[go: up one dir, main page]

EP0091914A1 - Cathode of a cell for the electrolysis of a melt, for the preparation of aluminium. - Google Patents

Cathode of a cell for the electrolysis of a melt, for the preparation of aluminium.

Info

Publication number
EP0091914A1
EP0091914A1 EP82902974A EP82902974A EP0091914A1 EP 0091914 A1 EP0091914 A1 EP 0091914A1 EP 82902974 A EP82902974 A EP 82902974A EP 82902974 A EP82902974 A EP 82902974A EP 0091914 A1 EP0091914 A1 EP 0091914A1
Authority
EP
European Patent Office
Prior art keywords
solid
cathode
aluminum
open
cathode according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP82902974A
Other languages
German (de)
French (fr)
Other versions
EP0091914B1 (en
Inventor
Tibor Kugler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcan Holdings Switzerland AG
Original Assignee
Alusuisse Holdings AG
Schweizerische Aluminium AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alusuisse Holdings AG, Schweizerische Aluminium AG filed Critical Alusuisse Holdings AG
Priority to AT82902974T priority Critical patent/ATE15079T1/en
Publication of EP0091914A1 publication Critical patent/EP0091914A1/en
Application granted granted Critical
Publication of EP0091914B1 publication Critical patent/EP0091914B1/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes

Definitions

  • the invention relates to a wettable solid-state cathode which can be used in a melt-flow electrolysis cell for the production of aluminum and has an aluminide of at least one transition metal from groups IVA, VA and VIA of the periodic system of the elements.
  • the electrolysis generally takes place in a temperature range of about 940 to 970 ° C.
  • the electrolyte becomes poor in aluminum oxide.
  • the anode effect occurs, which results in an increase in voltage from, for example, 4 to 4.5 V to 30 V and above.
  • the aluminum oxide concentration must be increased by adding new aluminum oxide (alumina).
  • Cathodes made of titanium diboride, titanium carbide, pyro-graphite, boron carbide and other substances are known to use wettable solid-state cathodes in the melt flow electrolysis for the production of aluminum.
  • Cathodes made of titanium diboride, titanium carbide, pyro-graphite, boron carbide and other substances are known to use wettable solid-state cathodes in the melt flow electrolysis for the production of aluminum.
  • OMP beaten mixtures which, for example, can be sintered together, are also used.
  • the usual interpolar distance of approximately 5 cm can be reduced as far as the other parameters allow, for example circulation of the electrolyte in the interpolar gap and maintenance of the electrolysis temperature.
  • the reduced interpolar distance results in a significantly reduced energy consumption and avoids the formation of non-uniformities in relation to the thickness of the aluminum layer.
  • DE-OS 28 38 965 shows solid body cathodes made of individually interchangeable elements, each with at least one power supply.
  • the interchangeable elements are arranged from two mechanically rigidly connected parts that are resistant to thermal shock - an upper part protruding from the molten electrolyte into the separated aluminum and an exclusion cloth in the liquid aluminum lower part - made of different materials.
  • the upper part at least in the area of the surface, remains unchanged from aluminum-wettable material, while the lower part or its coating consists of an insulator material that is resistant to the liquid aluminum.
  • DE-OS 30 45 349 relates to an exchangeable wettable solid-state cathode, which consists of an aluminide of at least one metal from the group formed from titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum and tungsten, without binding phase made of metallic aluminum.
  • the non-aluminum components of the aluminide thus belong to group III A, IV A and / or VI A of the periodic system of the elements.
  • the solubility of a metallic non-aluminum component of the aluminide in the liquid aluminum is approximately 1%.
  • the cathode elements are therefore alloyed until the liquid aluminum deposited is saturated with one or more of the transition metals in the aluminide.
  • the aluminides which have been removed during the electrolysis process are recovered from the deposited metal by cooling it to approximately 700 ° C.
  • the crystallizing aluminide can be removed from the liquid metal by known means and used again for the production of cathode elements. This creates a material cycle with relatively low losses.
  • the inventor has set himself the task of creating solid-state cathodes working on the basis of aluminides with a service life which corresponds to one or more anode service lives, with the purchase price of the cathode and the handling costs being to be substantially reduced.
  • the object is achieved in that the solid-state cathode essentially consists of a support body and an open-pore one located at least in the region of the working surface. structure impregnated with transition metal / s saturated aluminum, which can be fed continuously from aluminide supplies.
  • the working surface is the surface which, when the cathode is inserted in the electrolytic cell, points in the direction of the anode and the direct electrical current . will flow through.
  • the aluminum ions are reduced to elemental aluminum on this work surface.
  • the working surfaces of the cathodes are therefore expediently slightly inclined so that the deposited aluminum, which forms a film on the wettable cathode, can measure off.
  • the working surfaces of the corresponding anodes which e.g. can consist of combustible carbon or incombustible oxide ceramics are inclined accordingly. This tendency also has an advantageous effect here: the oxygen or CO2 which is formed can escape better from the molten electrolyte.
  • the open-pore structure is anchored on the support body or part of it. If this support body consists of an electrically non-conductive material, the open-pore structure impregnated with aluminum saturated with transition metal / s must reach at least to the liquid metal when the solid cathode is inserted, so that the electrical current through this impregnation alloy and possibly through the structure can
  • the support body therefore preferably consists at least partially of a material which is highly electrically conductive at 900 to 1000 ° C. and is resistant to the melt flow. In this case, the current can mainly flow through the support body. Apart from the electrical conductivity, it is essential that the material of the support body is cheap and easy to form. For these reasons, carbon is particularly well suited for the supporting body.
  • the cathode is always in the case of manipulations on the traverse or the anode bar and in particular when changing the anodes
  • the solid-state cathodes are therefore preferably designed as individually replaceable elements which stand on the cell bottom. Damaged elements can be quickly replaced.
  • the risk of damage can be significantly reduced if the solid-state cathodes are designed as elements which float in the melt flow and have lateral spaces.
  • the molten electrolyte has a density of 2.1 g / cm.3
  • the liquid aluminum has a density of 2.3 g / cm ⁇ .
  • the density of a floating cathode must be between these two values.
  • the density of the cathode material used is too low, appropriate pieces of iron can be used, but these must be evenly distributed and completely encased by the cathode material.
