[go: up one dir, main page]

EP0108003B1 - Double strip line resonators and filter using such resonators - Google Patents

Double strip line resonators and filter using such resonators Download PDF

Info

Publication number
EP0108003B1
EP0108003B1 EP83402026A EP83402026A EP0108003B1 EP 0108003 B1 EP0108003 B1 EP 0108003B1 EP 83402026 A EP83402026 A EP 83402026A EP 83402026 A EP83402026 A EP 83402026A EP 0108003 B1 EP0108003 B1 EP 0108003B1
Authority
EP
European Patent Office
Prior art keywords
resonators
filter
substrate
dielectric
mhz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83402026A
Other languages
German (de)
French (fr)
Other versions
EP0108003A1 (en
Inventor
Jean-Claude Mage
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0108003A1 publication Critical patent/EP0108003A1/en
Application granted granted Critical
Publication of EP0108003B1 publication Critical patent/EP0108003B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters
    • H01P1/208Cascaded cavities; Cascaded resonators inside a hollow waveguide structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • H01P7/08Strip line resonators
    • H01P7/082Microstripline resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • H01P7/08Strip line resonators
    • H01P7/084Triplate line resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • H01P7/10Dielectric resonators

Definitions

  • the present invention relates to a high frequency filter made from electromagnetic resonators which can be called "two-band resonators”.
  • the resonators and filters produced from these elements are often made up of line sections. These can be air coaxial lines or coaxial lines loaded with dielectric as mentioned in the article: "Bandpass filter with dielectric materials used for broadcasting channel filter” by K. Wakino and Y. Konishi published in the review I.E.E.E. Transactions on Broadcasting, vol. BC-26, No. 1, March 1980. It is also known to manufacture resonators and filters from microstrip lines as indicated in the article: "750 MHz microstrip bandpass filter on barium tetratitanate substrate" by G. Ohm and G. Schmoller published in Electronics Letters, vol. 18, No. 15 of July 22, 1982, as also described in GL Matthaei's "Microwave filters impedance-matching networks and coupling structures", pages 422-425 and 770 of 1964 published by McGraw-Hill Book Company , New-York USA.
  • the coaxial line technique allows the manufacture of independent resonators whose natural frequencies can be adjusted before their assembly to form filters.
  • This assembly can be carried out in the case of a bandpass filter by placing the various resonators end to end, the couplings between two sections of consecutive lines being determined by the distances which separate their faces placed opposite.
  • overvoltage coefficients greater than 500
  • a silver-plated 20 mm diameter resonator can have an overvoltage coefficient Q greater than 1000 for a frequency of 1 GHz.
  • the coupling of quarter-wave resonators remains delicate and the very realization of the coaxial structure is quite complex because of the different operations of machining and metallization of elements with circular section.
  • Resonators can be designed by metallizing two opposite faces of a substrate as described in the article by J. Watkins “Radiation Loss from Open-Circuited Dielectric Resonators” published in IEEE Transactions on Microwave Theory and Techniques, October 1973, pages 636-639, or according to the technique of microstrip lines. They are generally produced from a relatively large dielectric substrate, one face of which is entirely metallized and the other of which receives a metallic conductor in the form of a thin strip. This technique has two drawbacks.
  • the inherent overvoltage coefficients Q of the resonators are always low (less than 500) and consequently the performance of filters formed from these resonators is always modest (high insertion losses, greater than 3 dB towards 1 GHz).
  • the filter once the filter has been produced, by depositing ribbons on the same substrate, it is practically impossible to adjust the natural frequencies of the resonators as well as their mutual couplings. This prohibits the industrial production of filters comprising a high number of poles due to the inevitable dispersions of the characteristics: in particular, the dielectric constant of the substrate.
  • the invention relates to filters comprising resonators produced from a parallelepiped made of dielectric material.
  • a line is produced by metallizing two opposite faces of the parallelepiped and a resonator ⁇ / 4 or ⁇ / 2 depending on the length and termination of the line.
  • FIG. 1 shows a waveguide called microstrip line (microstrip line in English).
  • This line is formed by a flat dielectric substrate 1 covered on its underside with a metallization 2.
  • the opposite face of the substrate receives a conductive tape 3.
  • This solid can be a parallelepiped.
  • Metallizations 5 and 6 cover two opposite faces of the dielectric.
  • the bi-ribbon line has two similar electrodes.
  • Half-wave resonators can be present as shown in FIG. 2, that is to say in open circuit, with They can also be of the type shown in Figure 3.
  • FIG. 2 we see in this figure a dual-ribbon waveguide formed by a dielectric bar 7 covered on two of its faces with metallic deposits 8 and 9. Boundary conditions: metallizations ends 10 and 11 make it a ⁇ g / 2 resonator for
  • a ⁇ g / 4 resonator is shown in FIG. 4. It is formed by a bi-ribbon line defined by a dielectric bar 12, metallizations 13 and 14 and a short circuit 15 caused by the metallization of one of the ends. from the bar. Its length L is equal to ⁇ g / 4.
  • an appropriate dielectric In order to have temperature stable resonators, it is advantageous to choose an appropriate dielectric.
  • a material such as those which were the subject of the patent of the Applicant No. 80.04 601 filed on February 29, 1980. These materials have relative molar proportions t Ti0 2 , x Sn0 2 , y Zr0 2 , a NiO, b La 2 0 3 and c Fe where the parameters t, x, y, a, b and c satisfy the following inequalities:
  • resonators are typically intended for the production of band-pass and band-cut filters in the UHF range. They can also be used to stabilize oscillators. Examples of filters in the vicinity of 1 GHz are presented below. They can be easily transposed to other frequencies and can be made indifferently using ⁇ g / 2 or ⁇ g / 4 resonators.
  • Figure 5 is a top view of the housing from which the cover has been removed. A cut was made at the holes 25 and 26 for input and output of the signal. The hole 25 allows the passage of a conductor 27 which forms a coupling loop 29, serving as excitation means, with the resonator 20. The end of the conductor 27 is then connected to the housing.
  • the device allowing the output of the signal is similarly constituted by a conductor 28 which forms a loop 30, which serves as collecting means, at the level of the resonator 23 and the end of which is connected to ground.
  • the bottom of the housing is covered with an insulating substrate 31 which has, for example, a very low dielectric constant.
  • the resonators are fixed to the substrate 31, for example by gluing.
  • the metallizations of the quarter wave resonators are respectively mutually parallel and perpendicular to the substrate as shown in FIG. 5.
  • the coupling between resonators is made by mutual inductance.
  • the natural frequencies of each resonator have been previously adjusted either by manufacturing or by running in. The development of the filter is then greatly facilitated.
  • the resonators can also be separated by spacers made of dielectric material of low dielectric constant. The distances between each resonator can be of the order of edge a.
  • FIG. 8 shows such a filter.
  • the housing was cut as in FIG. 5.
  • the housing 50 is recognized on which a cover, not shown, is fixed.
  • the bottom of the housing is covered with a substrate 51 of dielectric material of low dielectric constant.
  • the filter includes 3 quarter-wave resonators 52, 53 and 54, holes 55 and 56 which allow the passage of a signal input conductor 57 and an output conductor 58, a line 59 which can be l soul of a coaxial line.
  • the housing and its cover are connected to the ground.
  • the distances separating the resonators from each other and between the line 59 are of the order of magnitude of the edge a. It is also possible to obtain with this kind of filters an adjustment of the couplings by the presence of screws modifying the electromagnetic field between the resonators.
  • the band-cut and band-pass filters produced using quarter-wave resonators exhibit a first spurious response at a frequency substantially triple their operating frequency.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Waveguides (AREA)

