[go: up one dir, main page]

EP0099840B1 - Cuve d'électrolyse, pour la production d'aluminium, comportant un écran conducteur flottant - Google Patents

Cuve d'électrolyse, pour la production d'aluminium, comportant un écran conducteur flottant Download PDF

Info

Publication number
EP0099840B1
EP0099840B1 EP83420109A EP83420109A EP0099840B1 EP 0099840 B1 EP0099840 B1 EP 0099840B1 EP 83420109 A EP83420109 A EP 83420109A EP 83420109 A EP83420109 A EP 83420109A EP 0099840 B1 EP0099840 B1 EP 0099840B1
Authority
EP
European Patent Office
Prior art keywords
electrolytic tank
tank according
screen
floating
floating screen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83420109A
Other languages
German (de)
English (en)
Other versions
EP0099840A1 (fr
Inventor
Michel Leroy
Maurice Keinborg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rio Tinto France SAS
Original Assignee
Aluminium Pechiney SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aluminium Pechiney SA filed Critical Aluminium Pechiney SA
Publication of EP0099840A1 publication Critical patent/EP0099840A1/fr
Application granted granted Critical
Publication of EP0099840B1 publication Critical patent/EP0099840B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes

Definitions

  • the present invention relates to a tank for the production of aluminum by electrolysis of alumina dissolved in the molten cryolite according to the Hall-Héroult process, comprising a floating conductive screen, between the anode and the cathode.
  • the electrical energy consumption is at least 13,000. KWh per tonne of metal, and often exceeds 14,000.
  • the voltage drop in the electrolyte represents about 1.5 volts, so it is responsible for more than a third of the total energy consumption.
  • cathodes based on electrically conductive refractories, such as titanium diboride TiB 2 , which is perfectly wet. by liquid aluminum and undergoes practically no attack by this metal at the temperature of electrolysis.
  • Such cathodes have been described, in particular, in English patents 784,695, 784,696, 784,697 to BRITISH ALUMINUM C °, and in the article by KE BILLEHAUG and HA OYE in "ALUMINUM", Oct. 1980, pages 642. -648 and Nov. 1980, pages 713 to 718.
  • the present invention constitutes another solution to the problem of reducing the interpolar distance without the risk of entraining the cathode aluminum towards the anode.
  • FIGS. 1 and 2 represent different modes of implementing the invention:
  • the floating conductive screen (1) consists of porous TiB 2 balls (2), but sealed on the surface, with an average density of 2.25.
  • These balls can be manufactured, for example, according to the technique described in the French brevent 1,579,540 in the name of ALUMINUM PECHINEY, which consists in sintering a mixture of TiB 2 and a substance which can be removed at the sintering temperature.
  • the diameter of these beads is between 5 and 50 mm and, preferably, between 10 and 40 mm.
  • the lower diameter limit is related to manufacturing costs and the upper limit is approximately twice the planned interpolar distance.
  • Such beads having a porosity of around 50% can be considered too fragile.
  • the sealing can be carried out in two stages: deposition of a medium dense bonding layer to the plasma, then of a thin sealing layer by chemical deposition or else by a chemical vapor deposition carried out in two stages, the the first being performed at lower pressure and temperature than the second.
  • the TiB 2 floating balls (2) form a substantially continuous layer at the interface (3) of the metal (4) and the electrolyte (5). It is this layer which forms the screen (1) between the anode (6) and the metal (4) and, at the same time, acts as cathode on which the liquid aluminum droplets produced by electrolysis are formed. These droplets wet the floating balls (2) and collect in the already formed layer (4). The risk of entrainment of the droplets towards the anode, where they would reoxidize, is therefore practically eliminated, which makes it possible to reduce the interpolar distance d to around 20 millimeters and to lower the voltage drop in the electrolyte to less than 1 volt.
  • the floating balls (2) have been drawn above the interface (3), but it is obvious that their exact position depends on their density ratio with the bath and the metal.
  • the floating screen is formed from beads based on TiB 2
  • this shape is not compulsory and any other shape may be suitable, for example cylindrical elements which, according to their length / diameter ratio, will float with the axis in vertical or horizontal position.
  • Flat discs for example, can be used.
  • the largest dimension of the elements used does not exceed 50 mm and, preferably, 40 mm, that is to say twice the target interpolar distance.
  • Figure 2 shows a solution in which the floating conductive screen is confined to the plumb of the anodes (6) by means of barriers (7) of dense refractory material. Openings (8) should preferably be made in these barriers to ensure the circulation of the liquid aluminum (4).
  • the implementation of the invention allows a significant reduction in the interpolar distance, up to around 20 mm, without loss of the electrolysis yield.
  • the potential difference at the terminals of the electrolysis cells thus modified is reduced from 4 volts to approximately 3.2 to 3.3 volts, with a proportional reduction in the energy consumption per tonne of aluminum produced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Conductive Materials (AREA)

