Arbeitsgas durch den Wärmetauscher 10,den thermischen Regnerator 9 und den Kühler 11 vom oberen Ar- beitsraum 8 in den unteren 7 geschoben; bewegt sich der Kol¬ des Me-
3 shows a vertical section of the working machine according to the invention. In Fig.l the pressure cylinder 1, which is filled with a gaseous or vaporous working medium, from 10 to 100 bar pressure, has a displacement piston 2 which, via the piston rod 4, which is pressure-tightly guided through the cylinder base 3, by means of a crank mechanism 5 is periodically moved between the top and bottom dead center. The two ßrängerkolben by the 6 sealed at the end of colds with the 0-ring Ve 'divided Ar- beϊtsräume 7 and 8 are connected to each other via the thermal regenerator 9; the same pressure of the working medium therefore prevails in them. When the displacement piston 2 moves upward, the working gas is pushed through the heat exchanger 10, the thermal regenerator 9 and the cooler 11 from the upper working space 8 into the lower 7; does the Kol¬ des Me-
Diesem geschlossenen Prozeß wird über den Wärmetauscher 10 die Wärmemenge Q2 bei der höheren Temperatur T2 zugeführt und im Kühler 11 die Wärmemenge QQ bei der niedrigeren Tempera¬ tur T entnommen. Im thermischen Regenerator 9 stellt sich da¬ her im Beharrungszustand das Temperaturgefälle T~-T ein, wo¬ durch das Arbeitsmedium in den-Arbeitsräumen 7 und 8 eben¬ falls die Tempreratur To bzw.T2c annimmt. Da die Gesamtmasse des Arbeitsmediums unabhängig von der Stellung des Verdrän¬ gerkolbens ist und konstant bleibt, ändert sich nach dem I.Hauptsatz der Thermodynamik die Druckenergie des Arbeits-
ediums und damit der Gasdruck periodisch mit der Kolbenstel¬ lung: im oberen Totpunkt des Verdrängerkolbens befindet sich - abgesehen vom Gasanteil in den Wärmetauschern 10, 11 und im thermischen Regenearator 9 - das Arbeitsmedium auf der Tempe¬ ratur T und wird der DruckThe heat quantity Q 2 at the higher temperature T 2 is fed to this closed process via the heat exchanger 10 and the heat quantity Q Q at the lower temperature T is taken from the cooler 11. In the thermal regenerator 9 arises da¬ forth in the steady state, the temperature gradient T ~ T a, wo¬ by the working medium in the working chambers 7 and 8 likewise if the temp erature r To bzw.T2 c assumes. Since the total mass of the working medium is independent of the position of the displacement piston and remains constant, the pressure energy of the working medium and thus the gas pressure periodically with the piston position: apart from the gas portion in the heat exchangers 10, 11 and in the thermal regenerator 9, the working medium is at the temperature T and becomes the pressure in the top dead center of the displacement piston
P.,n- ■ * T„/ϊ (1) herrschen, wenn V das vom Kolben 2 verdrängte Volumen und R die Gaskonstante ist. Analog stellt sich für den unteren Tot¬ punkt des Verdrängerkolbens der DruckP., n - ■ * T „/ ϊ (1) prevail if V is the volume displaced by piston 2 and R is the gas constant. The pressure for the bottom dead center of the displacement piston is analogous
Pmax= m R T2/V (2) ein. Der Druck des Arbeitsmediums ändert sich periodisch wäh¬ rend einer Umdrehung des Kurbelantriebs 5 zwischen den Werten p• mmi.n und ^max* das Druckverhältnis wird aus der BeziehungP max = m RT 2 / V (2) on. The pressure of the working medium changes periodically during one revolution of the crank drive 5 between the values p • m mi.n and ^ max *, the pressure ratio becomes from the relationship
erhalten und Hegt in der Praxis zwischen 2 und 3. Abgesehen von den Strömungsverlusten des Arbeitsmediums im thermischen Rgenerator 9 und in den Wärmetauschern 10, 11, sowie den Kol- benrεibungsverlusten ist für das Hin- und Herschieben des Arbeitsmediums keine mechanische Arbeit aufzuwenden. in practice is between 2 and 3. Apart from the flow losses of the working medium in the thermal regenerator 9 and in the heat exchangers 10, 11, and the piston friction losses, no mechanical work has to be expended for pushing the working medium back and forth.