  • the weight of the pieces of iron to be used is calculated so that the apparent density of the entire solid cathode is between 2.1 and 2.3 g / cm 3 .
  • the density of the cathode material used is too high, correspondingly closed cavities are formed in the cathode material.
  • Solid cathodes with the correct density float like fins in the liquid aluminum; they are preferably held at the desired distance from one another and from the cell shelf by appropriately designed spacers.
  • the open-pore structure on the one hand must be sufficiently permeable to the aluminum saturated with transition metal / s, but on the other hand it must not allow it to flow out without resistance.
  • the optimal solution must be sought, taking capillary and surface forces into account.
  • This fiber structure is expediently designed in the form of a felt or a fabric.
  • the fibers are a few micrometers thick and preferably consist of carbon.
  • the open-pore structure which is impregnated with transition metal / saturated aluminum, is supplied continuously from cavities arranged in the supporting body, into which the open-pore structure protrudes , or from another location on the open-pore structure at which solid aluminide can be held.
  • titanium alu inides are preferably used. Depending on the percentage of titanium, these aluminides have different physical states at the electrolysis temperature in the range of 900 to 1000 ° C:
  • Aluminides with less than 37.2 wt .-% titanium are viscous to pasty at electrolysis temperature. These can therefore not be used as solid shaped bodies, but rather only as bulk cathodes in cavities of the supporting body.
  • aluminides with a titanium content above 37.2 (up to 63)% by weight of titanium can also be associated as solid moldings with the open-pore structure.
  • the aluminum produced during the electrolysis process flows along the diagonally arranged open-pore structure and mixes with the impregnating aluminum saturated with transition metal / s and in this would gradually reduce the • transition metal content to such an extent that the open-pore structure would be attacked and gradually dissolved. This is prevented, however, by the open-pore structure being able to be fed continuously from aluminide stocks.
  • the transition metal extracted from the saturated aluminum is continuously replaced by new one, so that the open-pore structure remains impregnated with aluminum saturated with transition metal / s.
  • the open-pore structure in particular a 1-5 mm thick felt made of carbon fibers, is coated with a thin, well-adhering layer of titanium carbide or titanium diboride.
  • the layers which are preferably less than 0.4 ⁇ m thick, are produced, for example, by CVD (Chemical Vapor Deposition). If the aluminum impregnating the felt is permanently saturated with titanium, the wettable coating is not dissolved, as a result of which the life of the felt can be multiplied.
  • a felt consisting of coated carbon fibers has the further advantage that if the coating is defective, the entire work surface does not become unusable, but only individual fibers are dissolved prematurely.
  • the main advantage of the invention is thus that simple ceramic means can be used to replace expensive ceramic moldings by supporting bodies made of a cheap, easily moldable material with an open-pore surface structure impregnated with aluminum saturated with transition metal / s.
  • the solid-state cathodes according to the invention are also particularly suitable for converting existing aluminum melt flow electrolysis cells.
  • FIG. 1 shows a solid-state cathode with a conductive support body and a correspondingly designed anode
  • FIG. 2 shows a solid-state cathode with a support body made of electrically insulating material and anode designed accordingly
  • solid-state cathodes made of electrically conductive material and correspondingly designed anodes.
  • solid cathodes 10 and anode blocks 12 arranged in pairs form the electrode units of the electrolytic cell.
  • the solid cathode 10 consists of a shaped support body 14 made of carbon and a felt 16 attached to the work surface facing the anode body 12 made of carbon fibers coated with titanium carbide. Rags of this approximately 4 mm thick felt 16 extend into a cavity 18 in the carrier body 14, which is filled with a titanium, aluminide 19 dough at electrolysis temperature, which consists, for example, of 80% by weight aluminum and 20% by weight titanium.
  • the feet 20 of the support body 14 are in a correspondingly OMPI formed recesses in the carbon base 22 of the electrolytic cell.
  • the density of the solid-state cathode 10 must therefore be greater than that of the liquid aluminum 24.
  • the felt 16 is impregnated with aluminum saturated with titanium, which system forms the cathode.
  • the deposited aluminum mixes with the aluminum saturated with titanium in the felt and flows according to the inclination of the working surface of the solid-state cathode to the center of the electrode element.
  • the felt 16 acts like a wick in the oil, liquid alloy is drawn from the cavity 18 with the pasty titanium aluminide and thus the current losses are replaced. Without this replacement of the used titanium, the deposited aluminum would dissolve the titanium carbide coating on the carbon fibers and render the cathode surface non-wettable.
  • a solid-state cathode 10 and an anode block 12 form a pair of electrodes.
  • the supporting body 14 consists of an insulating material, for example of divegesinter ⁇ tem alumina, alumina-containing ceramics, silicon carbide or silicon carbide siliziumnitridjobem.
  • the felt 16 In order to ensure that the electrical direct current flows away, the felt 16 always extends along as far as possible all side surfaces of the support body 14 into the liquid aluminum 24. ''
  • the cavity 18 is trough-shaped, with relatively large opening is formed and filled with solid Titanaluminidgranalien, which for example consist of 55 wt .-% aluminum and 45 wt .-% titanium. In contrast, the felt 16 does not reach down into the cavity 18; The aluminum impregnating the felt 16 with titanium is saturated by the convection of the molten electrolyte 26.
  • the deposited aluminum flows through an opening 28 in the support body 14.
  • the apparent density of the entire solid cathode, at working temperature, must lie between the density of the molten electrolyte and the molten aluminum. In the case of support bodies 14 made of carbon, this is achieved by inserting iron pieces 30 into closed cavities, for example in the form of a ring.
  • solid cathodes 10 attached to a cathodic suspension system 36 and anode bodies 12 attached to an anodic suspension system 38 are alternatively arranged.
  • the felt 16 is fed by sleeves 34 which are placed over the support rods of the support bodies 14 and which consist of a solid aluminide.
  • the cathodes and anodes can be shifted to the right in the direction of the arrow.
  • a mechanism known per se ensures that the same interpolar distances exist between the anode and cathode after each shift.
  • anodes 12 and cathodes 14 arranged on the left have to be displaced more than those arranged on the right.
  • OMPI Burned-off anodes are removed together with the cathode on the right. A sufficiently large space has now been created on the left-hand side so that the cathode can be reinserted together with a new anode.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