Description

  • La présente invention concerne une cuve de production d'aluminium par électrolyse d'alumine dissoute dans la cryolithe fondue selon le procédé Hall-Héroult, comportant un écran conducteur flottant, entre l'anode et la cathode.
  • Dans les installations les plus performantes produisant de l'aluminium selon le procédé Hall-Héroult la consommation d'énergie électrique est au moims égale à 13 000. KWh par tonne de métal, et dépasse souvent 14 000. Dans une cuve moderne fonctionnant sous une différence de potentiel de 4 volts, la chute de tension dans l'électrolyte représente environ 1,5 volts, elle est donc responsable de plus du tiers de la consommation énergétique totale. Elle est dûe à l'obligation de maintenir une distance suffisante entre l'anode et la nappe d'alumnium liquide cathodique (au moins égale à 40 mm et, le plus souvent, de l'ordre de 50 à 60 mm) pour éviter la réoxydation de l'aluminium entraîné vers l'anode par les mouvements de la nappe de métal liquide dûs aux effets magnétiques et facilités par la non-mouillabilité du substrat cathodique en carbone par l'aluminium liquide.
  • Pour réduire la distance interpolaire, sans provoquer l'entraînement de l'aluminium cathodique vers l'anode, on a proposé d'utiliser des cathodes à base de réfractaires électro- conducteurs, tels que le diborure de titane TiB2, qui est parfaitement mouillé par l'aluminium liquide et ne subit pratiquement pas d'attaque par ce métal à la température de l'électrolyse. De telles cathodes ont été décrites, en particulier, dans les brevets anglais 784 695, 784 696, 784 697 de BRITISH ALUMINIUM C°, et dans l'article de K.E. BILLEHAUG et H.A. OYE dans "ALUMINIUM", Oct. 1980, pages 642-648 et nov. 1980, pages 713 à 718.
  • Un des problèmes majeurs que posent ces cathodes en diborure de titane est leur mise en solution progressive dans l'aluminum liquide, phénomène lent mais non négligeable, qui nécessite le remplacement périodique des éléments usés et implique l'arrêt total et le démontage de la cuve.
  • La présente invention constitue une autre solution au problème de la réduction de la distance interpolaire sans risque d'entraînement de l'aluminium cathodique vers l'anode.
  • Elle se caractérise par la mise en place, entre l'anode et la cathode à l'interface de la nappe d'aluminium liquide et du bain de cryolithe d'un écran flottant au niveau de ladite interface, constitué par le juxtaposition d'une pluralité d'éléments, conducteurs du courant électrique, formant une couche sensiblement continue, ces éléments étant étanchéisés en surface par un dépôt de diborure de titane d'une épaisseur au moins égale à 20 micromètres.
  • Si l'on considère les densités respectives des éléments en présence à la température moyenne de l'électrolyse (≈960° C)
    • Graphite: 1,7 - 1,9
    • Electrolyte: 2,1 - 2,2
    • Aluminium: 2,3
    • TiB2: 4,5 - 4,6