In Fig.2 wird das Verfahren angegeben, wie die periodi¬ sche Druckschwankung für die Erzeugung mechanischer Arbeit nutzbar gemacht werden kann. Der untere Arbeitsraum 7 ist über die Rückschlagventile 12, 13 mit entgegengesetzter Durch- laßrichtung mit zwei Gasdruckbehältern 14, 15 verbunden, in denen der Druck des Arbeitsmediums p' bzw.p" beträgt. In der an die Gasdruckbehälter angeschlossenen Expansionsmaschine 16 wird das Druckgefälle (p'-p") in Arbeit umgewandelt und die mechanische Leistung P = (p'-p")V (4) erzeugt, wenn V das pro Sekunde durchgesetzte Volumen des Arbeitsmediums bedeutet. Befindet sich der Verdrängerkolben 2 in der Nähe des unteren Totpunkts, entsteht im Arbeitszy¬ linder ein hoher Druck p', der das Rückschlagventil 12 so lange offenhält, bis der Druckbehälter 14 auf diesen Druck aufgepumpt ist. Am oberen Totpunkt von 2 wird der Tiefst¬ wert p" des Systems erreicht und eine bestimmt Gasmenge über das geöffnete Rückschlagventil 13 aus dem Druckbehälter 15 r
- - in den Arbeitszylinder 1 bis zum Druckausgleich strömen. Abhängig vom Volumendurchsatz der Expansionsmaschine 16 stellt sich das Druckgefälle (p'-p") selbsttätig ein; sein Grenzwert nach Gl.(3) wird für V=0, d.h.im Stillstand der Expansionsmaschine erreicht.2 shows the method of how the periodic pressure fluctuation can be used for the generation of mechanical work. The lower working chamber 7 is connected via the check valves 12, 13 with the opposite passage direction to two gas pressure containers 14, 15, in which the pressure of the working medium is p 'or p ". In the expansion machine 16 connected to the gas pressure container, the pressure drop ( p'-p ") converted into work and the mechanical power P = (p'-p") generates V (4) if V means the volume of the working medium passed through per second. The displacement piston 2 is located near the bottom dead center , a high pressure p 'arises in the working cylinder, which keeps the check valve 12 open until the pressure container 14 is inflated to this pressure. At the top dead center of 2, the low point p "of the system is reached and a determined gas quantity is exceeded the opened check valve 13 from the pressure vessel 15 r - - flow into working cylinder 1 until pressure equalization. Depending on the volume throughput of the expansion machine 16, the pressure drop (p'-p ") is set automatically; its limit value according to Eq. (3) is reached for V = 0, ie when the expansion machine is at a standstill.
Arbeitszylinder 1 mit Verdrängerkolben 2 und thermischer Regenerator 9 stellen einen durch äußere Wärmezufuhr betrie¬ benen Kompressor dar, der das Arbeitsmedium durch Schmier¬ mittel nicht verunreinigt und dessen einziger beweglicher Maschinenteil im Idealfall kraftfrei im Arbeitszylinder 1 hin- und hergleitet. Nach dem I.Hauptsatz der Thermodynamik verwandelt sich theoretisch die Differenz von zu-und abge¬ führter Wärmeleistung (Q 'Qr "*π die durch Gl.(4) berechne¬ te mechanische Leistung. Als Expansionsmaschine können Kolben- und Strömungsma¬ schinen verwendet werden, sofern sie für relativ große Drük- ke des Arbeitsmediums geeignet sind. Auch Kreiskolbenmaschi- nen nach Wanke! lassen sich anwenden und bieten den Vorteil eines ruhigen Arbeitsablaufs. Probleme werden mit reinen Ga- sen , wie z.B.Helium als Arbeitsmedium zu erwarten sein, da diese e-ine Expansionsmaschine für Trockenlauf erfordern und die Gasabdichtung bei hohen Drücken schwierig ist. Diese Schwierigkeiten lassen sich überwinden, wenn als Arbeitsme¬ dium ein kondensierbares Gas angewandt und !der Arbeitsdruck so hoch gewählt wird, daß es ;in der Expansionsmaschine, dem kältesten Teil der Gesamtanlage, kondensiert und als Schmier- und Dichtmittel fungiert.Working cylinder 1 with displacement piston 2 and thermal regenerator 9 represent a compressor operated by external heat supply, which does not contaminate the working medium with lubricant and ideally moves the only movable machine part back and forth in the working cylinder 1 without force. According to the first principle of thermodynamics, the difference between the supplied and removed heat output (Q 'Q r "* π is the mechanical power calculated by Eq. (4). The piston and the flow machine can be used as expansion machines as long as they are suitable for relatively large pressures of the working medium. Rotary piston machines according to Wanke! can also be used and offer the advantage of a quiet work process. Problems will be expected with pure gases, such as helium as working medium, since these require an expansion machine for dry running and gas sealing at high pressures is difficult, these difficulties can be overcome if a condensable gas is used as the working medium and the working pressure is chosen so high that it is; in the expansion machine, the coldest part of the entire system, condenses and acts as a lubricant and sealant.
