EP0097991B1 - Membran-Elektrolysezelle mit vertikal angeordneten Elektroden - Google Patents
Membran-Elektrolysezelle mit vertikal angeordneten Elektroden Download PDFInfo
- Publication number
- EP0097991B1 EP0097991B1 EP83200883A EP83200883A EP0097991B1 EP 0097991 B1 EP0097991 B1 EP 0097991B1 EP 83200883 A EP83200883 A EP 83200883A EP 83200883 A EP83200883 A EP 83200883A EP 0097991 B1 EP0097991 B1 EP 0097991B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- electrode
- membrane
- units
- electrodes
- spring elements
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000005868 electrolysis reaction Methods 0.000 title description 9
- 239000012528 membrane Substances 0.000 claims abstract description 20
- 125000006850 spacer group Chemical group 0.000 claims abstract description 12
- 239000007789 gas Substances 0.000 claims description 15
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 239000003792 electrolyte Substances 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000011161 development Methods 0.000 description 4
- 238000010276 construction Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 238000007872 degassing Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 230000002706 hydrostatic effect Effects 0.000 description 2
- 239000003014 ion exchange membrane Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- BZSXEZOLBIJVQK-UHFFFAOYSA-N 2-methylsulfonylbenzoic acid Chemical compound CS(=O)(=O)C1=CC=CC=C1C(O)=O BZSXEZOLBIJVQK-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/17—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
- C25B9/19—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/02—Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
Definitions
- the invention relates to a membrane electrolysis cell with vertically arranged electrodes for electrochemical processes.
- the surfaces of both electrodes face each other in parallel.
- Flat parallelism of the surfaces is the prerequisite for an efficiently working cell, since this is the only way to ensure an even current distribution and to avoid local overheating.
- the distance between the anode and cathode should also be kept as small as possible. All of these requirements are relatively easy to implement in small laboratory cells, but the construction of large industrial units is difficult if the ideal ideas that are theoretically required are to be realized.
- the larger cells are, the more sensitive they are to deviations from plane parallelism and to current distortion.
- electrodes with openings for the removal of the reaction gases are generally used, for example perforated electrodes, wire mesh or expanded metal.
- the disadvantages include the reduced active surface, the lack of mechanical stability and the loss of high-quality coating material on the back of the electrodes.
- membrane cells with ion exchange membranes are provided with a frame construction that is as rigid as possible, in which the electrodes are rigid, in the majority of cases by welded connections.
- the contact surfaces of the frames must also be machined accordingly.
- the membrane electrolysis cell known from FR-OS 2 486 105 has electrodes divided vertically into several units, and the anode arrangement has flexible spring elements which make the anodes displaceable.
- an electrode plate consisting of individual plates has already been provided for vertically arranged electrodes in gas-forming diaphragm cells, the individual plates having guide surfaces for the discharge of the gas generated. Due to the intended inclination of the guide plate or surface, there are inevitably different distances between the active surface and the counterelectrode, warps being easily caused, in particular, by local temperature increases in the sensitive partition walls of poor thermal conductivity. Furthermore, the entire active surface of the electrode cannot be brought into the energetically desirable close distance from the counter electrode.
- the object of the invention is therefore to avoid the mentioned and other disadvantages and to provide an electrode arrangement for a membrane electrolysis cell which, under technical operating conditions, ensures a secure plane parallelism of the electrode surfaces and an energetically favorable minimum electrode spacing and ensures safe and rapid gas removal.
- the two geometric reference systems in the cell namely frame / frame and anode / cathode
- the one electrode such as the cathode
- the electrode of the opposite polarity such as the anode vertically divided into several plates or strip units
- This flexible design is brought about by spring elements.
- the spring elements are useful on the Power leads attached to the electrodes and cause electrical contact with the individual strip units of the electrode (anode) via contact pressure or welding.
- the cathode in the above-mentioned arrangement, can also be set up flexibly when the anode is rigidly fixed.
- both electrodes which are divided into individual units, can also be made displaceable by spring elements. In this way, the unevenness of the contact surfaces of the cell frame which is inevitably present and can only be removed with a great deal of work is not transferred to the positioning of the electrode. Rather, the tolerances occurring in the area of the cell frame are bridged by means of the movable connection of the current distributor to the active surface of the electrode.
- the spring force of the spring elements is dimensioned so that it allows the relative spatial position of the anode and cathode to be adjusted.
- the frames can advantageously be made from commercially available, drawn material without substantial post-processing, and the required tight tolerances can be achieved using spacers.