    il apparaît que l'écran flottant doit être constitué d'éléments dont la densité globale se situe entre environ 2,15 et 2,30 à 960°.
  • Les figures 1 et 2 représentent différents modes de mise en oeuvre de l'invention:
  • Sur la figure 1, l'écran conducteur flottant (1) est constitué par des billes (2) de TiB2 poreuses, mais étanchéisées en surface, d'une densité moyenne de 2,25. Ces billes peuvent être fabriquées par exemple selon la technique décrite dans le brevent français 1 579 540 au nom d'ALUMINIUM PECHINEY, et qui consiste à fritter un mélange de TiB2 et d'une substance éliminable à la température de frittage. Le diamètre de ces billes est compris entre 5 et 50 mm et, de préférence, entre 10 et 40 mm. La limite inférieure de diamètre est liée aux coûts de fabrication et la limite supérieure correspond à environ deux fois la distance interpolaire prévue.
  • De telles billes ayant une porosité d'environ 50 % peuvent être estimées trop fragiles. Dans ce cas, on fritte un mélange de TiB2 et de nitrure de bore (d = 2,20 à 2,25 à 960°) ou de graphit (d = 1,7 à 1,9), avec la proportion voulue de substance éliminable à chaud pour obtenir une densité finale sensiblement égale à 2,25 à 960° C.
  • Il est indispensable d'étanchéiser les billes par un revêtement superficiel pour éviter leur imprégnation progressive par l'électrolyte et/ou le métal, qui détruirait leur flottabilité. Cette étanchéisation est effectuée par différents procédés connus permettant d'effectuer un dépôt comptact de TiB2, par exemple la projection au plasma ou le dépôt chimique. L'épaisseur de cette couche étanche est suffisante pour que la dissolution par l'aluminium liquide permette une durée de vie d'au moins quelques années, c'est-à-dire au moins égale à 20 micromètres.
  • L'étanchésation peut être effectuée en deux étapes: dépôt d'une couche d'accrochage moyennement dense au plasma, puis d'une couche fine d'étanchéité par dépôt chimique ou encore par un dépôt chimique en phase vapeur effectué en deux étepes, la première s'effectuant à pression et température plus basses que la seconde.
  • Une autre solution, pour obtenir la densité moyenne de 2,25 consiste à fabriquer des billes composites avec un noyau en graphite et une écorce en TiB2 compact, la proportion pondérale des deux constituants étant déterminée pour obtenir d = 2,25 (sensiblement 20 % de TiB2 et 80 % de graphite), la qualité de graphite étant alors choisie pour que le coefficient de dilation du graphite soit sensiblement égal à celui de TiB2 entre 0 et 1 000° C.
  • Les billes flottantes (2) en TiB2 forment une couche sensiblement continue à l'interface (3) du métal (4) et de l'électrolyte (5). C'est cette couche qui forme l'écran (1) entre l'anode (6) et le métal (4) et, en même temps, agit comme cathode sur laquelle se forment les gouttelettes d'aluminium liquide produites par l'électrolyse. Ces gouttelettes mouillent les billes flottantes (2) et se rassemblent dans la couche déjà formée (4). Le risque d'entraînement des gouttelettes vers l'anode, où elles se réoxyderaient, est donc pratiquement supprimé, ce qui permet de réduire la distance interpolaire d à environ 20 millimètres et d'abaisser la chute de tension dans l'électrolyte à moins de 1 volt. Sur les figures 1 et 2, les billes flottantes (2) ont été dessinées au-dessus de l'interface (3), mais il est bien évident que leur position exacte dépend de leur rapport de densité avec le bain et le métal.
  • Bien que l'invention ait été décrite dans le cas particulier eù l'ecran flottant est formé de billes à base de TiB2, cette forme n'est pas obligatoire et tout autre forme peut convenir, par exemple des éléments cylindriques qui, selon leur rapport longueur/diamètre, flotteront avec l'axe en position verticale ou horizontale. Des disques plats, par exemple, peuvent être utilisés. Dans un tel cas, (éléments non liés entre eux), il est souhaitable que la plus grande dimension des éléments utilisés ne dépasse par 50 mm et, de préférence, 40 mm c'est-à, dire deux fois la distance interpolaire visée.
  • La solution de la figure 1 présente l'inconvénient que tout l'interface du métal (4) et de l'électrolyte (5) est recouverte par l'écran de billes (2) alors que sa présence n'est nécessaire qu'à l'aplomb des anodes (6).
  • La figure 2 réprésente une solution dans laquelle l'écran conducteur flottant est confiné à l'aplomb des anodes (6) au moyen des barrières (7) en matériau réfractaire dense. Des ouvertures (8) doivent être, de préférence, ménagées dans ces barrières pour assurer la circulation de l'aluminium liquide (4).
  • La mise en oeuvre de l'invention, sous les différentes variantes, permet une réduction importante de la distance interpolaire, jusqu'aux environs de 20 mm, sans perte du rendement d'électlolyse. La différence de potentiel aux bornes des cellules d'électrolyse ainsi modifiées est réduite de 4 volts à environ 3,2 à 3,3 volts, avec diminution proportionnelle de la consommation énergétique par tonne d'aluminium produite.