Description

La présente invention concerne un filtre hautes fréquences réalisé à partir de résonateurs électromagnétiques que l'on peut appeler "résonateurs bi-ruban".The present invention relates to a high frequency filter made from electromagnetic resonators which can be called "two-band resonators".

Dans la gamme des fréquences élevées appelée UHF (pratiquement de 300 MHz à 3 Ghz), les résonateurs et les filtres réalisés à partir de ces éléments sont souvent constitués de tronçons de lignes. Il peut s'agir de lignes coaxiales à air ou de lignes coaxiales chargées de diélectrique telles que mentionnées dans l'article: "Bandpass filter with dielectric materials used for broadcasting channel filter" de K. Wakino et Y. Konishi paru dans la revue I.E.E.E. Transactions on Broadcasting, vol. BC-26, No. 1, Mars 1980. Il est connu aussi de fabriquer des résonateurs et des filtres à partir de lignes microrubans comme l'indique l'article: "750 MHz microstrip bandpass filter on barium tetratitanate substrate" de G. Ohm et G. Schmoller paru dans la revue Electronics Letters, vol. 18, No. 15 du 22 Juillet 1982, ainsi que cela est également décrit dans l'ouvrage "Microwave filters impedance-matching networks and coupling structures" de G. L. Matthaei, pages 422-425 et 770 de 1964 publié par McGraw-Hill Book Company, New-York USA.In the high frequency range called UHF (practically from 300 MHz to 3 Ghz), the resonators and filters produced from these elements are often made up of line sections. These can be air coaxial lines or coaxial lines loaded with dielectric as mentioned in the article: "Bandpass filter with dielectric materials used for broadcasting channel filter" by K. Wakino and Y. Konishi published in the review I.E.E.E. Transactions on Broadcasting, vol. BC-26, No. 1, March 1980. It is also known to manufacture resonators and filters from microstrip lines as indicated in the article: "750 MHz microstrip bandpass filter on barium tetratitanate substrate" by G. Ohm and G. Schmoller published in Electronics Letters, vol. 18, No. 15 of July 22, 1982, as also described in GL Matthaei's "Microwave filters impedance-matching networks and coupling structures", pages 422-425 and 770 of 1964 published by McGraw-Hill Book Company , New-York USA.