- the movable or displaceable arrangement of the electrode active surfaces for discharging developed and accumulated gas such as chlorine gas
- the spring elements designed as flexible power supply lines form a concave curvature directed towards the cell bottom or an angle opened towards them.
- the spring element can be a leaf spring welded to the power supply.
- the chlorine gas collected under the individual flexible spring elements or current feeders is discharged upwards at one point by gas discharge elements arranged laterally in the electrolysis room. In this way, partial degassing of the electrode space or anode space takes place. This partial degassing in turn causes convection flows in the electrolyte and an improved electrolyte exchange in the active area of the electrodes, which leads to considerable improvements in the energy yield.
- horizontal separation points are created between the individual units of the electrode, on which the membrane does not rest, in which spacers are arranged. Due to the different densities of catholyte and anolyte, the membrane rests on an electrode at the same hydrostatic heights, i. that is, a lateral force acts on the electrode.
- the spacer in the case of gas-developing processes, is designed as a guide element for discharging the developed gas from the electrode space.
- the spacer acts as a gas separation unit when arranged horizontally. It then consists, for example, of strip-shaped plates with serrated edges or strips with slot-shaped or circular openings, or of grid-shaped or network-shaped strips. Such spacers bring about a complete gas withdrawal from the electrode gap after each division of the multiple horizontally divided electrode (cathode).
- FIGS. 1 to 4 of the drawing The invention is illustrated in more detail and by way of example in FIGS. 1 to 4 of the drawing.
- FIG. 1 shows a front view of an electrode frame F with a horizontally divided cathode plate 2.
- FIG. 1b is a similar view of an electrode frame with a vertically and horizontally divided anode 3.
- FIG. 4 shows a displaceable anode 3 in a top view.
- This figure is an enlarged view of section "B" in FIG. 1c and shows spring elements 7 which are connected to the power supply 8 and the anode 3. In the working position, the anode is pressed against the membrane 4.
- the electrolytic cell according to the invention has i.a. following advantages. Due to the movable electrode combination with spring elements caused by multiple divisions, the smallest critical electrode spacing can be maintained at any time during the operation of the electrolytic cell. This combination saves a considerable amount of technical production effort for both the electrodes and for the electrode frames with regard to maintaining tight manufacturing tolerances. Furthermore, a limitation of the height design of the electrolysis cell is practically removed, since developed gas is removed from the electrode gap in each division, i. H. gas accumulation is avoided.
- 1 cm 2 of one of the electrodes is raised by 1 mm. Then there is a current density at the raised point, which can be determined in a first approximation via the power consumption.
- the power consumption would be 1 cm 2 on the area raised by 1 mm
- 1 cm 2 of one of the electrodes is raised by 1 mm.
- the temperature difference between the membrane and the electrolyte increases by about 20%.
- Example 2 shows the limitations in the construction of large-scale electrolytic cells due to power warps. ⁇ 0.75 mm are tolerances that can just be maintained with reasonable effort. For a 1 m wide or tall cell, this tolerance means an accuracy of 0.075% based on the gauge block. Furthermore, 30 to 50% free area for the gas discharge is the maximum of the tolerable, because otherwise the effective current density increases too much.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Engineering & Computer Science (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Electrolytic Production Of Metals (AREA)
- Secondary Cells (AREA)
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
- Electroluminescent Light Sources (AREA)
- Radiation-Therapy Devices (AREA)
- Luminescent Compositions (AREA)
Description
- Die Erfindung betrifft eine Membranelektrolysezelle mit vertikal angeordneten Elektroden für elektrochemische Prozesse.
- Bei der Durchführung elektrochemischer Prozesse kommt es auf eine gleichmäßige Verteilung des Stroms über die Elektrodenoberfläche an. Die gleichmäßige Verteilung wird durch die Streufähigkeit des Elektrolyten wie auch durch die Homogenität der Elektroden beeinflußt. Die Streufähigkeit ist um so besser, je größer die auf der Gegenelektrode von den Stromlinien beaufschlagte Fläche ist. Zwar kann mangelnde Streufähigkeit durch Vergrößerung des Elektrodenabstandes ausgeglichen werden, doch wird hierdurch der Spannungsabfall der Zelle erhöht. Inhomogenitäten in der Elektrodenoberfläche bewirken Strom-Verwerfungen. Dem Abstand der Elektrodenplatten, d.h. dem Abstand zwischen Anode und Kathode kommt somit wesentliche Bedeutung zu.