Claims (8)

1°) Cuve d'électrolyse pour la production d'aluminium par électrolyse d'alumine dissoute dans un bain de cryolithe fondue, selon le procédé Hall-Héroult, entre au moins une anode carbonée et une nappe d'aluminium recouvrant un substrat cathodique carboné, caractérisée en ce qu'elle comporte à l'interface (3) de la nappe d'aluminium (4) et du bain (5) de cryolithe fondue un écran flottant (1) au niveau de ladite interface, constitué par la juxtaposition d'une pluralité d'éléménts, conducteurs du courant électrique, formant une couche sensiblement continue, ces éléments étant étanchéisés en surface par un dépôt de diborure de titane d'une épaisseur au moins égale à 20 micromètres.
2°) Cuve d'électrolyse, selon revendication 1, caractérisée en ce que les éléments juxtaposés formant l'écran flottant (1) sont constituées par du diborure de titane poreux ayant une densité moyenne comprise entre 2,15 et 2,30 à 960° C.
3°) Cuve d'électrolyse, selon revendication 1 ou 2, caractérisée en ce que les éléments juxtaposés formant l'écran flottant (1) sont constitues par frittage d'un mélange de TiB2, d'une seconde susbstance choisie parmi le nitrure de bore et le graphite, et d'une proportion convenable d'une substance éliminable à chaud de façon à obtenir une densité finale sensiblement égale à 2,25 à 960° C.
4°) Cuve d'électrolyse selon revendication 1 ou 2, caractérisée en ce que les éléments juxtaposés formant l'écran (1) sont constitués par un noyau en graphite et une écorce en TiB2 dans une proportion pondérale sensiblement égale à 80 % de graphite et 20 % de TiB2 de façon à obtenir une densité finale sensiblement égale à 2,25 à 960° C.
5°) Cuve d'électrolyse, selon l'une quelconque des revendications 1 à 4, caractérisée en ce que toute l'interface (3) entre le métal (4) et l'électrolyte (5), est recouverte par l'écran flottant (2).
6°) Cuve d'électrolyse, selon l'une quelconque des revendications 1 à 4, caractérisée en ce que l'écran flottant (2) est confiné à l'aplomb des anodes (6) au moyen de barrières (7) en matériau réfractaire dense munies d'ouvertures latérales (8).
7°) Cuve d'électrolyse selon l'une quelconque des revendications 1 à 6, caractérisée en ce que la distance entre chaque anode et l'écran conducteur flottant est inférieure à 40 mm et, de préférence, égale à environ 20 mm.
8°) Cuve d'électrolyse, selon l'une quelconque des revendications 1 à 4, caractérisée en ce que l'écran flottant est constitué par des billes (2) ayant un diamètre compris entre 5 et 50 mm, et, de préférence, entre 10 et 40 mm.
EP83420109A 1982-06-30 1983-06-29 Cuve d'électrolyse, pour la production d'aluminium, comportant un écran conducteur flottant Expired EP0099840B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8211873 1982-06-30
FR8211873A FR2529580B1 (fr) 1982-06-30 1982-06-30 Cuve d'electrolyse pour la production d'aluminium, comportant un ecran conducteur flottant

Publications (2)