La technique des lignes coaxiales autorise la fabrication de résonateurs indépendants dont les fréquences propres peuvent être ajustées avant leur assemblage pour former des filtres. Cet assemblage peut être réalisé dans le cas d'un filtre passe-bande en plaçant les différents résonateurs bout à bout, les couplages entre deux tronçons de lignes consécutifs étant déterminés par les distances qui séparent leurs faces placées en vis-à-vis. Cependant, pour obtenir des coefficients de surtension intéressants (supérieurs à 500) il faut disposer de tronçons ayant une section assez importante. Typiquement un résonateur de diamètre de 20 mm métallisé à l'argent peut avoir un coefficient de surtension Q supérieur à 1000 pour une fréquence de 1 GHz. En outre, le couplage des résonateurs quart d'onde demeure délicat et la réalisation même de la structure coaxiale est assez complexe à cause des différentes opérations d'usinage et de métallisation d'éléments à section circulaire.The coaxial line technique allows the manufacture of independent resonators whose natural frequencies can be adjusted before their assembly to form filters. This assembly can be carried out in the case of a bandpass filter by placing the various resonators end to end, the couplings between two sections of consecutive lines being determined by the distances which separate their faces placed opposite. However, to obtain interesting overvoltage coefficients (greater than 500) it is necessary to have sections having a fairly large section. Typically, a silver-plated 20 mm diameter resonator can have an overvoltage coefficient Q greater than 1000 for a frequency of 1 GHz. In addition, the coupling of quarter-wave resonators remains delicate and the very realization of the coaxial structure is quite complex because of the different operations of machining and metallization of elements with circular section.

Des résonateurs peuvent être conçus en métallisant deux faces opposées d'un substrat tel que cela est décrit dans l'article de J. Watkins "Radiation Loss from Open-Circuited Dielectric Resonators" publiée dans IEEE Transactions on Microwave Theory and Techniques, Octobre 1973, pages 636-639, ou bien selon la technique des lignes microrubans. Ils sont généralement réalisés à partir d'un substrat diélectrique relativement large dont une face est entièrement métallisée et dont l'autre reçoit un conducteur métallique sous la forme d'une mince ruban. Cette technique présente deux inconvénients. D'une part, les coefficients de surtension propres Q des résonateurs sont toujours faibles (inférieur à 500) et par conséquent les performances de filtres formés à partir de ces résonateurs sont toujours modestes (pertes d'insertion élevées, supérieures à 3 dB vers 1 GHz). D'autre part, une fois le filtre réalisé, par dépôt de rubans sur un même substrat, il est pratiquement impossible d'ajuster les fréquences propres des résonateurs ainsi que leurs couplages mutuels. Ceci interdit la réalisation industrielle de filtres comportant un nombre de pôles élevé en raison des inévitables dispersions des caractéristiques: en particulier, de la constante diélectrique du substrat.Resonators can be designed by metallizing two opposite faces of a substrate as described in the article by J. Watkins "Radiation Loss from Open-Circuited Dielectric Resonators" published in IEEE Transactions on Microwave Theory and Techniques, October 1973, pages 636-639, or according to the technique of microstrip lines. They are generally produced from a relatively large dielectric substrate, one face of which is entirely metallized and the other of which receives a metallic conductor in the form of a thin strip. This technique has two drawbacks. On the one hand, the inherent overvoltage coefficients Q of the resonators are always low (less than 500) and consequently the performance of filters formed from these resonators is always modest (high insertion losses, greater than 3 dB towards 1 GHz). On the other hand, once the filter has been produced, by depositing ribbons on the same substrate, it is practically impossible to adjust the natural frequencies of the resonators as well as their mutual couplings. This prohibits the industrial production of filters comprising a high number of poles due to the inevitable dispersions of the characteristics: in particular, the dielectric constant of the substrate.

Afin de pallier ces inconvénients, l'invention concerne des filtres comportant des résonateurs réalisés à partir d'un parallélépipède constitué de matériau diélectrique. On réalise une ligne en métallisant deux faces opposées du parallélépipède et un résonateur À/4 ou À/2 suivant la longueur et la terminaison de la ligne.In order to overcome these drawbacks, the invention relates to filters comprising resonators produced from a parallelepiped made of dielectric material. A line is produced by metallizing two opposite faces of the parallelepiped and a resonator À / 4 or À / 2 depending on the length and termination of the line.

L'invention a donc pour object un filtre haute fréquence comportant:

  • - un boitier comportant une face inférieure recouverte d'un substrat isolant;
  • - au moins un résonateur fixé audit substrat et comprenant un milieu diélectrique à six faces, caractérisé en ce que quatre au plus desdites faces étant recouvertes par une métallisation et deux autres faces non recouvertes étant opposées l'une à l'autre, lesdites faces métallisées étant perpendiculaires au plan du substrat.
The object of the invention is therefore a high frequency filter comprising:
  • - a housing comprising a lower face covered with an insulating substrate;
  • - at least one resonator fixed to said substrate and comprising a dielectric medium with six faces, characterized in that at most four of said faces being covered by a metallization and two other non-covered faces being opposite to each other, said metallized faces being perpendicular to the plane of the substrate.

L'invention sera mieux comprise et d'autres avantages apparaîtront au cours de la description qui va suivre et des figures annexées parmi lesquelles:

  • - la figure 1 représente une ligne microruban;
  • - les figures 2 et 3 représentent des résonateurs demi-onde selon l'invention;
  • - la figure 4 représente un résonateur quart d'onde selon l'invention;
  • - les figures 5 et 6 représentent un filtre passe-bande selon l'invention;
  • - la figure 7 est un diagramme donnant la résponse d'un filtre passe-bande;
  • - la figure 8 représente un filtre coupe-bande selon l'invention.
The invention will be better understood and other advantages will appear during the description which follows and from the appended figures among which:
  • - Figure 1 shows a microstrip line;
  • - Figures 2 and 3 show half-wave resonators according to the invention;
  • - Figure 4 shows a quarter wave resonator according to the invention;
  • - Figures 5 and 6 show a bandpass filter according to the invention;
  • - Figure 7 is a diagram giving the response of a bandpass filter;
  • - Figure 8 shows a notch filter according to the invention.