- Im Idealfall stehen sich die Flächen beider Elektroden parall gegenüber. Planparallelität der Flächen ist die Veraussetzung für eine effizient arbeitende Zelle, da nur so eine gleichmäßige Stromverteilung gewährleistet und lokale Überhitzungen vermieden werden können. Um den Spannungsabfall möglichst gering zu halten und somit den Energieverbrauch zu reduzieren, soll der Abstand zwischen Anode und Kathode darüberhinaus möglichst gering gehalten werden. Alle diese Forderungen sind relativ einfach in kleinen Laborzellen zu verwirklichen, der Bau großer industrieller Einheiten bereitet aber Schwierigkeiten, sollen die theoretisch zu fordernden Idealvorstellungen realisiert werden. Es kommt hinzu, daß Zellen um so empfindlicher auf Abweichungen von der Planparallelität und auf Stromverwerfungen reagieren, je größer sie sind. Zur Vermeidung einer beschleunigten Zerstörung der Ionenaustauschermembran dieses Typs besteht im allgemeinen der Zwang zur Begrenzung der Höhe der Elektroden, zur Einstellung eines erheblichen Abstandes zwischen den Elektroden der Zelle und zur Begrenzung der elektrischen Stromdichte, was gleichzeitig für die energetische Ausbeute der Elektrolysezelle und ihre Produktivität von Nachteil ist.
- Zur Verminderung dieser Nachteile von Elektrolysezellen mit Membranen und vertikal angeordneten Elektroden werden im allgemeinen Elektroden mit Öffnungen für die Abfuhr der Reaktionsgase verwendet, beispielsweise gelochte Elektroden, Drahtgewebe oder Streckmetall. Die Nachteile liegen unter anderem in der verminderten aktiven Oberfläche, der mangelnden mechanischen Stabilität und dem Verlust an hochwertigem Beschichtungsmaterial auf der Elektrodenrückseite.
- Üblicherweise werden Membranzellen mit lonenaustauschermembranen mit einer möglichst starren Rahmenkonstruktion versehen, in der die Elektroden starr, in der überwiegenden Zahl der Fälle durch Schweißverbindungen montiert sind. Um zu gewährleisten, daß einerseits die erforderlichen engen Toleranzen in der planparallelen Anordnung der Elektroden eingehalten, andererseits aber eine Vielzahl solcher Rahmen zu einem Elektrolyseur nach dem Filterpressenprinzip leckagefrei verbunden werden können, müssen auch die Kontaktflächen der Rahmen entsprechend aufwendig bearbeitet werden.
- Aus DE-PS 563 393 ist eine elektrolytische Zelle bekannt, bei der zwischen segmentierten Elektroden und dem Diaphragma elastische oder federnde Elemente angebracht sind, welche das Diaphragma an selbständigen Schwingungen oder schädlichen Bewegungen hindern.
- Die aus FR-OS 2 486 105 bekannte Membranelektrolysezelle weist in mehrere Einheiten vertikal geteilte Elektroden auf, und die Anodenanordnung besitzt flexible Federelemente, welche die Anoden verschiebbar machen.
- Nach einem aus DE-AS 20 59 868 bekannten Vorschlag hat man auch schon bei vertikal anzuordnenden Elektroden in gasbildenden Diaphragmazellen eine aus einzelnen Platten bestehende Elektrodenplatte vorgesehen, wobei die einzelnen Platten Führungsflächen für die Ableitung des erzeugten Gases aufweisen. Auf Grund der vorgesehenen Neigung der Führungsplatte bzw. -fläche ergeben sich zwangsläufig unterschiedliche Abstände der aktiven Oberfläche zur Gegenelektrode, wobei insbesondere durch lokale Temperaturerhöhungen in den empfindlichen Trennwänden schlechter Wärmeleitfähigkeit leicht Verwerfungen bewirkt werden. Des weiteren kann auch die gesamte aktive Oberfläche der Elektrode nicht in den energetisch wünschenswert engen Abstand zur Gegenelektrode gebracht werden.
- Aufgabe der Erfindung ist es daher, die genannten und weitere Nachteile zu vermeiden und eine Elektrodenanordnung für eine Membran-Elektrolysezelle bereitzustellen, die unter technischen Betriebsbedingungen eine sichere Planparallelität der Elektrodenflächen und einen energetisch günstigen geringsten Elektrodenabstand gewährleistet und eine sichere und rasche Gasabfuhr bewirkt.