La cathode solide (10) est constituée essentiellement d'un corps porteur (14) et d'une structure poreuse (16) à pores ouverts, se trouvant au moins dans la zone de travail. La structure poreuse est imprégnée resp. imbibée d'aluminium saturé par au moins un métal de transition du groupe IV A, V A et VI A du système périodique des éléments. Cette structure (16) peut être alimentée de manière continue à partir de réserves de composés d'aluminium (19, 34). Un feutre d'une épaisseur de quelques millimètres, composé de fibres de carbone enduites, s'est révélé comme particulièrement adapté en tant que structure poreuse à pores ouverts. Les cathodes solides (10) sont peu coûteuses et peuvent être fabriquées en matériau malléable.The solid cathode (10) essentially consists of a carrier body (14) and a porous structure (16) with open pores, located at least in the working area. The porous structure is impregnated resp. soaked in aluminum saturated with at least one transition metal from group IV A, V A and VI A of the periodic system of elements. This structure (16) can be supplied continuously from reserves of aluminum compounds (19, 34). A felt with a thickness of a few millimeters, composed of coated carbon fibers, proved to be particularly suitable as a porous structure with open pores. Solid cathodes (10) are inexpensive and can be made of malleable material.

Description

Kathode für eine Schmelzflusselektrolysezelle zur Herstellung von Aluminium Cathode for a melt flow electrolysis cell for the production of aluminum
Die Erfindung bezieht sich auf eine benetzbare, in einer Schmelzflusselektrolysezelle zur Herstellung von Aluminium einsetzbare Festkörperkathode mit einem Aluminid von wenig¬ stens einem Uebergangsmetall der Gruppen IV Ä, V A und VI A des periodischen Systems der Elemente.The invention relates to a wettable solid-state cathode which can be used in a melt-flow electrolysis cell for the production of aluminum and has an aluminide of at least one transition metal from groups IVA, VA and VIA of the periodic system of the elements.
Für die Gewinnung von Aluminium durch Elektrolyse von Alu¬ miniumoxid wird dieses in einer Fluoridschmelze gelöst, die zum grössten Teil aus Kryolith besteht. Das kathodisch abge¬ schiedene Aluminium sammelt sich unter der Fluoridschmelze auf dem Kohleboden der Zelle, wobei die Oberfläche des flüs¬ sigen Aluminiums die Kathode bildet. Am Anodenbalken befes¬ tigte, bei konventionellen Verfahren aus amorphem Kohlenstoff bestehende Anoden tauchen von oben in die Schmelze ein. An den Kohleanoden entsteht durch die elektrolytische Zersetzung des Aluminiumoxids Sauerstoff, der sich mit dem Kohlenstoff der Anoden zu CO2 und CO verbindet.For the production of aluminum by electrolysis of aluminum oxide, this is dissolved in a fluoride melt, which largely consists of cryolite. The cathodically deposited aluminum collects under the fluoride melt on the carbon bottom of the cell, the surface of the liquid aluminum forming the cathode. Anodes attached to the anode bar and consisting of amorphous carbon in conventional processes are immersed in the melt from above. At the carbon anodes, the electrolytic decomposition of the aluminum oxide produces oxygen, which combines with the carbon of the anodes to form CO2 and CO.
Die Elektrolyse findet im allgemeinen in einem Temperaturbe- reich von etwa 940 bis 970°C statt. Im Laufe der Elektrolyse verarmt der Elektrolyt an Alumini moxid. Bei einer unteren Konzentration von etwa 1 bis 2 Gew.-% Alυminiumoxid im Elek¬ trolyten kommt es zum Anodeneffekt, der sich in einer Span¬ nungserhöhung von beispielsweise 4 bis 4,5 V auf 30 V und darüber auswirkt. Spätestens dann muss die Aluminiumoxidkon¬ zentration durch Zugabe von neuem Aluminiumoxid (Tonerde) angehoben werden.The electrolysis generally takes place in a temperature range of about 940 to 970 ° C. In the course of electrolysis, the electrolyte becomes poor in aluminum oxide. At a lower concentration of about 1 to 2% by weight of aluminum oxide in the electrolyte, the anode effect occurs, which results in an increase in voltage from, for example, 4 to 4.5 V to 30 V and above. Then, at the latest, the aluminum oxide concentration must be increased by adding new aluminum oxide (alumina).
Es ist bekannt, bei der Schmelztlusselektrolyse zur Herstel¬ lung von Aluminium benetzbare Festkörperkathoden einzusetzen. Dabei werden Kathoden aus Titandiborid, Titankarbid, pyro- lytischem Graphit, Borkarbid und weiteren Substanzen vorge-It is known to use wettable solid-state cathodes in the melt flow electrolysis for the production of aluminum. Cathodes made of titanium diboride, titanium carbide, pyro-graphite, boron carbide and other substances are
OMP geschlagen, wobei auch Gemische, die beispielsweise zusammen¬ gesintert sein können, eingesetzt werden.OMP beaten, mixtures which, for example, can be sintered together, are also used.
Bei benetzbaren Kathoden kann die übliche Interpolardistanz von ca. 5 cm so weit herabgesetzt werden, als es die übrigen Parameter, beispielsweise Zirkulation des Elektrolyten im Interpolarspalt und Aufrechterhalten der Elektrolysetempera¬ tur, erlauben. Die reduzierte Interpolardistanz bewirkt ei¬ nen in bedeutendem Masse herabgesetzten Energieverbrauch und vermeidet die Ausbildung von üngleichmässigkeiten in bezug auf die Dicke der Aluminiumschicht.In the case of wettable cathodes, the usual interpolar distance of approximately 5 cm can be reduced as far as the other parameters allow, for example circulation of the electrolyte in the interpolar gap and maintenance of the electrolysis temperature. The reduced interpolar distance results in a significantly reduced energy consumption and avoids the formation of non-uniformities in relation to the thickness of the aluminum layer.
Im Gegensatz zu im Kohleboden der Zelle fest verankerten be¬ netzbaren Kathoden zeigt die DE-OS 28 38 965 Festkörperkatho¬ den aus einzeln auswechselbaren Elementen mit je mindestens einer Stromzuführung. In einer Weiterentwicklung nach der DE-OS 30 24 172 werden die auswechselbaren Elemente aus zwei mechanisch starr mite'i-nander verbundenen, gegen Wärmeschocks widerstandsfähigen Teilen - einem vom schmelzflüssigen Elek¬ trolyten in das abgeschiedene Aluminium hineinragenden oberen und einem ausschliessuch im flüssigen Aluminium angeordneten unteren Teil - aus verschiedenen Materialien hergestellt. Der obere Teil besteht, mindestens im Bereich der Oberfläche, un¬ verändert aus mit Aluminium benetzbarem Material, während der untere Teil bzw. dessen Beschichtung aus einem gegen das flüssige Aluminium beständigen Isolatormaterial besteht.In contrast to wettable cathodes which are firmly anchored in the carbon bottom of the cell, DE-OS 28 38 965 shows solid body cathodes made of individually interchangeable elements, each with at least one power supply. In a further development according to DE-OS 30 24 172, the interchangeable elements are arranged from two mechanically rigidly connected parts that are resistant to thermal shock - an upper part protruding from the molten electrolyte into the separated aluminum and an exclusion cloth in the liquid aluminum lower part - made of different materials. The upper part, at least in the area of the surface, remains unchanged from aluminum-wettable material, while the lower part or its coating consists of an insulator material that is resistant to the liquid aluminum.
Die DE-OS 30 45 349 hat eine auswechselbare benetzbare Fest¬ körperkathode zum Gegenstand, welche aus einem Aluminid von mindestens einem Metall der Gruppe, gebildet aus Titan, Zir- kon, Hafnium, Vanadium, Niob, Tantal, Chrom, Molybdän und Wolfram, ohne Bindephase aus metallischem Aluminium, besteht. Die Nicht-Aluminiumkomponenten des Aluminids gehören also zur Gruppe III A, IV A und/oder VI A des periodischen Sy¬ stems der Elemente.DE-OS 30 45 349 relates to an exchangeable wettable solid-state cathode, which consists of an aluminide of at least one metal from the group formed from titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum and tungsten, without binding phase made of metallic aluminum. The non-aluminum components of the aluminide thus belong to group III A, IV A and / or VI A of the periodic system of the elements.
OMP v Die chemische und thermische Widerstandsfähigkeit der Alumi¬ nide erlaubt, dass sie sowohl im.schmelzflüssigen Elektro¬ lyten als auch in geschmolzenem Aluminium eingesetzt werden können, obwohl sie in letzterem begrenzt löslich sind. Diese Löslichkeit fällt jedoch bei sinkender Temperatur steil ab.OMP v The chemical and thermal resistance of the aluminides allows them to be used both in the . molten electrolytes as well as in molten aluminum can be used, although they are of limited solubility in the latter. However, this solubility drops sharply as the temperature drops.