La figure 1 représente un guide d'onde que l'on appelle ligne microruban (microstrip line en anglais). Cette ligne est constituée par un substrat diélectrique plan 1 recouvert sur sa face inférieure d'une métallisation 2. La face opposée du substrat reçoit un ruban conducteur 3. C'est une technique de réalisation de guide d'onde assez connue. On peut envisager des guides d'onde réalisés par la métallisation de deux faces d'un solide diélectrique à six faces et se présentant différemment. C'est l'objet de la figure 2. Ce solide peut être un parallélépipède. Sur cette figure, on remarque un parallélépipède 4 en matériau diélectrique ayant une section rectangulaire de côtés a et b. Des métallisations 5 et 6 recouvrent deux faces opposées du diélectrique. A l'inverse de la ligne microruban, la ligne bi-ruban présente deux électrodes semblables. Le côté a est la distance qui sépare les deux électrodes 5 et 6. Une telle ligne propage des ondes électromagnétiques avec un indice efficace

Figure imgb0001
représente la longueur d'onde dans le vide et Àg la longueur d'onde dans le guide bi-ruban. Cet indice dépend de la constante diélectrique du matériau et de la géométrie de la ligne. Ainsi, en utilisant un barreau de diélectrique en tétratitanate de baryum BaTi409 de constante diélectrique 37, et de dimensions a et b comprises entre 5 et 10 mm, on obtient, pour 1 GHz, ne=4,7.Figure 1 shows a waveguide called microstrip line (microstrip line in English). This line is formed by a flat dielectric substrate 1 covered on its underside with a metallization 2. The opposite face of the substrate receives a conductive tape 3. This is a fairly well-known technique for producing a waveguide. One can envisage waveguides produced by the metallization of two faces of a dielectric solid with six faces and having a different appearance. This is the object of FIG. 2. This solid can be a parallelepiped. In this figure, there is a parallelepiped 4 of dielectric material having a rectangular section with sides a and b. Metallizations 5 and 6 cover two opposite faces of the dielectric. Unlike the microstrip line, the bi-ribbon line has two similar electrodes. Side a is the distance between the two electrodes 5 and 6. Such a line propagates electromagnetic waves with an effective index
Figure imgb0001
represents the wavelength in vacuum and λg the wavelength in the bi-ribbon guide. This index depends on the dielectric constant of the material and the geometry of the line. Thus, using a bar of dielectric made of barium tetratitanate BaTi 4 0 9 of dielectric constant 37, and of dimensions a and b between 5 and 10 mm, we obtain, for 1 GHz, n e = 4.7.

Une telle ligne peut présenter des fréquences de résonance propres suivant que la valeur de sa longueur L est un multiple pair ou impair de Àg/4 et selon les conditions aux limites. Dans la pratique, on s'intéressera au deux cas suivants:

  • - résonateur demi-onde:
    Figure imgb0002
  • - résonateur quart d'onde:
    Figure imgb0003
Such a line can have natural resonant frequencies depending on whether the value of its length L is an even or odd multiple of λg / 4 and depending on the boundary conditions. In practice, we will focus on the following two cases:
  • - half-wave resonator:
    Figure imgb0002
  • - quarter wave resonator:
    Figure imgb0003

Des résonateurs demi-onde peuvent se présenter commen le montre la figure 2, c'est-à-dire en circuit ouvert, avec

Figure imgb0004
Ils peuvent aussi être du type représenté à la figure 3. On voit sur cette figure un guide d'onde bi-ruban formé par un barreau diélectrique 7 recouvert sur deux de ses faces de dépôts métalliques 8 et 9. Les conditions aux limites: métallisations des extrémités 10 et 11 en font un résonateur λg/2 pour
Figure imgb0005
Half-wave resonators can be present as shown in FIG. 2, that is to say in open circuit, with
Figure imgb0004
They can also be of the type shown in Figure 3. We see in this figure a dual-ribbon waveguide formed by a dielectric bar 7 covered on two of its faces with metallic deposits 8 and 9. Boundary conditions: metallizations ends 10 and 11 make it a λ g / 2 resonator for
Figure imgb0005

Un resonateur λg/4 est représenté à la figure 4. Il est formé par une ligne bi-ruban définie par un barreau diélectrique 12, des métallisations 13 et 14 et un court-circuit 15 provoqué par la méallisation de l'un des bouts du barreau. Sa longueur L est égale à λg/4.A λ g / 4 resonator is shown in FIG. 4. It is formed by a bi-ribbon line defined by a dielectric bar 12, metallizations 13 and 14 and a short circuit 15 caused by the metallization of one of the ends. from the bar. Its length L is equal to λ g / 4.

En utilisant un matériau de constant diélectrique 37 et des métallisations réalisées en argent sérigraphié, on obtient les résultats résumés dans le tableau 1. Les mesures ont été effectuées sur des résonateurs à section carrée (a=b) de type Àg/4 et Àg/2. Le tableau 1 donne également les valeurs de la fréquence de résonance fo, du coefficient de surtension Q à la résonance, du volume V pour chaque résonateur. En fait, ce qui est surtout important pour la section du barreau c'est la distance a qui sépare les métallisations.