- Die Erfindung löst diese Aufgabe mit einer Membran-Elektrolysezelle mit aus mehreren Einheiten zusammengesetzten vertikal angeordneten, mit Federelementen versehenen Elektroden. Bei einer Zelle der genannten Art besteht die Erfindung darin, daß
- a) die Elektrode der einen Polarität in mehrere getrennte Einheiten horizontal geteilt ist,
- b) die Elektrode der entgegengesetzten Polarität in mehrere getrennte Einheiten vertikal geteilt ist, und
- c) die jeweiligen Einheiten mindestens einer der beiden Elektroden durch Federelemente verschiebbar sind.
- Mit der erfindungsgemäßen Anordnung werden die beiden geometrischen Bezugssysteme in der Zelle, nämlich Rahmen/Rahmen und Anode/Kathode voneinander unabhängig gestaltet. Beispielsweise wird die eine Elektrode, wie Kathode, in einzelne horizontal geteilte Plattenabschnitte starr mit dem Kathodenrahmen verbunden, während die Elektrode der entgegengesetzten Polarität, wie in mehrere Platten oder Streifeneinheiten vertikal geteilte Anode, flexibel bzw. verschiebbar ausgestaltet wird. Diese flexible Ausgestaltung wird über Federelemente herbeigeführt. Die Federelemente sind zweckmäßig an den Stromzuführungen zu den Elektroden angebracht und bewirken über Anpreßdruck oder Verschweißung den elektrischen Kontakt mit den einzelnen Streifeneinheiten der Elektrode (Anode).
- Gemäß der Erfindung kann bei der vorerwähnten Anordnung auch die Kathode flexibel eingerichtet werden bei starrer Fixierung der Anode. Es können aber auch beide, in Einzeleinheiten aufgeteilte Elektroden durch Federelemente verschiebbar ausgerüstet werden. Auf diese Weise werden die zwangsläufig vorhandenen und nur mit hohem Arbeitsaufwand zu beseitigenden Unebenheiten der Kontaktflächen der Zellenrahmen nicht auf die Positionierung der Elektrode übertragen. Vielmehr werden mittels der beweglichen Verbindung des Stromverteilers mit der Aktivfläche der Elektrode die im Bereich des Zellenrahmens auftretenden Toleranzen überbrückt.
- Die Federkraft der Federelemente wird so bemessen, daß sie die Anpassung der relativen räumlichen Lage von Anode und Kathode erlaubt. Hierbei können die Rahmen vorteilhaft aus handelsüblichem, gezogenen Material ohne wesentliche Nachbearbeitung gefertigt und die geforderten engen Toleranzen durch Abstandshalter erzielt werden.
- Nach einer weiteren Ausführungsform der Erfindung wird die bewegliche bzw. verschiebbare Anordnung der Elektrodenaktivflächen zur Ableitung entwickelten und angesammelten Gases, wie Chlorgas, verwendet und dementsprechend ausgestaltet. In diesem Fall bilden die als flexible Stromzuführungen gestalteten Federelemente eine zum Zellenboden gerichtete konkave Wölbung oder einen nach dort geöffneten Winkel. Beispielsweise kann das Federelement eine an der Stromzuführung angeschweißte Blattfeder sein. Das unter den einzelnen flexiblen Federelementen bzw. Stromzuführern gesammelte Chlorgas wird an einer Stelle durch im Elektrolysenraum seitlich angeordnete Gasabführorgane nach oben abgeleitet. Auf diese Weise findet eine partielle Entgasung des Elektrodenraumes bzw. Anodenraumes statt. Diese partielle Entgasung bewirkt wiederum Konvektionströmungen im Elektrolyten und einen verbesserten Elektrolyteaustausch im Aktivbereich der Elektroden, der zu erheblichen Verbesserungen der Energieausbeute führt.
- Nach der Erfindung sind zwischen den einzelnen Einheiten der Elektrode, an welcher die Membran nicht anliegt, horizontale Trennstellen geschaffen, in denen Abstandhalter angeordnet sind. Aufgrund der unterschiedlichen Dichten von Katholyt und Anolyt liegt die Membran bei gleichen hydrostatischen Höhen an einer Elektrode an, d. h., es wirkt eine seitliche Kraft auf die Elektrode ein.