Bei Arbeitstemperatur der Aluminiumelektrolysezelle, welche im Bereich von 900 bis 1000°C liegt, beträgt die Löslichkeit einer metallischen Nicht-Aluminiumko ponente des Aluminids im flüssigen Aluminium ungefähr 1 %. Die Kathodenelemente werden also ablegiert, bis das. abgeschiedene flüssige Aluminium mit einer oder mehreren der im Aluminid befindlichen Uebergangs- metalle gesättigt ist. t Elemente der-. Die^während des Elektrolyseprozesses ablegierten Aluminide werden aus dem abgeschiedenen Metall zurückgewonnen, indem dieses auf ungefähr 700°C abgekühlt wird. Das auskristalli¬ sierende Aluminid kann mit bekannten Mitteln aus dem flüs¬ sigen Metall entfernt und wieder zur Herstellung von Katho¬ denelementen eingesetzt werden. Damit entsteht ein Material¬ kreislauf mit verhältnismässig geringen Verlusten.At the working temperature of the aluminum electrolysis cell, which is in the range of 900 to 1000 ° C, the solubility of a metallic non-aluminum component of the aluminide in the liquid aluminum is approximately 1%. The cathode elements are therefore alloyed until the liquid aluminum deposited is saturated with one or more of the transition metals in the aluminide. t elements of-. The aluminides which have been removed during the electrolysis process are recovered from the deposited metal by cooling it to approximately 700 ° C. The crystallizing aluminide can be removed from the liquid metal by known means and used again for the production of cathode elements. This creates a material cycle with relatively low losses.
Der Erfinder hat sich die Aufgabe gestellt, auf der Basis von Aluminiden arbeitende Festkörperkathoden mit einer Lebens¬ dauer, die einer oder mehreren Anodenstandzeiten entspricht, zu schaffen, wobei der Anschaffungspreis der Kathode und die Handhabungskosten wesentlich reduziert werden sollen.The inventor has set himself the task of creating solid-state cathodes working on the basis of aluminides with a service life which corresponds to one or more anode service lives, with the purchase price of the cathode and the handling costs being to be substantially reduced.
Die Aufgabe wird erfindungsgemäss dadurch gelöst, dass die Festkörperkathode im wesentlichen aus einem Tragkörper und einer mindestens im Bereich der Arbeitsoberfläche befind¬ lichen offenporig mi . an Uebergangsmetall/en gesättigtem Aluminium impräginierten Struktur, welche aus Aluminidvor- raten kontinuierlich speisbar ist, besteht.According to the invention, the object is achieved in that the solid-state cathode essentially consists of a support body and an open-pore one located at least in the region of the working surface. structure impregnated with transition metal / s saturated aluminum, which can be fed continuously from aluminide supplies.
OWPI Als Arbeitsfläche wird diejenige Fläche bezeichnet, welche bei in die Elektrolysezelle eingesetzter Kathode in Richtung zur Anode weist und vom elektrischen Gleichstrom.durchflössen wird. Auf dieser Arbeitsfläche werden die Aluminiumionen zu elementarem Aluminium reduziert. Die Arbeitsflächen der Katho¬ den sind deshalb zweckmässig leicht geneigt, damit das abge¬ schiedene Aluminium, welches auf der benetzbaren Kathode einen Film bildet, abfHessen kann.OWPI The working surface is the surface which, when the cathode is inserted in the electrolytic cell, points in the direction of the anode and the direct electrical current . will flow through. The aluminum ions are reduced to elemental aluminum on this work surface. The working surfaces of the cathodes are therefore expediently slightly inclined so that the deposited aluminum, which forms a film on the wettable cathode, can measure off.
Die Arbeitsflächen der korrespondierenden Anoden, welche z.B. aus brennbarem Kohlenstoff oder unbrennbarer Oxidkeramik be¬ stehen können, sind entsprechend geneigt. Auch hier wirkt sich diese Neigung vorteilhaft aus: der entstehende Sauer¬ stoff bzw. das CO2 kann besser aus dem schmelzflüssigen Elektrolyten entweichen.The working surfaces of the corresponding anodes, which e.g. can consist of combustible carbon or incombustible oxide ceramics are inclined accordingly. This tendency also has an advantageous effect here: the oxygen or CO2 which is formed can escape better from the molten electrolyte.
Die offenporige Struktur ist auf dem Tragkörper verankert oder Bestandteil davon. Falls dieser Tragkörper aus einem elektrisch nicht leitenden Material besteht, muss die offen¬ porige, mit an üebergangsmetall/en gesättigtem Aluminium im¬ prägnierte Struktur bei eingesetzter Festkδrperkathode bis mindestens zum flüssigen Metall reichen, damit der elektri¬ sche Strom durch diese Imprägnierlegierung und gegebenenfalls durch die Struktur fHessen kann. Der Tragkörper besteht des¬ halb vorzugsweise mindestens teilweise aus einem bei 900 bis 1000°C elektrisch gut leitenden und gegen den Schmelzfluss beständigen Material. In diesem Fall kann der Strom haupt¬ sächlich durch den Tragkörper fHessen. Abgesehen von der elektrischen Leitfähigkeit ist wesentlich, dass das Material des Tragkörpers billig und gut formbar ist. Aus diesen Grün¬ den ist Kohlenstoff für den Tragkörper besonders gut geeignet." The open-pore structure is anchored on the support body or part of it. If this support body consists of an electrically non-conductive material, the open-pore structure impregnated with aluminum saturated with transition metal / s must reach at least to the liquid metal when the solid cathode is inserted, so that the electrical current through this impregnation alloy and possibly through the structure can The support body therefore preferably consists at least partially of a material which is highly electrically conductive at 900 to 1000 ° C. and is resistant to the melt flow. In this case, the current can mainly flow through the support body. Apart from the electrical conductivity, it is essential that the material of the support body is cheap and easy to form. For these reasons, carbon is particularly well suited for the supporting body. "
Bei Manipulationen an der Traverse bzw. dem Anodenbalken und insbesondere beim Auswechseln der Anoden ist die Kathode stetsThe cathode is always in the case of manipulations on the traverse or the anode bar and in particular when changing the anodes
O PIO PI
* ° der Gefahr mechanischer Beschädigung ausgesetzt. Vorzugsweise sind deshalb die Festkörperkathoden als einzeln auswechsel¬ bare Elemente ausgebildet, welche auf dem Zellenboden stehen. Beschädigte Elemente können so rasch ausgewechselt werden. * ° exposed to the risk of mechanical damage. The solid-state cathodes are therefore preferably designed as individually replaceable elements which stand on the cell bottom. Damaged elements can be quickly replaced.
Die Beschädigungsgefahr kann wesentlich herabgesetzt werden, wenn die Festkörperkathoden als im Schmelzfluss schwimmende Elemente mit seitlichen Zwischenräumen ausgebildet sind. Bei einer Temperatur von 900 bis 1000°C hat der schmelzflüssige Elektrolyt eine Dichte von 2,1 g/cm.3, das flüssige Aluminium eine solche von 2,3 g/cm^. Die Dichte einer schwimmenden Kathode muss zwischen diesen beiden Werten liegen.The risk of damage can be significantly reduced if the solid-state cathodes are designed as elements which float in the melt flow and have lateral spaces. At a temperature of 900 to 1000 ° C the molten electrolyte has a density of 2.1 g / cm.3, the liquid aluminum has a density of 2.3 g / cm ^. The density of a floating cathode must be between these two values.
Wenn die Dichte des eingesetzten Kathodenmaterials zu gering ist, können entsprechende Eisenstücke eingesetzt werden, die jedoch gleichmässig verteilt und vom Kathodenmaterial voll- ständig umhüllt sein müssen. Das Gewicht der einzusetzenden Eisenstücke wird so berechnet, dass die scheinbare Dichte-der gesamten Festkörperkathode zwischen 2,1 und 2,3 g/cm3 liegt.If the density of the cathode material used is too low, appropriate pieces of iron can be used, but these must be evenly distributed and completely encased by the cathode material. The weight of the pieces of iron to be used is calculated so that the apparent density of the entire solid cathode is between 2.1 and 2.3 g / cm 3 .
Wenn die Dichte des eingesetzten Kathodenmaterials dagegen zu gross ist, werden im Kathodenmaterial entsprechend geschlόs- sene Hohlräume ausgebildet.If, on the other hand, the density of the cathode material used is too high, correspondingly closed cavities are formed in the cathode material.