Figure imgb0006
Using a material of dielectric constant 37 and metallizations carried out in screen-printed silver, the results summarized in Table 1 are obtained. The measurements were carried out on square section resonators (a = b) of type Àg / 4 and Àg / 2. Table 1 also gives the values of the resonant frequency fo, of the overvoltage coefficient Q at the resonance, of the volume V for each resonator. In fact, what is especially important for the cross-section of the bar is the distance a which separates the metallizations.
Figure imgb0006

On constate, à la lecture du Tableau 1, que la surtension Q est proportionelle à l'arête a et que à section constante, la surtension varie comme la racine carrée de la fréquence. On peut écrire Q=√f, K étant un coefficient de proportionnalité. Si on considère le rapport surtension/volume du diélectrique, on constate que la structure bi-ruban permet d'obtenir des résonateurs ayant d'excellentes performances par rapport à leur encombrement. Pour une surtension et un volume donnés on peut choisir entre les deux types de résonateurs. Par exemple, les résonateurs 4 et 5 sont équivalents à ce point de vue.It can be seen, on reading Table 1, that the overvoltage Q is proportional to the edge a and that, at constant section, the overvoltage varies as the square root of the frequency. We can write Q = √f, K being a coefficient of proportionality. If we consider the overvoltage / volume ratio of the dielectric, we see that the dual-ribbon structure makes it possible to obtain resonators having excellent performance compared to their size. For a given overvoltage and volume, one can choose between the two types of resonators. For example, resonators 4 and 5 are equivalent from this point of view.

Afin de disposer de résonateurs stables en température, il est avantageux de choisir un diélectrique approprié. On peut par exemple utiliser un matériau tels que ceux qui ont fait l'objet du brevet de la Demanderesse No. 80.04 601 déposé le 29 Février 1980. Ces matériaux ont des proportions molaires relatives t Ti02, x Sn02, y Zr02, a NiO, b La203 et c Fe où les paramètres t, x, y, a, b et c satisfont aux inéoalités suivantes:

Figure imgb0007
Figure imgb0008
Figure imgb0009
In order to have temperature stable resonators, it is advantageous to choose an appropriate dielectric. One can for example use a material such as those which were the subject of the patent of the Applicant No. 80.04 601 filed on February 29, 1980. These materials have relative molar proportions t Ti0 2 , x Sn0 2 , y Zr0 2 , a NiO, b La 2 0 3 and c Fe where the parameters t, x, y, a, b and c satisfy the following inequalities:
Figure imgb0007
Figure imgb0008
Figure imgb0009

Pour x voisin de 0,35 le coefficient de variation thermique s'annule. La constante diélectrique élevée (environ 37) de tels matériaux autorise une réduction de volume des résonateurs pour une longueur d'onde donnée.For x close to 0.35 the coefficient of thermal variation is zero. The high dielectric constant (around 37) of such materials allows a reduction in volume of the resonators for a given wavelength.

Ces résonateurs sont typiquement destinés à la réalisation de filtres passe-bande et coupe-bande dans la gamme UHF. Ils peuvent aussi servir à stabiliser des oscillateurs. Des exemples de réalisation de filtres au voisinage de 1 GHz sont présentés ci-dessous. Ils peuvent être aisément transposés à d'autres fréquences et peuvent être réalisés indifféremment à l'aide de résonateurs Àg/2 ou Àg/4.These resonators are typically intended for the production of band-pass and band-cut filters in the UHF range. They can also be used to stabilize oscillators. Examples of filters in the vicinity of 1 GHz are presented below. They can be easily transposed to other frequencies and can be made indifferently using Àg / 2 or Àg / 4 resonators.

Pour la réalisation de filtres, le type de résonateurs, leur longueur et leur section doivent être choisis en fonction des performances requises.For the production of filters, the type of resonators, their length and their section must be chosen according to the required performance.

La figure 5 représente une réalisation d'un filtre passe-bande à quatre résonateurs 20, 21, 22 et 23. Ceux-ci correspondent par exemple au numéro 3 du tableau 1, soit a=b=7 mm et de type Àg/4. Ils sont disposés dans un boîtier 24 relié à la masse. La figure 5 est une vue de dessus du boîtier dont le couvercle a été ôté. Une coupe a été réalisée au niveau des trous 25 et 26 d'entrée et de sortie du signal. Le trou 25 permet le passage d'un conducteur 27 qui forme une boucle 29 de couplage, servant de moyens excitateurs, avec le résonateur 20. L'extrémité du conducteur 27 est ensuite reliée au boîtier. Le dispositif permettant la sortie du signal est constitué de façon similaire par un conducteur 28 qui forme une boucle 30, qui sert de moyens collecteurs, au niveau du résonateur 23 et dont l'extrémité est reliée à la masse. Le fond du boîtier est recouvert d'un substrat isolant 31 qui possède par exemple une très faible constante diélectrique. Les résonateurs sont fixés sur le substrat 31, par exemple par collage. Les métallisations des résonateurs quart d'onde sont respectivement parallèles entre elles et perpendiculaires au substrat comme l'indique la figure 5. Le couplage entre résonateurs se fait par inductance mutuelle. Les fréquences propres de chaque résonateur ont été au préalable ajustées soit par fabrication, soit par rodage. La mise au point du filtre est alors largement facilitée. On peut également séparer les résonateurs par des entretoises en matériau diélectrique de faible constante diélectrique. Les distances entre chaque résonateur peuvent être de l'ordre de l'arête a.FIG. 5 represents an embodiment of a bandpass filter with four resonators 20, 21, 22 and 23. These correspond, for example, to number 3 in Table 1, ie a = b = 7 mm and of type Àg / 4 . They are arranged in a housing 24 connected to ground. Figure 5 is a top view of the housing from which the cover has been removed. A cut was made at the holes 25 and 26 for input and output of the signal. The hole 25 allows the passage of a conductor 27 which forms a coupling loop 29, serving as excitation means, with the resonator 20. The end of the conductor 27 is then connected to the housing. The device allowing the output of the signal is similarly constituted by a conductor 28 which forms a loop 30, which serves as collecting means, at the level of the resonator 23 and the end of which is connected to ground. The bottom of the housing is covered with an insulating substrate 31 which has, for example, a very low dielectric constant. The resonators are fixed to the substrate 31, for example by gluing. The metallizations of the quarter wave resonators are respectively mutually parallel and perpendicular to the substrate as shown in FIG. 5. The coupling between resonators is made by mutual inductance. The natural frequencies of each resonator have been previously adjusted either by manufacturing or by running in. The development of the filter is then greatly facilitated. The resonators can also be separated by spacers made of dielectric material of low dielectric constant. The distances between each resonator can be of the order of edge a.