- Dieser Seitenkraft wirkt nun die Federkraft der flexiblen Stromzufuhr entgegen. Federstärken und hydrostatische Höhendifferenz zwischen Anolyt- und Katholyt-Kreislauf werden daher so aufeinander abgestimmt, daß z. B. mehrere horizontal an der Kathode montierte Abstandshalter ohne großen Kraftaufwand, d.h., mit möglichst geringer Quetschung der Membran, die relative Lage der beiden Aktivflächen zueinander justieren. Die Abstandhalter haben vorzugsweise eine Stärke von 1 bis 5 mm.
- In einer weiteren Ausgestaltung der Erfindung ist bei gasentwickelnden Prozessen der Abstandhalter als Leitorgan zur Ableitung des entwickelten Gases aus dem Elektrodenraum ausgebildet. Der Abstandhalter fungiert bei horizontaler Anordnung als Gastrenneinheit. Er besteht dann beispielsweise aus streifenförmigen Platten mit ausgezackten Rändern oder Streifen mit schlitz- oder kreisförmigen Öffnungen oder aus gitter-oder netzförmigen Streifen. Derartige Abstandhalter bewirken einen völligen Gasabzug aus dem Elektrodenspalt nach jeder Teilung der mehrfach horizontal geteilten Elektrode (Kathode).
- In den Figuren 1 bis 4 der Zeichnung ist die Erfindung näher und beispielhaft veranschaulicht.
- Es zeigt Fig. 1 in Frontansicht einen Elektrodenrahmen F mit horizontal geteilter Kathodenplatte 2. Fig. 1b ist eine ähnliche Ansicht eines Elektrodenrahmens mit vertikal und horizontal geteiiter Anode 3.
-
- Fig. 1a ist ein Schnitt gemäß der Linie I - I in Fig. 1 und zeigt die horizontal gestaltete Kathodenplatte 2 mit Abstandhalter 1.
- Fig. 2 ist eine vergrößerte Darstellung des Ausschnitts "A" in Fig. 1a. In Fig. 2 veranschaulicht der Abstandhalter 2 ein Gasabführungsorgan. Die horizontal geteilte Elektrode 2 (Kathode) und die vertikal geteilte Gegenelektrode 3 (Anode) sind ebenfalls dargestellt. Die Pfeile 5 und 6 bezeichnen den Elektrolyteintritt bzw. Austritt des Gas-Elektrolyt-Gemisches aus der Zelle.
- Fig. 3 zeigt in der Draufsicht eine verschiebbare Elektrodenkombination aus horizontal geteilter Kathode 2 und vertikal geteilter Anode 3 sowie Federelemente 7, die mit der Stromzuführung 8 verbunden sind.
- In Fig. 4 ist in der Draufsicht von oben eine verschiebbare Anode 3 dargestellt. Diese Figur ist eine vergrößerte Darstellung des Ausschnitts "B" in Fig. 1c und zeigt Federelemente 7, die mit der Stromzuführung 8 und der Anode 3 verbunden sind. In Arbeitsposition ist die Anode gegen die Membran 4 gepreßt.
- Die erfindungsgemäße Elektrolysezelle weist u.a. folgende Vorteile auf. Aufgrund der durch mehrfache Teilungen bewirkten beweglichen Elektrodenkombination mit Federelementen kann der kleinste kritische Elektrodenabstand jederzeit während des Betriebs der Elektrolysezelle eingehalten werden. Diese Kombination erübrigt einen erheblichen technischen Fertigungsaufwand sowohl für die Elektroden als auch für die Elektrodenrahmen hinsichtlich der Einhaltung enger Fertigungstoleranzen. Des weiteren wird eine Begrenzung der Höhenbauweise der Elektrolysenzelle praktisch aufgehoben, da entwickeltes Gas in jeder Teilung aus dem Elektrodenspalt abgeführt wird, d. h. die Gasakkumulation wird vermieden.
- Die Erfindung wird anhand der nachstehenden Beispiele und Berechnungen näher und beispielhaft erläutert.
-
- 1 cm2 einer der Elektroden sei um 1 mm erhaben. Dann ergibt sich an der erhabenen Stelle eine Stromdichte, die in erster Näherung über die Leistungsaufnahme zu ermitteln ist.
-
-
-
- Die Gesamtleistungsaufnahme also 1,860,
- d.h. die Spannung reduziert sich auf
- die Stromdichte auf der nicht erhabenen Fläche auf
- > r die Stromdichte auf der erhabenen Fläche
- >r B) Membranzelle zur Erzeugung von C12, NaOH, H2
- 1 cm2 einer der Elektroden sei um 1 mm erhaben.