Festkörperkathoden mit der richtigen Dichte schwimmen wie Flosse im flüssigen Aluminium, sie werden vorzugsweise von entsprechend ausgebildeten Distanzhaltern im gewünschten Ab¬ stand voneinander und vom Zellenbord gehalten.Solid cathodes with the correct density float like fins in the liquid aluminum; they are preferably held at the desired distance from one another and from the cell shelf by appropriately designed spacers.
Wird bei schwimmenden Kathoden durch eine Fehlmanipulation die Anode gegen die Festkörperkathode gedrückt, so kann diese ausweichen und erleidet keinerlei Beschädigung.If the anode is pressed against the solid-state cathode due to incorrect manipulation in the case of floating cathodes, this can deflect and suffer no damage.
Die offenporige Struktur muss für das an Uebergangsmetall/en gesättigte Aluminium einerseits genügend durchlässig sein, darf es aber andererseits nicht widerstandlos ausfliessen lassen. Je nach dem Material der offenporigen Struktur bzw. deren Be¬ schichtung muss hier unter Berücksichtigung von Kapillar- und Oberflächenkräften die optimale Lösung gesucht werden.The open-pore structure on the one hand must be sufficiently permeable to the aluminum saturated with transition metal / s, but on the other hand it must not allow it to flow out without resistance. Depending on the material of the open-pore structure or its coating, the optimal solution must be sought, taking capillary and surface forces into account.
Diese Anforderungen können durch zusammengesinterte feinkör- nige Granalien oder vorzugsweise durch eine Faserstruktur er¬ füllt werden. Zweckmässig ist diese FaserStruktur in Form eines Filzes oder eines Gewebes ausgebildet. Die Fasern sind einige Mikrometer dick und bestehen vorzugsweise aus Kohlen¬ stoff.These requirements can be met by sintered fine-grained granules or preferably by a fiber structure. This fiber structure is expediently designed in the form of a felt or a fabric. The fibers are a few micrometers thick and preferably consist of carbon.
Die kontinuierliche Speisung der offenporigen, mit an üeber- • gangsmetall/en gesättigtem Aluminium impräginierten Struktur erfolgt, je nach geometrischer Form der Festkörperkathode und der chemischen Zusammensetzung des verwendeten Aluminids, aus im Trag-körper angeordneten Hohlräumen, in welche die offen- porige Struktur hineinragt, oder von einer anderen Stelle auf der offenporigen Struktur an welcher festes Aluminid gehal¬ tert werden kann.Depending on the geometrical shape of the solid cathode and the chemical composition of the aluminide used, the open-pore structure, which is impregnated with transition metal / saturated aluminum, is supplied continuously from cavities arranged in the supporting body, into which the open-pore structure protrudes , or from another location on the open-pore structure at which solid aluminide can be held.
Aus wirtschaftlichen Gründen und wegen der wissenschaftlich guten Erforschung werden vorzugsweise Titanalu inide einge- setzt. Je nach dem prozentualen Titangehalt haben diese Aluminide bei der Elektrolysetemperatur im Bereich von 900 bis 1000°C verschiedene Aggregatzustände:For economic reasons and because of the scientifically good research, titanium alu inides are preferably used. Depending on the percentage of titanium, these aluminides have different physical states at the electrolysis temperature in the range of 900 to 1000 ° C:
- Aluminide mit weniger als 37,2 Gew.-% Titan sind bei Elektrolysetemperatur zähflüssig bis teigig. Diese können also nicht als feste Formkörper, sondern nur als Schüttkathode in Hohlräumen des Tragkörpers ein¬ gesetzt werden.- Aluminides with less than 37.2 wt .-% titanium are viscous to pasty at electrolysis temperature. These can therefore not be used as solid shaped bodies, but rather only as bulk cathodes in cavities of the supporting body.
- Aluminide mit einem Titangegalt oberhalb 37,2 (bis 63) Gew.-% Titan dagegen können auch als feste Form- körper mit der offenporigen Struktur in Verbindung ge¬ bracht werden. Das während des Elektrolyseprozesses erzeugte Aluminium fliesst entlang der schräg angeordneten offenporigen Struktur mischt sich dabei mit dem imprägnierenden, an Uebergangsme- tall/en gesättigten Aluminium und würde in diesem allmählich den Uebergangsmetallgehalt derart weit herabsetzen, dass die offenporige Struktur angegriffen und allmählich aufgelöst würde. Dies wird jedoch verhindert, indem die offenporige Struktur kontinuierlich aus Aluminidvorräten speisbar ist. Das dem gesättigten Aluminium entzogene üebergangsmetall wird laufend durch neues ersetzt, sodass die offenporige Struktur dauernd mit an üebergangsmetall/en gesättigtem Aluminium im¬ prägniert bleibt.- On the other hand, aluminides with a titanium content above 37.2 (up to 63)% by weight of titanium can also be associated as solid moldings with the open-pore structure. The aluminum produced during the electrolysis process flows along the diagonally arranged open-pore structure and mixes with the impregnating aluminum saturated with transition metal / s and in this would gradually reduce the transition metal content to such an extent that the open-pore structure would be attacked and gradually dissolved. This is prevented, however, by the open-pore structure being able to be fed continuously from aluminide stocks. The transition metal extracted from the saturated aluminum is continuously replaced by new one, so that the open-pore structure remains impregnated with aluminum saturated with transition metal / s.
Beim bevorzugt eingesetzten Titanaluminid wird die offenpo¬ rige Struktur, insbesondere ein 1 - 5 mm dicker Filz aus Kohlenstoffasern, mit einer dünnen, gut haftenden Schicht aus Titankarbid oder Titandiborid beschichtet. Die bevorzugt - weniger als 0,4 um dicken Schichten werden beispielsweise durch CVD (Chemical Vapor Deposition) hergestellt. Wenn das den Filz imprägnierende Aluminium dauernd mit Titan ge- sättigt ist, wird die benetzbare Beschichtung nicht aufge¬ löst, wodurch die Lebensdauer des Filzes vervielfacht werden kann.In the case of the preferably used titanium aluminide, the open-pore structure, in particular a 1-5 mm thick felt made of carbon fibers, is coated with a thin, well-adhering layer of titanium carbide or titanium diboride. The layers, which are preferably less than 0.4 μm thick, are produced, for example, by CVD (Chemical Vapor Deposition). If the aluminum impregnating the felt is permanently saturated with titanium, the wettable coating is not dissolved, as a result of which the life of the felt can be multiplied.
Ein aus beschichteten Kohlefasern bestehender Filz weist wei¬ ter den Vorteil auf, dass bei fehlerhafter Beschichtung nicht die ganze Arbeitsoberfläche unbrauchbar wird, sondern nur einzelne Fasern vorzeitig aufgelöst werden.A felt consisting of coated carbon fibers has the further advantage that if the coating is defective, the entire work surface does not become unusable, but only individual fibers are dissolved prematurely.
Der wesentliche Vorteil der Erfindung besteht also darin, dass mit einfachen Mitteln teure keramische Formkörper durch Tragkörper aus einem billigen, gut formbaren Material mit einer offenporigen, mit an Uebergangsmetall/en gesättigtem Aluminium imprägnierten Oberflächenstruktur ersetzt werden können.The main advantage of the invention is thus that simple ceramic means can be used to replace expensive ceramic moldings by supporting bodies made of a cheap, easily moldable material with an open-pore surface structure impregnated with aluminum saturated with transition metal / s.
__ OMPI Die erfindungsgemässen Festkörperkathoden sind insbesondere auch für das Umrüsten von bestehenden Alu iniumschmelzfluss- elektrolysezellen geeignet.__ OMPI The solid-state cathodes according to the invention are also particularly suitable for converting existing aluminum melt flow electrolysis cells.
Die Erfindung wird anhand der in der Zeichnung dargestellten Ausführungsbeispiele näher erläutert. Die schematischen teil¬ weisen Vertikalschnitte aus Elektrolysezellen zeigen inThe invention is explained in more detail using the exemplary embodiments shown in the drawing. The schematic partial vertical sections from electrolysis cells show in
- Fig. 1 eine Festkörperkathode mit leitendem Tragkörper und entsprechend ausgebildeter Anode,1 shows a solid-state cathode with a conductive support body and a correspondingly designed anode,
- Fig. 2 eine Festkörperkathode mit einem Tragkörper aus elektrisch isolierendem Material und ent¬ sprechend ausgebildeter Anode2 shows a solid-state cathode with a support body made of electrically insulating material and anode designed accordingly