Publication Number Publication Date
EP0099840A1 EP0099840A1 (fr) 1984-02-01
EP0099840B1 true EP0099840B1 (fr) 1986-08-13

Family

ID=9275740

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83420109A Expired EP0099840B1 (fr) 1982-06-30 1983-06-29 Cuve d'électrolyse, pour la production d'aluminium, comportant un écran conducteur flottant

Country Status (17)

Country Link
US (1) US4533452A (fr)
EP (1) EP0099840B1 (fr)
JP (1) JPS5920484A (fr)
KR (1) KR840006510A (fr)
AU (1) AU562447B2 (fr)
BR (1) BR8303459A (fr)
CA (1) CA1190892A (fr)
DE (1) DE3365289D1 (fr)
ES (1) ES523678A0 (fr)
FR (1) FR2529580B1 (fr)
GR (1) GR77515B (fr)
IN (1) IN159794B (fr)
NO (1) NO832365L (fr)
OA (1) OA07473A (fr)
SU (1) SU1356967A3 (fr)
YU (1) YU140683A (fr)
ZA (1) ZA834761B (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR850003825A (ko) * 1983-11-29 1985-06-26 로이 앨버어트 하인 알루미늄 환원전지
US4631121A (en) * 1986-02-06 1986-12-23 Reynolds Metals Company Alumina reduction cell
US4919782A (en) * 1989-02-21 1990-04-24 Reynolds Metals Company Alumina reduction cell
US5129998A (en) * 1991-05-20 1992-07-14 Reynolds Metals Company Refractory hard metal shapes for aluminum production
DE69316086T2 (de) * 1992-05-25 1998-05-20 Canon Kk Magnetischer Entwickler und Verfahren zur Erkennung von Zeichen aus magnetischer Tinte
US5486278A (en) * 1993-06-02 1996-01-23 Moltech Invent S.A. Treating prebaked carbon components for aluminum production, the treated components thereof, and the components use in an electrolytic cell
US5472578A (en) * 1994-09-16 1995-12-05 Moltech Invent S.A. Aluminium production cell and assembly
US5753382A (en) * 1996-01-10 1998-05-19 Moltech Invent S.A. Carbon bodies resistant to deterioration by oxidizing gases
WO2018092103A1 (fr) * 2016-11-19 2018-05-24 Jan Petrus Human Électrodes destinées à être utilisées dans l'électro-extraction des métaux

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE433408A (fr) * 1938-04-08
US3287247A (en) * 1962-07-24 1966-11-22 Reynolds Metals Co Electrolytic cell for the production of aluminum
OA02156A (fr) * 1965-10-21 1970-05-05 Montecatini Edison S A Four et procédé pour la production, en bain fondu, de métaux à partir de leurs oxydes, et four à électrolyse à cellules multiples, composées par des éléctrodes de carbone horizontales bipolaires.
US4338177A (en) * 1978-09-22 1982-07-06 Metallurgical, Inc. Electrolytic cell for the production of aluminum
US4177128A (en) * 1978-12-20 1979-12-04 Ppg Industries, Inc. Cathode element for use in aluminum reduction cell
US4224128A (en) * 1979-08-17 1980-09-23 Ppg Industries, Inc. Cathode assembly for electrolytic aluminum reduction cell
GB2069530B (en) * 1980-01-28 1984-05-16 Diamond Shamrock Corp Packed cathode bed for electrowinning metals from fused salts
CH644406A5 (de) * 1980-04-03 1984-07-31 Alusuisse Schmelzflusselektrolysezelle zur herstellung von aluminium.
US4349427A (en) * 1980-06-23 1982-09-14 Kaiser Aluminum & Chemical Corporation Aluminum reduction cell electrode
ZA824255B (en) * 1981-06-25 1983-05-25 Alcan Int Ltd Electrolytic reduction cells
CH648870A5 (de) * 1981-10-23 1985-04-15 Alusuisse Kathode fuer eine schmelzflusselektrolysezelle zur herstellung von aluminium.
FR2518124A1 (fr) * 1981-12-11 1983-06-17 Pechiney Aluminium Elements cathodiques flottants, a base de refractaire electroconducteur, pour la production d'aluminium par electrolyse
US4436598A (en) * 1983-09-28 1984-03-13 Reynolds Metals Company Alumina reduction cell

Also Published As

Publication number Publication date
SU1356967A3 (ru) 1987-11-30
NO832365L (no) 1984-01-02
JPS6141997B2 (fr) 1986-09-18
FR2529580A1 (fr) 1984-01-06
CA1190892A (fr) 1985-07-23
BR8303459A (pt) 1984-02-07
US4533452A (en) 1985-08-06
GR77515B (fr) 1984-09-24
AU1646083A (en) 1984-01-05
OA07473A (fr) 1984-12-31
YU140683A (en) 1985-12-31
JPS5920484A (ja) 1984-02-02
IN159794B (fr) 1987-06-06
ES8403984A1 (es) 1984-04-01
AU562447B2 (en) 1987-06-11
DE3365289D1 (en) 1986-09-18
ES523678A0 (es) 1984-04-01
KR840006510A (ko) 1984-11-30
EP0099840A1 (fr) 1984-02-01
FR2529580B1 (fr) 1986-03-21
ZA834761B (en) 1984-03-28

Similar Documents

Publication Publication Date Title
US3028324A (en) Producing or refining aluminum
US4338177A (en) Electrolytic cell for the production of aluminum
US4670110A (en) Process for the electrolytic deposition of aluminum using a composite anode
US5254232A (en) Apparatus for the electrolytic production of metals
EP0082096B1 (fr) Eléments cathodiques flottants, à base de réfractaire électroconducteur, pour la production d'aluminium par électrolyse
EP0099840B1 (fr) Cuve d'électrolyse, pour la production d'aluminium, comportant un écran conducteur flottant
US4462886A (en) Cathode for a fused salt electrolytic cell
CA2003660C (fr) Depot par sursaturation du revetement sur les cathodes d'extraction electrolytique mouillables par l'aluminium obtenu
US5227045A (en) Supersaturation coating of cathode substrate
FR2482629A1 (fr) Disposition des electrodes d'une cellule d'electrolyse a bain de fusion pour fabrication de l'aluminium
FR2542326A1 (fr) Cuve de l'affinage de l'aluminium par electrolyse
EP0169152B1 (fr) Bloc cathodique modulaire et cathode à faible chute de tension pour cuves d'électrolyse hall-héroult
US3202600A (en) Current conducting element for aluminum reduction cells
FR2471425A1 (fr) Dispositif cathodique pour four d'electrolyse ignee, notamment pour la production d'aluminium
US4049511A (en) Protective material made of corundum crystals
FR2844811A1 (fr) Procede de prechauffage d'une cuve pour la production d'aluminium par electrolyse
EP0380645A1 (fr) Procede et appareil de production de metaux par electrolyse
RU2281987C2 (ru) Пористый керамический материал, смачиваемый алюминием
EA006056B1 (ru) Инертный анод для электролиза алюминия
US4595475A (en) Solid cathode in a fused salt reduction cell
US1910017A (en) Electrolytio extraction of light metals contained in alloys
US20250011958A1 (en) Advanced aluminum electrolysis cell
FR2459842A1 (fr) Procede de depot electrolytique d'aluminium
FR2500488A1 (fr) Procede de production d'aluminium selon la technique hall-heroult et cathode en refractaire electroconducteur pour la mise en oeuvre du procede
US20240287695A1 (en) Advanced purification cell for aluminum scrap recycling

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE GB IT LI NL SE

17P Request for examination filed

Effective date: 19840228

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE GB IT LI NL SE

ITF It: translation for a ep patent filed
REF Corresponds to:

Ref document number: 3365289

Country of ref document: DE

Date of ref document: 19860918

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19870630

Year of fee payment: 5

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19880629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19880630

Ref country code: LI

Effective date: 19880630

Ref country code: CH

Effective date: 19880630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19890101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19890301

EUG Se: european patent has lapsed

Ref document number: 83420109.7

Effective date: 19890220