'Das in Fig. schematisch dargestellte Prinzip der Erfin- auch düng läßt sich^auf Prozesse anwenden, in denen das obere Ar- beitsvolumen 8 auf sehr tiefe Temperaturen gebracht wird, während das untere Arbeitsvolumen 7 auf Umgebungstemperatur gehalten wird. In diesem Fall kann der Wärmetauscher 10 z. 'The principle of the inventions shown schematically in Fig. Fertil also is applicable to ^ processes in which the upper working volume is brought to very low temperatures 8, while the lower working volume is maintained at ambient temperature for 7. In this case, the heat exchanger 10 z.
B. in ein Bad von siedendem flüssigem Stickstoff gebracht werden, dessen Temperatur etwa 80 K beträgt. Nach Gl.(3) wird für diesen Anwendungsfall das Druckverhäl n s etwaB. be placed in a bath of boiling liquid nitrogen, the temperature of which is about 80 K. According to Eq. (3), the pressure ratio is about s for this application
(300/80) = 3,7.(300/80) = 3.7.
In Fig.3 ist ein konstrukti es Ausführungsbeispiel dargestellt, wobei lediglich auf den im Schnitt gezeigten Arbeitszylinder eingegangen wird. Der
Arbeitszylinder 17 aus einer hochtemperaturbeständigen Me¬ tallegierung ist durch den halbkugelförmigen Zylinderkopf 18 aus dem gleichen Material abgeschlossen und ist mit sei¬ nem Flansch 19 am Kühler 20 befestigt und durch den O-Ring 21 abgedichtet. Der Kühler 20 besteht aus dem von Wasser durchströmten ringförmigen Gehäuse mit axial angeordneten, vom Arbeitsmedium durchflossenen Röhrchen 22. Seine feinbe¬ arbeitete Innenfläche 23 stellt gleichzeitig die Laufflä¬ che für die Gleitbuchse 24 des Verdrängerkolbens 25 dar, die mit Labyrinthnuten zur dynamischen Abdichtung versehen ist.3 shows a constructive exemplary embodiment, only the working cylinder shown in section being dealt with. The Working cylinder 17 made of a high-temperature resistant metal alloy is closed off by the hemispherical cylinder head 18 made of the same material and is attached to the cooler 20 with its flange 19 and sealed by the O-ring 21. The cooler 20 consists of the annular housing through which water flows, with axially arranged tubes 22 through which the working medium flows. Its finely machined inner surface 23 also represents the running surface for the sliding bushing 24 of the displacer piston 25, which is provided with labyrinth grooves for dynamic sealing .
Der Zylinderkopf 18 wird von einem halbkugelförmigen Dia- . phrag a- oder Strahlungsbrenner 26 umgeben, der aus der z.B. Zirkonoxid enthaltenden keramischen Lochplatte 27 besteht. ' Das durch die Brennerdüse 28 zugeführte Gas-Luf -Gemisch ver- brennt in vielen kleinen nichtleuchtenden Flämmchen und bringt die Lochplatte 27 zum Glühen. Die Außenfläche des me¬ tallischen Zylinderkopfes 18 wird durch aufgeschweißte Ste¬ ge, Kegel 29 u.ä.vergrößert, um die Austauschfläche für die Wärmeübertragung durch Strählung und Konvektion zu vergrö- ßern. Die warmen Abgase werden im Blechmantel 30 außerhalb des Brenners 26 zurückgeführt und zum Vorwärmen der Verbren¬ nungsluft genutzt.The cylinder head 18 is of a hemispherical slide. surround phrag a or radiation burner 26, which consists of the ceramic perforated plate 27 containing zirconium oxide, for example. 'The supplied through the burner 28 gas mixture Luf comparable burns in many small non-luminous flame and brings the perforated plate 27 to glow. The outer surface of the metallic cylinder head 18 is enlarged by welded-on webs, cones 29 and the like in order to enlarge the exchange surface for the heat transfer by radiation and convection. The warm exhaust gases are returned in the sheet metal jacket 30 outside the burner 26 and used to preheat the combustion air.