- Fig. 3 im schmelzflüssigen Aluminium schwimmende Fest¬ körperkathoden aus elektrisch leitfähigem Mate¬ rial und-'entsprechend ausgebildeter Anode, und- Fig. 3 is floating in the molten aluminum cathode Fest¬ body of electrically conductive Mate¬ rial and- 'correspondingly shaped anode, and
- Fig. 4 alternativ angeordnete Festkörperkathoden aus elektrisch leitfähigem Material und entspre¬ chend ausgebildete Anoden.4 alternatively arranged solid-state cathodes made of electrically conductive material and correspondingly designed anodes.
Nach der in Fig. 1 dargestellten Ausführungsform bilden paar¬ weise angeordnete Festkörperkathoden 10 und Anodenblδcke 12 clie Elektrodeneinheiten der Elektrolysezelle. Die Festkörper- kathode 10 besteht aus einem geformten Tragkδrper 14 aus Koh¬ lenstoff und einem auf der dem Anodenkδrper 12 zugewandten Arbeitsfläche befestigten Filz 16 aus mit Titankarbid be¬ schichteten Kohlenstoffasern. Lappen dieses etwa 4 mm dicken Filzes 16 reichen in einen Hohlraum 18 im Tragkörper 14, welcher mit einem bei Elektrolysetemperatur teigigen Titan-, aluminid 19, das aus beispielsweise 80 Gew.-% Aluminium und 20 Gew.-% Titan besteht, gefüllt ist.According to the embodiment shown in FIG. 1, solid cathodes 10 and anode blocks 12 arranged in pairs form the electrode units of the electrolytic cell. The solid cathode 10 consists of a shaped support body 14 made of carbon and a felt 16 attached to the work surface facing the anode body 12 made of carbon fibers coated with titanium carbide. Rags of this approximately 4 mm thick felt 16 extend into a cavity 18 in the carrier body 14, which is filled with a titanium, aluminide 19 dough at electrolysis temperature, which consists, for example, of 80% by weight aluminum and 20% by weight titanium.
Die Füsse 20 des Tragkörpers 14 stehen in entsprechend ge- OMPI formten Ausnehmungen des Kohlenstoffbodens 22 der Elektro¬ lysezelle. Die Dichte der Festkörperkathode 10 muss also grösser als diejenige des flüssigen Aluminiums 24 sein.The feet 20 of the support body 14 are in a correspondingly OMPI formed recesses in the carbon base 22 of the electrolytic cell. The density of the solid-state cathode 10 must therefore be greater than that of the liquid aluminum 24.
Während des Elektrolyseprozesses wird auf dem mit an Titan gesättigten Aluminium imprägnierten Filz 16, welches System die Kathode bildet, Aluminium abgeschieden. Das abgeschiedene Aluminium mischt sich mit dem an Titan gesättigten Aluminium im Filz und fliesst, entsprechend der Neigung der Arbeits¬ fläche der Festkörperkathode, zur Mitte des Elektrodenele- mentes. Der Filz 16-wirkt wie ein Docht im Oel, aus dem Hohl¬ raum 18 mit dem teigigen Titanaluminid wird flüssige Le¬ gierung nachgezogen und so die laufenden Verluste ersetzt. Ohne diesen Ersatz des verbrauchten Titans würde das abge¬ schiedene Aluminium die Titankarbidbeschichtung auf den Kohlenstoffasern auflösen und die Kathodenoberfläche unbe¬ netzbar machen.During the electrolysis process, aluminum is deposited on the felt 16 impregnated with aluminum saturated with titanium, which system forms the cathode. The deposited aluminum mixes with the aluminum saturated with titanium in the felt and flows according to the inclination of the working surface of the solid-state cathode to the center of the electrode element. The felt 16 acts like a wick in the oil, liquid alloy is drawn from the cavity 18 with the pasty titanium aluminide and thus the current losses are replaced. Without this replacement of the used titanium, the deposited aluminum would dissolve the titanium carbide coating on the carbon fibers and render the cathode surface non-wettable.
Durch die verhältnismässig kleine Oeffnung des Hohlraumes 18 kann nur wenig des zirkulierenden schmelzflüssigen Elektro¬ lyten 26 eintreten, die Speisung mittels Konvektion ist also klein.Due to the relatively small opening of the cavity 18, only a small amount of the circulating molten electrolyte 26 can occur, so the supply by means of convection is small.
In Fig. 2 bilden eine Festkörperkathode 10 und ein Anoden¬ block 12 ein Elektrodenpaar. Der Tragkörper 14 besteht aus einem isolierenden Material, beispielsweise aus hochgesinter¬ tem Aluminiumoxid, aluminiumoxidhaltigen Keramiken, Silizium- karbid oder, siliziumnitridgebundenem Siliziumkarbid. Damit der Abfluss des elektrischen Gleichstromes gewährleistet ist, reicht der Filz 16 entlang möglichst aller Seitenflächen des Tragkörpers 14 stets bis in das flüssige Aluminium 24 hinein. '" Der Hohlraum 18 ist trogförmig, mit verhältnismässig grosser Oeffnung, ausgebildet und mit festen Titanaluminidgranalien gefüllt, welche beispielsweise aus 55 Gew.-% Aluminium und 45 Gew.-% Titan bestehen. Der Filz 16 reicht dagegen nicht in den Hohlraum 18 hinunter; die Sättigung des den Filz 16 imprägnierenden Aluminiums mit Titan erfolgt durch die Konvektion des schmelzflüssigen Elektrolyten 26.2, a solid-state cathode 10 and an anode block 12 form a pair of electrodes. The supporting body 14 consists of an insulating material, for example of hochgesinter¬ tem alumina, alumina-containing ceramics, silicon carbide or silicon carbide siliziumnitridgebundenem. In order to ensure that the electrical direct current flows away, the felt 16 always extends along as far as possible all side surfaces of the support body 14 into the liquid aluminum 24. '' The cavity 18 is trough-shaped, with relatively large opening is formed and filled with solid Titanaluminidgranalien, which for example consist of 55 wt .-% aluminum and 45 wt .-% titanium. In contrast, the felt 16 does not reach down into the cavity 18; The aluminum impregnating the felt 16 with titanium is saturated by the convection of the molten electrolyte 26.
Das abgeschiedene Aluminium fliesst durch eine Oeffnung 28 im Tragkörper 14 ab.The deposited aluminum flows through an opening 28 in the support body 14.
Die in Fig. 3 dargestellten schwimmenden Festkörperkathoden 10 füllen, an die Anodenkörper 12 angepasst, die gesamte Elektrolysewanne, indem ihre umlaufend ausgebildeten Distanz- halter 32 satt aneinander liegen. Die scheinbare Dichte der gesamten Festkörperkathode muss, bei Arbeitstemperatur, zwi¬ schen der Dichte des schmelzflüssigen Elektrolyten und des geschmolzenen Aluminiums liegen. Dies wird bei Tragkörpern 14 aus Kohlenstoff durch die Einlage von Eisenstücken 30 in geschlossene Hohlräume, beispielsweise in Form eines Ringes, erreicht.The floating solid-state cathodes 10 shown in FIG. 3, adapted to the anode bodies 12, fill the entire electrolysis tank by their spacers 32, which are formed all around, lie snugly against one another. The apparent density of the entire solid cathode, at working temperature, must lie between the density of the molten electrolyte and the molten aluminum. In the case of support bodies 14 made of carbon, this is achieved by inserting iron pieces 30 into closed cavities, for example in the form of a ring.
In Fig. 4 sind an einem kathodischen Aufhängesystem 36 be¬ festigte Festkörperkathoden 10 und an einem anodischen Auf¬ hängesystem 38 befestigte Anodenkörper 12 alternativ ange- ordnet. Die Speisung des Filzes 16 erfolgt durch über die Tragstangen der Tragkörper 14 gestülpte Manschetten 34, wel¬ che aus einem festen Aluminid bestehen.4, solid cathodes 10 attached to a cathodic suspension system 36 and anode bodies 12 attached to an anodic suspension system 38 are alternatively arranged. The felt 16 is fed by sleeves 34 which are placed over the support rods of the support bodies 14 and which consist of a solid aluminide.
Falls die Anodenkörper 12 aus Kohlenstoff bestehen, also ab¬ brennen, können Kathoden und Anoden in Pfeilrichtung nach rechts verschoben werden. Ein an sich bekannter Mechanismus sorgt dafür, dass nach jedem Verschieben überall die gleichen Interpolardistanzen zwischen Anode und Kathode bestehen.If the anode bodies 12 consist of carbon, ie burn them off, the cathodes and anodes can be shifted to the right in the direction of the arrow. A mechanism known per se ensures that the same interpolar distances exist between the anode and cathode after each shift.
Deshalb müssen die links angeordneten Anoden 12 bzw. Katho¬ den 14 mehr verschoben werden als die rechts angeordneten.Therefore, the anodes 12 and cathodes 14 arranged on the left have to be displaced more than those arranged on the right.
OMPI Abgebrannte Anoden werden, zusammen mit der Kathode, rechts entnommen. Auf der linken Seite ist nun ein genügend grosser Zwischenraum entstanden, sodass die Kathode, zusammen mit einer neuen Anode, wieder eingesetzt werden kann. OMPI Burned-off anodes are removed together with the cathode on the right. A sufficiently large space has now been created on the left-hand side so that the cathode can be reinserted together with a new anode.