-
- > r Die Membran als zusätzlicher Widerstand hat also eine stabilisierende Wirkung, die Wärmeentwicklung in der Membran steigt jedoch nicht unerheblich an:
- Wärmeentwicklung bei 3 kAfm2 in der Membran:
- 3 x 0,4 x 860 = 1032 kcaljm2 x h
-
- Bei gleicher Wärmeabfuhr steigt also die Temperaturdifferenz zwischen Membran und Elektrolyt um ca. 20 %.
- Es ist einleuchtend, daß eine Unebenheit von 1 mm bei kleinen Laborzellen schwierig darzustellen ist.
- Im Gegensatz dazu sind Unebenheiten von 1 mm bei Zellen industrieller Größe ohne besondere Maßnahmen nicht zu vermeiden Wirtschaftliche Zwänge erlauben es nicht, bei Zellen industrieller Größe mit Abständen von 5 mm zu arbeiten. Angestrebt werden Abstände, die geringsten Spannungsabfall gewähren. Dieser liegt in Abhängigkeit von der Elektrodenform bei 1 bis 3 mm. Die gesamte Anoden- oder Kathodenfläche kann Größenordnungen von 50 m2 erreichen, wobei Höhen von 1,2 m normalerweise nicht überschritten werden. Ursache für die Beschränkung der Höhe ist ein unvermeidbares Ansteigen der Gaskonzentration in Elektrolyten im oberen Teil von Elektrolysezellen.
- An den folgenden Beispielen soll die Auswirkung von geringerem Abstand und höheren Gaskonzentrationen erläutert werden.
- Großtechnische Zellen
-
- 10 cm2 beider Elektroden sind um 0,75 mm erhaben und stehen sich gegenüber.
-
- Aufgrund der Relation erhabene Fläche zum Rest der Fläche ergibt sich praktisch keine Änderung im Gesamtspannungsabfall und keine meßbare Verringerung der Stromdichte auf den nicht erhabenen Flächen. Die Wärmeentwicklung in der Membran (s. Beispiel 1, B) steigt jedoch auf 1380 kcal/m2 x h entsprechend 133 % vom Normalwert.
-
- Beispiel 2 zeigt die Begrenzungen beim Bau großtechnischer Elektrolysezellen, bedingt durch Stromverwerfungen. ± 0,75 mm sind Toleranzen, die mit vertretbarem Aufwand gerade noch eingehalten werden können. Bei einer 1 m breiten oder hohen Zelle bedeutet diese Toleranz eine Genauigkeit von 0,075 % bezogen auf das Endmaß. Ferner sind 30 bis 50 % freie Fläche für den Gasabzug das Maximum des Tolerierbaren, weil sonst die effektive Stromdichte zu sehr ansteigt.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT83200883T ATE30252T1 (de) | 1982-06-25 | 1983-06-16 | Membran-elektrolysezelle mit vertikal angeordneten elektroden. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3223701 | 1982-06-25 | ||
DE19823223701 DE3223701A1 (de) | 1982-06-25 | 1982-06-25 | Membran-elektrolysezelle mit vertikal angeordneten elektroden |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0097991A1 EP0097991A1 (de) | 1984-01-11 |
EP0097991B1 true EP0097991B1 (de) | 1987-10-14 |
Family
ID=6166805
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP83200883A Expired EP0097991B1 (de) | 1982-06-25 | 1983-06-16 | Membran-Elektrolysezelle mit vertikal angeordneten Elektroden |
Country Status (11)
Country | Link |
---|---|
US (1) | US4502935A (de) |
EP (1) | EP0097991B1 (de) |
JP (1) | JPS5913085A (de) |
AT (1) | ATE30252T1 (de) |
AU (1) | AU553793B2 (de) |
BR (1) | BR8303395A (de) |
CA (1) | CA1214750A (de) |
DE (2) | DE3223701A1 (de) |
FI (1) | FI73471C (de) |
IN (1) | IN156644B (de) |
ZA (1) | ZA834630B (de) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE8400459L (sv) * | 1984-01-30 | 1985-07-31 | Kema Nord Ab | Elektrod for elektrolysorer |
DE3726674A1 (de) * | 1987-08-11 | 1989-02-23 | Heraeus Elektroden | Elektrodenstruktur fuer elektrochemische zellen |
DE3808495A1 (de) * | 1988-03-15 | 1989-09-28 | Metallgesellschaft Ag | Membranelektrolysevorrichtung |
US5254233A (en) * | 1990-02-15 | 1993-10-19 | Asahi Glass Company Ltd. | Monopolar ion exchange membrane electrolytic cell assembly |
US5221452A (en) * | 1990-02-15 | 1993-06-22 | Asahi Glass Company Ltd. | Monopolar ion exchange membrane electrolytic cell assembly |