La figure 6 est une vue en coupe du filtre représenté à la figure 5, la coupe étant effectuée selon AA. Sur ces 2 figures, les mêmes références représentent les mêmes objets. Un couvercle métallique 32 ferme le boîtier et contribue à soustraire le filtre aux influences extérieures, Il peut être fixé au boîtier par des vis non représentées. Afin de procéder à des ajustements fins des couplages entre résonateurs, il est possible de placer des vis de réglage selon les axes 33,34 et 35. Ces vis, situées entre les résonateurs, modifient suivant l'état de leur enfoncement le champ électromagnétique qui règne entre les résonateurs.Figure 6 is a sectional view of the filter shown in Figure 5, the section being taken along AA. In these 2 figures, the same references represent the same objects. A metal cover 32 closes the housing and helps to remove the filter from external influences. It can be fixed to the housing by screws not shown. In order to make fine adjustments to the couplings between resonators, it is possible to place adjustment screws along axes 33, 34 and 35. These screws, located between the resonators, modify the electromagnetic field, depending on the state of their depression. reigns between the resonators.

A titre d'exemple, on a relevé la courbe du coefficient |S21| de la matrice de diffusion en fonction de la fréquence f, c'est-à-dire l'allure de la réponse en fréquence du filtre passe bande à quatre pôles décrit précédemment. C'est l'objet de la figure 7. La réponse en fréquence du filtre est représentée par la courbe 40. L'axe des ordonnées est gradué en décibels. La courbe présente un maximum et deux flancs assez raides qui définissent un filtre passe-bande. Le filtre est caractérisé par une fréquence centrale fo, une bande passante Bx à x dB, l'ondulation que présente le maximum qui détermine une bande passante Bo, des pertes d'insertion. Les fréquences propres des résonateurs 20, 21, 22 et 23 sont respectivement 1060, 1080, 1080 et 1060 MHz. D'après le diagramme de la figure 7, on relève:

  • - des pertes d'insertion dans la gamme Bo inférieures ou égales à 2,5 dB,
  • - une fréquence centrale fo=1070 MHz,
  • - une ondulation dans la bande Bo≤0,5 dB, .
  • - la bande passante Bo=24 MHz,
  • - les bandes passantes à 20 dB et 40 dB, B20=50 MHz et B40=90 MHz.
For example, the curve of the coefficient | S 21 | of the diffusion matrix as a function of frequency f, that is to say the shape of the frequency response of the four-pole band pass filter described above. This is the object of FIG. 7. The frequency response of the filter is represented by curve 40. The ordinate axis is graduated in decibels. The curve has a maximum and two fairly steep sides which define a bandpass filter. The filter is characterized by a central frequency f o , a pass band B x at x dB, the ripple presented by the maximum which determines a pass band B o , insertion losses. The natural frequencies of the resonators 20, 21, 22 and 23 are respectively 1060, 1080, 1080 and 1060 MHz. From the diagram in Figure 7, we note:
  • - insertion losses in the B o range less than or equal to 2.5 dB,
  • - a central frequency f o = 1070 MHz,
  • - a ripple in the band B o ≤0.5 dB,.
  • - the bandwidth Bo = 24 MHz,
  • - the bandwidths at 20 dB and 40 dB, B 20 = 50 MHz and B 40 = 90 MHz.

Les mesures effectuées sur ce filtre donnent également |S11| dans Bo<0,1.The measurements made on this filter also give | S 11 | in B o <0.1.

A titre comparatif, d'autres mesures ont été effectuées sur un filtre passe-bande comportant 3 résonateurs de configurations identiques aux précédents (a=b=6 mm, h=15 mm, εr=37) et de fréquences propres 1060 MHz pour le résonateur d'entrée, 1080 MHz pour celui du milieu et 1060 MHz pour celui de sortie. Les caractéristiques de ce filtre à 3 pôles sont alors: f.=1070 MBz, Bo=20 MHz, B20=50 MHz et B40=110 MHz. Le coefficient S11 de la matrice de diffusion est inférieur à 0,1.For comparison, other measurements were made on a bandpass filter comprising 3 resonators with configurations identical to the previous ones (a = b = 6 mm, h = 15 mm, ε r = 37) and with natural frequencies 1060 MHz for the input resonator, 1080 MHz for the middle one and 1060 MHz for the output one. The characteristics of this 3-pole filter are then: f. = 1070 MBz, B o = 20 MHz, B 20 = 50 MHz and B 40 = 110 MHz. The coefficient S 11 of the diffusion matrix is less than 0.1.