Claims

-12-Patentansprüche -12 claims
1. Benetzbare, in einer Schmelzflusselektrolysezelle zur Herstellung von Aluminium einsetzbare Festkörperkathode mit einem Aluminid von wenigstens einem üebergangsmetall der Gruppen IV A, VA und VI A des periodischen Systems der Elemente, dadurch gekennzeichnet, dass die Festkörperkathode (10) im wesentlichen aus einem Tragkörper (14) und einer mindestens im Bereich der Ar¬ beitsfläche befindlichen offenporigen, mit an üeber- gangsmetall/en gesättigtem Aluminium imprägnierten Struktur (16), welche aus Aluminidvorräten (19,34) kontinuierlich speisbar ist, besteht.1. wettable solid-state cathode that can be used in a melt-flow electrolysis cell for the production of aluminum with an aluminide of at least one transition metal from groups IV A, VA and VI A of the periodic system of the elements, characterized in that the solid-state cathode (10) consists essentially of a supporting body ( 14) and an open-pored structure (16) located at least in the area of the work surface and impregnated with aluminum saturated with transition metal / s, which structure can be fed continuously from aluminide stocks (19, 34).
2. Festkörperkathode nach Anspruch 1, dadurch gekennzeich¬ net, dass die Festkörperkathode (10) als auswechselbares Element ausgebildet ist.2. Solid-state cathode according to claim 1, characterized gekennzeich¬ net that the solid-state cathode (10) is designed as an exchangeable element.
3. Festkörperkathode- nach Anspruch 1 oder 2, dadurch gekenn¬ zeichnet, dass deren Tragkörper (14) mindestens teilwei¬ se aus bei 900 bis 1000°C elektrisch gut leitendem und gegen den Schmelzfluss beständigem Material, vorzugs¬ weise Kohlenstoff, besteht.3. Solid-state cathode according to claim 1 or 2, characterized gekenn¬ characterized in that the support body (14) at least partially from 900 to 1000 ° C electrically well conductive and resistant to the melt flow material, preferably carbon.
4. Festkörperkathode nach mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Tragkörper (14) wenigstens einen Hohlraum (18) zur Aufnahme des4. Solid cathode according to at least one of claims 1 to 3, characterized in that the support body (14) at least one cavity (18) for receiving the
Aluminids hat, in welchen die offenporige Struktur (16) vorzugsweise hineinragt.Has aluminide, in which the open-pore structure (16) preferably protrudes.
5. Festkörperkathode nach mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die offenporige Struktur (16) aus zusammengesinterten feinkörnigen Gra¬ nalien besteht.5. Solid cathode according to at least one of claims 1 to 4, characterized in that the open-pore structure (16) consists of sintered fine-grained Graalen.
OMPI OMPI
6. Festkörperkathode nach mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die offenporige Struktur (16) aus Fasern, vorzugsweise einem Filz oder Gewebe, besteht.6. Solid cathode according to at least one of claims 1 to 4, characterized in that the open-pore structure (16) consists of fibers, preferably a felt or fabric.
7. Festkörperkathode nach Anspruch 6, dadurch gekennzeich¬ net, dass die offenporige Struktur (16) aus einem vor¬ zugsweise 1 - 5 mm dicken Filz aus Kohlenstoffasern besteht.7. Solid cathode according to claim 6, characterized in that the open-pore structure (16) consists of a preferably 1-5 mm thick felt made of carbon fibers.
8. Festkörperkathode nach mindestens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass beim Einsatz von Titanaluminid die offenporige Struktur (.16) mit Titan¬ karbid oder Titandiborid, vorzugsweise 0,4 um dick, beschichtet ist.8. Solid cathode according to at least one of claims 1 to 7, characterized in that when titanium aluminide is used, the open-pore structure ( . 16) is coated with titanium carbide or titanium diboride, preferably 0.4 μm thick.
9. Festkörperkathode nach mindestens einem der Ansprüche 1 bis 8, dadurch 'gekennzeichnet, dass die Festkörper¬ kathode (10) bei 900 - 1000°C eine scheinbare Dichte hat, die zwischen .denjenigen des Elektrolyten und des flüssigen Aluminiums, vorzugsweise zwischen 2,1 bis 2,3 g/cm3, liegt, und mit Distanzhaltern (32) versehen ist.9. Solid cathode according to at least one of claims 1 to 8, characterized in ' that the solid cathode (10) at 900-1000 ° C has an apparent density between. Those of the electrolyte and the liquid aluminum, preferably between 2, 1 to 2.3 g / cm 3 , and is provided with spacers (32).
10. Festkörperkathode nach Anspruch 9, dadurch gekennzeich¬ net, dass zum Erreichen der richtigen scheinbaren Dichte vom Kathodenmaterial ummantelte regelmässig verteilte Eisenstücke (30) eingesetzt sind.10. Solid-state cathode according to claim 9, characterized in that regularly distributed iron pieces (30) sheathed by the cathode material are used to achieve the correct apparent density.
OMPI OMPI
EP82902974A 1981-10-23 1982-10-14 Cathode of a cell for the electrolysis of a melt, for the preparation of aluminium Expired EP0091914B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT82902974T ATE15079T1 (en) 1981-10-23 1982-10-14 CATHODE FOR A MOLTEN FLOW ELECTROLYSIS CELL FOR THE PRODUCTION OF ALUMINUM.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH6788/81 1981-10-23
CH6788/81A CH648870A5 (en) 1981-10-23 1981-10-23 CATHOD FOR A MELTFLOW ELECTROLYSIS CELL FOR PRODUCING ALUMINUM.