Auf der Innenseite des Zyl nderkopfes 18 sind metallische Stege oder Rippen 31 aufgeschweißt oder durchgenietet und wird das Arbeitsmedium durch die halbkugelförmige Leitflä¬ che 32 aus keramischem Material gezwungen, den Weg vom obe¬ ren Arbeitsraum 33 zum thermischen Regenerator 34 di-'Cht an der Innenfläche des Zylinderkopfes 18 zu nehmen.On the inside of Zyl Direction head 18, metallic webs or ribs 31 are welded or durchgenietet and the working medium by the hemispherical Leitflä¬ surface 32 of ceramic material forced route from obe¬ ren working chamber 33 for thermal regenerator 34 di- 'Cht at the To take the inner surface of the cylinder head 18.
Der thermische Regenerator 34 besteht aus einem Ringbehäl- ter aus wärmeisolierendem keramischen oder glasartigem Ma¬ terial, dessen Innenwand 35 gleichzeitig dorn Arbeitszylin¬ der darstellt, in dem der aus dem selben Werkstoff herge¬ stellte Verdrängerkolben 25 hin- und hergleitet. Die .Außen¬ wandung 36 des Regenerators 34 besteht aus dem gleichen ke- ramischen Material und bildet gleichzeitig die thermische Isolationsschicht zum Außenmantel 17. Als Speichermasse des Regenerators 34 werden Kügelchen gleichen Durchmessers (0,5 bis 2 mm) aus Keramik oder ringförmige, axial von dünnen Boh¬ rungen durchsetzte Einsätze verwendet. Um etwaigen Oberflä-
chenabrieb der Kugelschüttung zu verhindern, werden die Kügelchen vor dem Einfüllen in eine Glasurlösung getaucht und im gefüllten Regenerator so hoch erhitzt, daß sie un¬ tereinander und mit den Behälterwänden 35, 36 verbacken. Für den periodischen Antrieb des Verdrängerkolbens 25 wird der technisch Versierte verschiedene Lösungen bereit¬ halten; in jedem Fall wird die Kolbenstange 37 druckdicht durch den Boden 38 des Arbeitszyl nders geführt', an den das Antriebsgehäuse 39 angeflanscht ist. Für den Antrieb des Verdrängerkolbens kommen außer mechanischen Getrieben elektromagnetische oder elektrodynamische Methoden in Be¬ tracht; aber auch pneumatische oder hydraulische Kolben mit umgesteuertem Druckflüssigkeitszulauf lassen sich mit Vorteil anwenden.
The thermal regenerator 34 consists of an annular container made of heat-insulating ceramic or glass-like material, the inner wall 35 of which at the same time represents the working cylinder in which the displacement piston 25 made of the same material slides back and forth. The .Auter¬ wall 36 of the regenerator 34 consists of the same ceramic material and at the same time forms the thermal insulation layer to the outer jacket 17. The storage mass of the regenerator 34 are balls of the same diameter (0.5 to 2 mm) made of ceramic or annular, axial inserts interspersed with thin holes. For any surface To prevent abrasion of the ball bed, the beads are immersed in a glaze solution before filling and heated in the filled regenerator to such an extent that they bake together and with the container walls 35, 36. For the periodic drive of the displacement piston 25, the technically savvy will have various solutions ready; in any case, the piston rod 37 is pressure-tight through the bottom 38 of the working cylinder ' , to which the drive housing 39 is flanged. In addition to mechanical gears, electromagnetic or electrodynamic methods are considered for driving the displacement piston; but pneumatic or hydraulic pistons with reversed hydraulic fluid supply can also be used with advantage.