Les résonateurs selon l'invention se prêtent également très bien à la réalisation de filtres coupe-bande. La figure 8 représente un tel filtre. La coupe du boîtier a été effectuée comme pour la figure 5. On reconnaît le boîtier 50 sur lequel se fixe un couvercle non représenté. Le fond du boîtier est recouvert d'un substrat 51 en matériau diélectrique de faible constante diélectrique. Le filtre comprend 3 résonateurs quart d'onde 52, 53 et 54, des trous 55 et 56 qui permettent le passage d'un conducteur 57 d'entrée du signal et d'un conducteur de sortie 58, une ligne 59 qui peut être l'âme d'une ligne coaxiale. Le boîtier ainsi que son couvercle sont réunis à la masse. Les distances séparant les résonateurs entre eux et entre la ligne 59 sont de l'ordre de grandeur de l'arête a. Il est également possible d'obtenir avec ce genre de filtres un réglage des couplages par la présence de vis modifiant le champ électromagnétique entre les résonateurs.The resonators according to the invention also lend themselves very well to the production of notch filters. Figure 8 shows such a filter. The housing was cut as in FIG. 5. The housing 50 is recognized on which a cover, not shown, is fixed. The bottom of the housing is covered with a substrate 51 of dielectric material of low dielectric constant. The filter includes 3 quarter-wave resonators 52, 53 and 54, holes 55 and 56 which allow the passage of a signal input conductor 57 and an output conductor 58, a line 59 which can be l soul of a coaxial line. The housing and its cover are connected to the ground. The distances separating the resonators from each other and between the line 59 are of the order of magnitude of the edge a. It is also possible to obtain with this kind of filters an adjustment of the couplings by the presence of screws modifying the electromagnetic field between the resonators.

Les filtres coupe-bandes et passe-bandes réalisés à l'aide de résonateurs quart d'onde présentent une première réponse parasite à une fréquence sensiblement triple de leur fréquence de fonctionnement.The band-cut and band-pass filters produced using quarter-wave resonators exhibit a first spurious response at a frequency substantially triple their operating frequency.

Claims (3)

1. A high frequency filter comprising:
- casing (24), the bottom of which is covered by an insulating substrate (31),
- at least one resonator fixed to said substrate and comprising a dielectric medium having six surfaces, characterized in that at the most four of said surfaces are metal coated and that two non-metal coated other surfaces are opposed to each other, said metal coated surfaces being perpendicular to the plane of the substrate.
2. A high frequency filter according to claim 1, characterized in that said resonators (20, 21, 22 and 23) are arranged between stimulating means (29) and collector means (30) constituting the input and output terminals of the filter such that the incident electromagnetic energy is successively filtered by said resonators, the presence of said resonators causing the filter to become a band-pass filter.
3. A high frequency filter according to claim 1, characterized in that said resonators (52, 53 and 54) are arranged for withdrawing electromagnetic energy transferred by a propagation line (59) which connects the input and output terminals of the filter, the presence of said resonators causing the filter to become a bad-rejection filter.
EP83402026A 1982-10-29 1983-10-18 Double strip line resonators and filter using such resonators Expired EP0108003B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8218236 1982-10-29
FR8218236A FR2535547B1 (en) 1982-10-29 1982-10-29 BI-RIBBON RESONATORS AND FILTERS MADE FROM THESE RESONATORS

Publications (2)

Publication Number Publication Date
EP0108003A1 EP0108003A1 (en) 1984-05-09
EP0108003B1 true EP0108003B1 (en) 1988-05-11

Family

ID=9278766

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83402026A Expired EP0108003B1 (en) 1982-10-29 1983-10-18 Double strip line resonators and filter using such resonators

Country Status (5)

Country Link
US (1) US4603311A (en)
EP (1) EP0108003B1 (en)
JP (1) JPS59107603A (en)
DE (1) DE3376600D1 (en)
FR (1) FR2535547B1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4524318A (en) * 1984-05-25 1985-06-18 Burr-Brown Corporation Band gap voltage reference circuit
FR2565438B1 (en) * 1984-05-30 1989-09-22 Cepe DIELECTRIC FILTER WITH VARIABLE CENTRAL FREQUENCY.
DE3570156D1 (en) * 1984-12-06 1989-06-15 Thomson Csf Electromagnetic resonators and filters comprising such resonators
US4751481A (en) * 1986-12-29 1988-06-14 Motorola, Inc. Molded resonator
US4908589A (en) * 1987-09-21 1990-03-13 Hughes Aircraft Company Dielectrically loaded waveguide switch
DE69122748T2 (en) * 1990-12-26 1997-05-07 Tdk Corp HIGH FREQUENCY DEVICE
FI88440C (en) * 1991-06-25 1993-05-10 Lk Products Oy Ceramic filter
US5290740A (en) * 1991-11-06 1994-03-01 Ngk Insulators, Ltd. Dielectric ceramic composition used for producing dielectric resonator or filter for microwave application
FR2685490B1 (en) * 1991-12-19 1996-05-15 Commissariat Energie Atomique DEVICE FOR MEASURING DIELECTRIC AND MAGNETIC PARAMETERS OF MATERIALS AND MEASUREMENT SYSTEM FOR SAID PARAMETERS USING THE SAME.
FI95515C (en) * 1993-11-01 1996-02-12 Solitra Oy Resonator construction with point-distributed circuit constant and a method for controlling a resonator construction with point-distributed circuit constant
US5691675A (en) * 1994-03-31 1997-11-25 Nihon Dengyo Kosaku Co., Ltd. Resonator with external conductor as resonance inductance element and multiple resonator filter
WO1999041799A1 (en) * 1998-02-17 1999-08-19 Itron, Inc. Laser tunable thick film microwave resonator for printed circuit boards
FR2847747B1 (en) * 2002-11-22 2005-02-18 Thales Sa ANALOGUE / DIGITAL CONVERTER FOR HYPERFREQUENCIES
CN104037484A (en) * 2013-03-08 2014-09-10 中兴通讯股份有限公司 Dielectric resonator and dielectric filter
US10522889B2 (en) * 2018-04-09 2019-12-31 United States Of America As Represented By Secretary Of The Navy Tunable passive enhance Q microwave notch filter

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2820206A (en) * 1952-05-08 1958-01-14 Itt Microwave filters
US2774046A (en) * 1952-05-08 1956-12-11 Itt Microwave transmission line
US2838736A (en) * 1953-03-20 1958-06-10 Erie Resistor Corp High dielectric constant cavity resonator
US3327255A (en) * 1963-03-06 1967-06-20 Bolljahn Harriette Interdigital band-pass filters
US3673509A (en) * 1970-08-07 1972-06-27 Robert B Cooper Jr Interdigital preamplifier
US4179673A (en) * 1977-02-14 1979-12-18 Murata Manufacturing Co., Ltd. Interdigital filter
FR2496995A1 (en) * 1980-11-07 1982-06-25 Thomson Csf Mechanically tuned stop-band filter - has adjustable metal rods providing tuning in gigahertz range by penetration into coaxial guide

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ELECTRONICS LETTERS, vol. 18, no. 15, 22 juillet 1982, pages 661-663, Hitchin, GB., G. OHM et al.: "750 MHz microstrip bandpass filter on barium tetratitanate substrate" *

Also Published As

Publication number Publication date
FR2535547B1 (en) 1988-09-16
US4603311A (en) 1986-07-29
EP0108003A1 (en) 1984-05-09
DE3376600D1 (en) 1988-06-16
JPS59107603A (en) 1984-06-21
FR2535547A1 (en) 1984-05-04

Similar Documents

Publication Publication Date Title
EP0108003B1 (en) Double strip line resonators and filter using such resonators
EP0047203B1 (en) Microwave filter with a dielectric resonator tunable over a large bandwidth
EP0285503B1 (en) Filter with distributed constant elements associating two kinds of coupling arrangements
EP0127527B1 (en) Adjustment method, especially a frequency adjustment method of a printed microstrip filter, and filter obtained by this method
EP0117178B1 (en) Microwave filter with line-shaped resonators
EP0014115B1 (en) Tunable high frequency magnetostatic wave oscillator
EP0114140B1 (en) Tunable microwave filter with tm010 mode dielectric resonators
FR2578104A1 (en) PASSER-BAND FILTER FOR HYPERFREQUENCES
CN110289469A (en) A kind of bandpass filter and its design method based on tunable one-dimensional filtering array
EP0446107B1 (en) Transmission system for electrical energy, in the microwave field, with gyromagnetic effect, such as a circulator, isolator or filter
EP1250729B1 (en) Anisotropic composite antenna
FR2604305A1 (en) COMPOSITE WIDE-BAND TYPE-PLAN COMPOSITE FILTER
EP0101369A1 (en) Band-pass filter with dielectric resonators presenting negative coupling between resonators
WO2007031639A1 (en) Waveguide filter for microwaves with non-parallel walls
CA1074878A (en) Hyperfrequency transition
EP0424255B1 (en) Filter unit and corresponding filter
EP0007863A1 (en) Microwave filter with dielectric resonators and telecommunication device comprising same
FR2828337A1 (en) Hyperfrequency resonant circuit with a resonant micro-strip line element and an earth and a composite element of alternating ferromagnetic and insulating layers between the element and the earth
EP0649571B1 (en) Pass-band filter with coupled resonators
FR2613538A1 (en) Microwave filter
EP0128798B1 (en) Tunable selective magnetostatic volume wave device
EP0045242A1 (en) Microwave pass-band filter in a waveguide
CA2031076A1 (en) Micro-wage guide band-stop filter
EP0346806B1 (en) Band-pass-filter with dielectric resonators
WO2003047022A1 (en) Waveguide quadruple mode microwave filter having zero transmission

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE GB IT NL

17P Request for examination filed

Effective date: 19841018

17Q First examination report despatched

Effective date: 19860604

D17Q First examination report despatched (deleted)
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT NL

ITF It: translation for a ep patent filed
REF Corresponds to:

Ref document number: 3376600

Country of ref document: DE

Date of ref document: 19880616

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19890923

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19890930

Year of fee payment: 7

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19891031

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19901018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19910501

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19910702