Publications (2)

Publication Number Publication Date
EP0091914A1 true EP0091914A1 (en) 1983-10-26
EP0091914B1 EP0091914B1 (en) 1985-08-21

Family

ID=4315036

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82902974A Expired EP0091914B1 (en) 1981-10-23 1982-10-14 Cathode of a cell for the electrolysis of a melt, for the preparation of aluminium

Country Status (8)

Country Link
US (1) US4462886A (en)
EP (1) EP0091914B1 (en)
CA (1) CA1209526A (en)
CH (1) CH648870A5 (en)
DE (1) DE3142686C1 (en)
IT (1) IT1152748B (en)
NO (1) NO832198L (en)
WO (1) WO1983001465A1 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2518124A1 (en) * 1981-12-11 1983-06-17 Pechiney Aluminium FLOATING CATHODIC ELEMENTS BASED ON ELECTROCONDUCTIVE REFRACTORY FOR THE PRODUCTION OF ALUMINUM BY ELECTROLYSIS
ATE24937T1 (en) * 1982-05-10 1987-01-15 Eltech Systems Corp SIZED DRAINABLE CATHODE FOR ALUMINUM PRODUCTION, PROCESS AND APPARATUS FOR THEIR PRODUCTION.
US4560448A (en) * 1982-05-10 1985-12-24 Eltech Systems Corporation Aluminum wettable materials for aluminum production
DE3375409D1 (en) * 1982-05-10 1988-02-25 Eltech Systems Corp Aluminum wettable materials
US4544457A (en) * 1982-05-10 1985-10-01 Eltech Systems Corporation Dimensionally stable drained aluminum electrowinning cathode method and apparatus
FR2529580B1 (en) * 1982-06-30 1986-03-21 Pechiney Aluminium ELECTROLYSIS TANK FOR THE PRODUCTION OF ALUMINUM, COMPRISING A FLOATING CONDUCTIVE SCREEN
CH651855A5 (en) * 1982-07-09 1985-10-15 Alusuisse SOLID CATHODE IN A MELTFLOW ELECTROLYSIS CELL.
US4596637A (en) * 1983-04-26 1986-06-24 Aluminum Company Of America Apparatus and method for electrolysis and float
US4622111A (en) * 1983-04-26 1986-11-11 Aluminum Company Of America Apparatus and method for electrolysis and inclined electrodes
US4664760A (en) * 1983-04-26 1987-05-12 Aluminum Company Of America Electrolytic cell and method of electrolysis using supported electrodes
BR9106774A (en) * 1990-08-20 1993-08-24 Comalco Alu EDGE-FREE ALUMINUM FOUNDATION CELL
DE4118304A1 (en) * 1991-06-04 1992-12-24 Vaw Ver Aluminium Werke Ag ELECTROLYSIS CELL FOR ALUMINUM EFFICIENCY
CA2108072A1 (en) * 1992-03-19 1995-04-09 Robert P. Coe Secure event tickets
AU688098B2 (en) * 1994-09-08 1998-03-05 Moltech Invent S.A. Aluminium electrowinning cell with improved carbon cathode blocks
US5472578A (en) * 1994-09-16 1995-12-05 Moltech Invent S.A. Aluminium production cell and assembly
US5498320A (en) * 1994-12-15 1996-03-12 Solv-Ex Corporation Method and apparatus for electrolytic reduction of fine-particle alumina with porous-cathode cells
ES2238318T3 (en) * 1999-10-26 2005-09-01 Moltech Invent S.A. CELL FOR ELECTROLYTIC EXTRACTION OF ALUMINUM WITH CATHEDE DRAINED WITH BETTER CIRCULATION OF ELECTROLYTE.
RU2283372C2 (en) * 2001-03-07 2006-09-10 Мольтех Инвент С.А. Cell for electrochemical production of aluminum with use of metal-base anodes
CN101698945B (en) * 2009-11-03 2011-07-27 中国铝业股份有限公司 Carbon-fiber reinforced cathode carbon block and preparation method thereof
CN102953083B (en) * 2011-08-25 2016-08-24 贵阳铝镁设计研究院有限公司 Aluminum electrolytic tank with inner cavity cathode structure

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE549859A (en) * 1955-07-28
US3459515A (en) * 1964-03-31 1969-08-05 Du Pont Cermets of aluminum with titanium carbide and titanium and zirconium borides
US3471380A (en) * 1966-10-25 1969-10-07 Reynolds Metals Co Method of treating cathode surfaces in alumina reduction cells
US3661736A (en) * 1969-05-07 1972-05-09 Olin Mathieson Refractory hard metal composite cathode aluminum reduction cell
US4224128A (en) * 1979-08-17 1980-09-23 Ppg Industries, Inc. Cathode assembly for electrolytic aluminum reduction cell
US4339316A (en) * 1980-09-22 1982-07-13 Aluminum Company Of America Intermediate layer for seating RHM tubes in cathode blocks

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO8301465A1 *

Also Published As

Publication number Publication date
DE3142686C1 (en) 1983-02-03
IT1152748B (en) 1987-01-07
WO1983001465A1 (en) 1983-04-28
IT8223834A0 (en) 1982-10-20
CA1209526A (en) 1986-08-12
EP0091914B1 (en) 1985-08-21
CH648870A5 (en) 1985-04-15
NO832198L (en) 1983-06-17
US4462886A (en) 1984-07-31

Similar Documents

Publication Publication Date Title
EP0091914B1 (en) Cathode of a cell for the electrolysis of a melt, for the preparation of aluminium
DE69111078T2 (en) ELECTRODE COMPILATION AND MULTIMONOPOLAR CELLS FOR ALUMINUM ELECTRICAL EXTRACTION.
DE69532052T2 (en) Horizontal cathode surface drained with recessed grooves for aluminum electrical extraction
DE2818971C2 (en) Device and method for the electrochemical production of alkali metal from an electrically dissociable salt thereof and the use thereof
DE69306775T2 (en) ANODE-CATHODE ARRANGEMENT FOR ALUMINUM PRODUCTION CELLS
EP0041045B1 (en) Cathode for molten-salt electrolysis cell
DD144796A5 (en) CATHODE FOR A MELT FLUID ELECTROLYSIS OVEN
DE2059866A1 (en) Process for the fused-salt electrolysis of aluminum oxide and anode to carry out the process
DE1251962B (en) Cathode for an electrolytic cell for the production of aluminum and process for the production of the same
DE60013886T2 (en) ELECTROLYSIS CELL OPERATING AT LOW TEMPERATURE FOR THE PREPARATION OF ALUMINUM
CH643885A5 (en) ELECTRODE ARRANGEMENT OF A MELTFLOW ELECTROLYSIS CELL FOR PRODUCING ALUMINUM.
DE2446668B2 (en) METHOD OF MELT FLOW ELECTROLYSIS, IN PARTICULAR OF ALUMINUM OXIDE, AND ANODE FOR CARRYING OUT THE METHOD
DE2910811C2 (en) Power supply device for electrodes
DE810275C (en) Improvements to and related to electrolytic cells
DE3405762C2 (en) Cell for refining aluminum
DE3880940T2 (en)
DE60202536T2 (en) ALUMINUM ELECTRICITY CELLS WITH TILTED CATHODES
DE1092215B (en) Cathode and cell for the production of aluminum from aluminum oxide by fused-salt electrolysis
DE69837966T2 (en) CELL FOR ALUMINUM MANUFACTURE WITH DRAINABLE CATHODE
DE60003683T2 (en) ALUMINUM ELECTRIC RECOVERY CELL WITH V-SHAPED CATHODE BOTTOM
DE1174516B (en) Furnace and process for the production of aluminum by fused salt electrolysis
DE60019782T2 (en) ALUMINUM ELECTROCOPY CELL WITH DRAINED CATHODE AND IMPROVED ELECTROLYTIC TURNING
EP0065534B1 (en) Cathode for a melted electrolyte cell for the preparation of aluminum
DE1092216B (en) Current-carrying elements and their use in electrolytic cells for the extraction or refining of aluminum
DE2107675C3 (en) Method and device for regulating the Al deep 2 0 deep 3 concentration in the fluoride electrolyte in aluminum electrolysis

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19830618

AK Designated contracting states

Designated state(s): AT CH FR GB LI NL SE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT CH FR GB LI NL SE

REF Corresponds to:

Ref document number: 15079

Country of ref document: AT

Date of ref document: 19850915

Kind code of ref document: T

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19850917

Year of fee payment: 4

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19851031

Year of fee payment: 4

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19861014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19861015

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19870501

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19870630

GBPC Gb: european patent ceased through non-payment of renewal fee
REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19871031

Ref country code: CH

Effective date: 19871031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881122

EUG Se: european patent has lapsed

Ref document number: 82902974.3

Effective date: 19870812