US5100525A (en) * | 1990-07-25 | 1992-03-31 | Eltech Systems Corporation | Spring supported anode |
DE19859882A1 (de) * | 1998-12-23 | 1999-12-09 | W Strewe | Ionenaustauschermembranzelle für hohe Produktleistungen |
US7141147B2 (en) * | 2001-06-15 | 2006-11-28 | Akzo Nobel N.V. | Electrolytic cell |
EP1397531A1 (de) * | 2001-06-15 | 2004-03-17 | Akzo Nobel N.V. | Elektrolysezelle |
US6797136B2 (en) * | 2001-09-07 | 2004-09-28 | Akzo Nobel N.V. | Electrolytic cell |
DE60203920T2 (de) * | 2001-09-07 | 2005-08-25 | Akzo Nobel N.V. | Elektrolysezelle |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE563393C (de) * | 1929-02-05 | 1932-11-04 | I G Farbenindustrie Akt Ges | Elektrolytische Zelle |
US3674676A (en) * | 1970-02-26 | 1972-07-04 | Diamond Shamrock Corp | Expandable electrodes |
BE793122A (fr) * | 1971-12-22 | 1973-06-21 | Rhone Progil | Electrodes bipolaires demontables |
US3960699A (en) * | 1974-12-23 | 1976-06-01 | Basf Wyandotte Corporation | Self supporting electrodes for chlor-alkali cell |
US4056458A (en) * | 1976-08-26 | 1977-11-01 | Diamond Shamrock Corporation | Monopolar membrane electrolytic cell |
DE2642559B1 (de) * | 1976-09-22 | 1978-02-23 | Heraeus Elektroden | Verfahren zur erneuerung wirksamer elektrodenflaechen von metallelektroden fuer elektrolysezellen |
US4075077A (en) * | 1977-05-16 | 1978-02-21 | Pennwalt Corporation | Electrolytic cell |
IT1114623B (it) * | 1977-07-01 | 1986-01-27 | Oronzio De Nora Impianti | Cella elettrolitica monopolare a diaframma |
US4154667A (en) * | 1978-01-03 | 1979-05-15 | Diamond Shamrock Corporation | Method of converting box anodes to expandable anodes |
JPS5629683A (en) * | 1979-08-17 | 1981-03-25 | Toagosei Chem Ind Co Ltd | Anode structure for diaphragmatic electrolysis cell |
IT1163737B (it) * | 1979-11-29 | 1987-04-08 | Oronzio De Nora Impianti | Elettrolizzatore bipolare comprendente mezzi per generare la ricircolazione interna dell'elettrolita e procedimento di elettrolisi |
US4443315A (en) * | 1980-07-03 | 1984-04-17 | Kanegafuchi Kagaku Kogyo Kabushiki Kaisha | Finger type electrolytic cell for the electrolysis of an aqueous alkali metal chloride solution |
-
1982
- 1982-06-25 DE DE19823223701 patent/DE3223701A1/de not_active Withdrawn
- 1982-09-22 IN IN1097/CAL/82A patent/IN156644B/en unknown
-
1983
- 1983-06-16 DE DE8383200883T patent/DE3374072D1/de not_active Expired
- 1983-06-16 AT AT83200883T patent/ATE30252T1/de not_active IP Right Cessation
- 1983-06-16 EP EP83200883A patent/EP0097991B1/de not_active Expired
- 1983-06-23 CA CA000431098A patent/CA1214750A/en not_active Expired
- 1983-06-23 FI FI832313A patent/FI73471C/fi not_active IP Right Cessation
- 1983-06-24 BR BR8303395A patent/BR8303395A/pt not_active IP Right Cessation
- 1983-06-24 US US06/507,840 patent/US4502935A/en not_active Expired - Fee Related
- 1983-06-24 ZA ZA834630A patent/ZA834630B/xx unknown
- 1983-06-24 AU AU16260/83A patent/AU553793B2/en not_active Ceased
- 1983-06-25 JP JP58114997A patent/JPS5913085A/ja active Pending
Also Published As
Publication number | Publication date |
---|---|
CA1214750A (en) | 1986-12-02 |
BR8303395A (pt) | 1984-02-07 |
AU553793B2 (en) | 1986-07-24 |
ZA834630B (en) | 1985-02-27 |
FI73471B (fi) | 1987-06-30 |
FI73471C (fi) | 1987-10-09 |
FI832313A0 (fi) | 1983-06-23 |
AU1626083A (en) | 1984-01-05 |
DE3374072D1 (en) | 1987-11-19 |
DE3223701A1 (de) | 1983-12-29 |
EP0097991A1 (de) | 1984-01-11 |
IN156644B (de) | 1985-09-28 |
US4502935A (en) | 1985-03-05 |
FI832313L (fi) | 1983-12-26 |
ATE30252T1 (de) | 1987-10-15 |
JPS5913085A (ja) | 1984-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0687312B1 (de) | Elektrodenanordnung für gasbildende elektrolytische prozesse in zellen mit ionenaustauschermembran oder mit diaphragma | |
EP0591293B1 (de) | Elektrolysezelle sowie kapillarspaltelektrode für gasentwickelnde oder gasverbrauchende elektrolytische reaktionen und elektrolyseverfahren hierfür | |
DE2656650A1 (de) | Bipolare elektrode fuer eine elektrolysezelle | |
EP0717130A1 (de) | Druckkompensierte elektrochemische Zelle | |
EP0097991B1 (de) | Membran-Elektrolysezelle mit vertikal angeordneten Elektroden | |
DE3439265A1 (de) | Elektrolyseapparat mit horizontal angeordneten elektroden | |
DE2739324C3 (de) | Verfahren und Vorrichtung zur Durchführung elektrochemischer Reaktionen sowie dazu geeignete bipolare Elektroden | |
EP0095039B1 (de) | Membran-Elektrolysezelle | |
DE2856882A1 (de) | Vorrichtung zum elektrolysieren und verfahren zum herstellen von chlor durch elektrolysieren | |
WO2005111271A1 (de) | Elektrolysezelle mit mehrlagen-streckmetall-elektroden | |
EP0204126B1 (de) | Elektrode für die Membran-Elektrolyse | |
DE2059868B2 (de) | Vertikal anzuordnende Elektrodenplatte für eine gasbildende Elektrolyse | |
DE3420483A1 (de) | Bipolarer elektrolyseapparat mit gasdiffusionskathode | |
EP0102099B1 (de) | Vertikal angeordnete Plattenelektrode für gasbildende Elektrolyseure | |
EP0274138B1 (de) | Elektrodenanordnung für gasbildende Elektrolyseure mit vertikal angeordneten Plattenelektroden | |
DE2538000B2 (de) | Bipolare Elektrodenkonstruktion für eine membranlose Elektrolysezelle | |
DE69213362T2 (de) | Elektrolyseur und Herstellung davon | |
DE19740673C2 (de) | Elektrolyseapparat | |
EP0051764A1 (de) | Salzsäure-Elektrolysezelle zur Herstellung von Chlor und Wasserstoff | |
DE3808495C2 (de) | ||
DE2949495C2 (de) | Elektrode für Elektrolysezellen | |
EP0150019B1 (de) | Elektrolyseverfahren mit flüssigen Elektrolyten und porösen Elektroden | |
DE2753885A1 (de) | Elektrolytische zelle | |
DE2709093A1 (de) | Elektrode fuer die erzeugung eines gases in einer zelle mit einer membran | |
EP0071754A1 (de) | Monopolare elektrolytische Filterpressenzelle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
17P | Request for examination filed |
Effective date: 19840706 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
REF | Corresponds to: |
Ref document number: 30252 Country of ref document: AT Date of ref document: 19871015 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 3374072 Country of ref document: DE Date of ref document: 19871119 |
|
ET | Fr: translation filed | ||
ITF | It: translation for a ep patent filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19880630 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19890101 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee | ||
ITTA | It: last paid annual fee | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19940527 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19940615 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19940617 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19940621 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19940624 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19940629 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19940718 Year of fee payment: 12 |
|
EAL | Se: european patent in force in sweden |
Ref document number: 83200883.3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19950616 Ref country code: AT Effective date: 19950616 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19950617 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Effective date: 19950630 Ref country code: CH Effective date: 19950630 Ref country code: BE Effective date: 19950630 |
|
BERE | Be: lapsed |
Owner name: METALLGESELLSCHAFT A.G. Effective date: 19950630 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19950616 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19960229 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19960301 |
|
EUG | Se: european patent has lapsed |
Ref document number: 83200883.3 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |