[go: up one dir, main page]

EP0075228A2 - Wärmedämmende, hochtemperatur- und thermoschockbeständige Beschichtung auf Keramikbasis - Google Patents

Wärmedämmende, hochtemperatur- und thermoschockbeständige Beschichtung auf Keramikbasis Download PDF

Info

Publication number
EP0075228A2
EP0075228A2 EP82108405A EP82108405A EP0075228A2 EP 0075228 A2 EP0075228 A2 EP 0075228A2 EP 82108405 A EP82108405 A EP 82108405A EP 82108405 A EP82108405 A EP 82108405A EP 0075228 A2 EP0075228 A2 EP 0075228A2
Authority
EP
European Patent Office
Prior art keywords
layers
layer
coating according
metal
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP82108405A
Other languages
English (en)
French (fr)
Other versions
EP0075228A3 (de
Inventor
Eva Dr. Poeschel
Guido Weibel
Wolfgang Schwämmlein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Battelle Institut eV
Original Assignee
Battelle Institut eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Battelle Institut eV filed Critical Battelle Institut eV
Publication of EP0075228A2 publication Critical patent/EP0075228A2/de
Publication of EP0075228A3 publication Critical patent/EP0075228A3/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F7/00Casings, e.g. crankcases or frames
    • F02F7/0085Materials for constructing engines or their parts
    • F02F7/0087Ceramic materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B77/00Component parts, details or accessories, not otherwise provided for
    • F02B77/11Thermal or acoustic insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/02Light metals
    • F05C2201/021Aluminium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12611Oxide-containing component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24967Absolute thicknesses specified

Definitions

  • the invention relates to heat-insulating, high-temperature and thermal shock-resistant coating based on flame or plasma-sprayed ceramic materials.
  • High-temperature resistant coatings based on zirconium dioxide and / or zirconium silicate and nickel-aluminum or nickel-chromium alloys are known.
  • the concentration of the metal component is gradually changed from layer to layer in such a way that the concentration of metal is the lowest on the side facing the heat source.
  • the main disadvantage of such coatings is that their thickness is limited, since the individual layers of oxidic or silicate nature can only be sprayed up to certain layer thicknesses.
  • the thermal shock resistance of these coatings is limited and decreases with increasing layer. As a result, they are limited in their heat-insulating effect, which depends on the thickness.
  • the present invention is therefore based on the object of providing a largely heat-insulating, high-temperature and thermal shock-resistant coating of metallic substrates.
  • Claim 12 relates to the use of the coating according to the invention in combustion chambers of drive units with a reducing or oxidizing atmosphere.
  • the functional, heat-insulating coating does not consist of a monolithic individual layer, the thickness of which is limited to approximately 1-2 mm and over Different adhesion promoter layers must be permanently bonded to the base material, but consist of alternating layers of ceramic and cermet and / or ceramic and metal and / or cermet and metal. With this structure, larger layer thicknesses and thus better thermal insulation can be achieved. Despite the metal content in the invention. Moderate laminate - especially in the case of a structure made of very thin laminate layers - is the thermal insulation at higher temperatures of the same order of magnitude as that of the monolithic ceramic coatings according to the prior art. The mechanical resilience, e.g. on impact, as well as the thermal shock resistance are significantly improved compared to the ceramic coatings.
  • Zirconium dioxide stabilized with magnesium oxide, calcium oxide or yttrium oxide is preferably used in the coating according to the invention.
  • the decisive factor in the choice of the stabilizing oxide additive is the thermal load that occurs later in use.
  • yttrium oxide-stabilized zirconium dioxide can be used.
  • calcium oxide or magnesium oxide is sufficient.
  • zirconium oxide layers zirconium silicate layers or layers consisting of mixtures of zirconium dioxide and silicate can also be used.
  • the porosity of the ceramic layers is approximately 3-15% by volume.
  • the cermet layers consist e.g. made from stabilized zirconium dioxide and / or zirconium silicate and from a metal component.
  • Nickel-aluminum or nickel-chromium-aluminum alloys are preferably used as metals.
  • the metal layers also present in the laminate preferably consist of the same alloys that are also present in the cermet layers.
  • Coatings of high resilience and resistance to thermal shock are obtained by means of layers of the layer sequences according to the invention which are as thin as possible.
  • the total thickness of the laminate is preferably between 0.2 and 10 mm, the individual layers having a thickness between 5 and 1000 ⁇ m, preferably 50 to 200 ⁇ m.
  • the minimum achievable layer thickness is specified by the grain size of the powder used and is approximately in the range of 5 ⁇ m.
  • the individual layers can have the same or different thicknesses.
  • the repeating metal and cermet layers can have equal thicknesses, while the thickness of the repeating ceramic layers gradually increases towards the top layer.
  • the ceramic layers can have the same layer thickness, while the thickness of the metal and cermet layers gradually decreases towards the cover layer. It is also possible to provide ceramic layers which gradually become thicker towards the top layer with metal layers or cermet layers gradually thinning towards the top layer. A further modification can be achieved by continuously reducing the metal content in the cermetic layers towards the cover layer.
  • the side of the coating facing the heat source is preferably provided with a ceramic, corrosion- or wear-resistant layer.
  • known layer systems consist of a metallic substrate 1, a metallic adhesive layer 2, usually several cermetic intermediate layers 3 and a ceramic cover layer 4.
  • the coefficients of thermal expansion of substrate 1 and ceramic cover layer 4 generally have considerable differences. To compensate for this, as many cermetic intermediate layers 3 as possible are provided between substrate 1 and cover layer 4. However, the overall layer thickness is limited in such an arrangement. In known systems, such total layer thicknesses of about 2 mm are achieved. If one goes beyond this thickness, the thermal shock resistance, which must be present, decreases considerably.
  • the coating according to the invention results from FIG. 2.
  • the layer structure according to the invention gives coatings which can withstand high thermal loads, are resistant to thermal shock and are heat-insulating. The resistance to thermal shock increases with decreasing thickness of the individual layers of the layer sequence or the laminate.
  • the layers provided according to FIG. 2 are applied by means of flame or plasma spraying known per se, cf. H.S. Ingham and A.P. Shopärd, Metco Flame Spray Handbook, Volume III, Plasma Flame Process, Metco Ltd., Chobham, Woking, England 1965. Flame or plasma spraying also offers the possibility of using the coating according to the invention in relatively complex components, for example non-planar surfaces, depressions having piston heads, tube walls or the like
  • layers 5 and 6 can also consist of cermet and metal.
  • the layer sequence between cover layer 4 and adhesive layer 2 can consist of a four-layer or six-layer sequence of ceramic cermet, and / or ceramic metal and / or cermet metal.
  • Example 1 metal / cermet laminate structure
  • a cylindrical core shape made of aluminum was heated, sodium chloride solution was sprayed on and further heated to 300 ° C.
  • the thermal barrier coatings according to Table 1 were then applied using the plasma gun. Nickel was applied as the outermost layer, which made it possible to solder the pipe segment into the intended tubular component.
  • Pipe No. 1 was made up of five layer sequences, tube No. 2 from 11 and tube No. 3 from 20 layer sequences.
  • the tubes had a 50 ⁇ m thick nickel layer on the outside.
  • pipe no. 1 and no. 2 did not withstand the thermal stresses when cooling after the soldering. Satisfactory results were achieved with the third pipe section, with a total wall thickness of 1.2 mm.
  • Example 2 (ceramic / cermet - laminate structure):
  • Piston plate No. 1 had six layer sequences, piston plate No. 2, 12 layer sequences and piston plate No. 3 finally 24 layer sequences.
  • the last layer in each case had a layer thickness of 200 ⁇ m in deviation from Table 2. All three piston crowns were subjected to a test run of 10 hours in a diesel engine (1 cylinder test engine MWM KD 12E) without the coating being damaged.
  • Example 3/4 metal / ceramic and ceramic / cermet / ceramic / metal laminate structure
  • the layer sequence given in Table 3 was sprayed onto one inlet and one outlet valve (diameter 50 mm). Since both thermal and mechanical loads act on valves, additional metallic layers were installed in the layer sequence to further improve the impact resistance. This structure is shown in Table 4. The valves were also subjected to a test run of 100 h in the test engine described, without the coatings being damaged.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Acoustics & Sound (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Laminated Bodies (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

Wärmedämmende, hochtemperatur- und thermoschockbeständige Beschichtung auf der Basis von flamm- oder plasmagespritzten keramischen Materialien, weisen mehrere Schichtfolgen im wesentlichen gleicher Materialien auf. In jeder Schichtfolge wird mindestens je eine Schicht aus Keramik und Cermet und/oder Keramik und Metall und/oder Cermet und Metall vorgesehen.

Description

  • Die Erfindung betrifft wärmedämmende, hochtemperatur- und thermoschockbeständige Beschichtung auf der Basis von flamm-oder plasmagespritzten keramischen Materialien.
  • Hochtemperaturbeständige Überzüge auf der Basis von Zirkoniumdioxid und/oder Zirkoniumsilikat und Nickel-Aluminium- oder Nickel-Chrom-Legierungen sind bekannt. Bei der Herstellung solcher Beschichtungen wird die Konzentration der.Metallkomponente von Schicht zu Schicht allmählich derart geändert, daß die Konzentration an Metall an der der Wärmequelle zugewandten Seite am geringsten ist. Der wesentliche Nachteil solcher Uberzüge besteht darin, daß sie in ihrer Dicke begrenzt sind, da die einzelnen Schichten oxidischer oder silikatischer Natur nur bis zu bestimmten Schichtdicken spritzbar sind. Außerdem ist die Thermoschockbeständigkeit dieser Überzüge begrenzt und nimmt mit zunehmender Schicht ab. Dadurch sind sie in ihrer wärmedämmenden Wirkung, die dickeabhängig ist, limitiert. Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, eine weitgehend wärmedämmende, hochtemperatur- und thermoschockbeständige Beschichtung von metallischen Substrater zu schaffen.
  • Diese Aufgabe ist gemäß der Erfindung dadurch gelöst, daß sie mehrere Schichtfolgen im wesentlichen gleicher Materialien aufweist und daß in jeder Schichtfolge mindestens je eine Schicht aus Keramik und Cermet und/oder Keramik und Metall und/oder Cermet und Metall vorhanden ist. Vorteilhafte Ausführungsformen sind in den Unteransprüchen beschrieben. Der Anspruch 12 betrifft die Verwendung der erfindugsgemäßen Beschichtung in Brennräumen von Antriebsaggregaten mit reduzierender oder oxidierender Atmosphäre.
  • Ein wesentliches Merkmal der erfindungsgemäßen, flamm- oder plasmagespritzten Beschichtung ist darin zu sehen, daß abweichend vom Stand der Technik, die funktionelle, wärmedämmende Beschichtung nicht aus einer monolithischen Einzelschicht besteht, die in ihrer Dicke auf ca. 1-2 mm begrenzt ist und über verschiedene Haftungsvermittlerschichten dauerhaft mit dem Grundwerkstoff verbunden sein muß, sondern laminatartig aus alternierenden Schichten aus Keramik und Cermet und/oder Keramik und Metall und/oder Cermet und Metall besteht. Mit diesem Aufbau lassen sich größere Schichtdicken und somit eine bessere Wärmedämmung realisieren. Trotz des Metallanteils im erfindungsge- . mäßen Laminat ist -insbesondere bei einem Aufbau aus sehr dünnen Laminatschichten- die Wärmedämmung bei höheren Temperaturen von der gleichen Größenordnung wie bei den monolithischen Keramikbeschichtungen nach dem Stand der Technik. Die mechanische Belastbarkeit, z.B. auf Stoß, sowie die Thermoschockbeständigkeit sind gegenüber den Keramikbeschichtungen erheblich verbessert.
  • In der erfindungsgemäßen Beschichtung wird vorzugsweise mit Magnesiumoxid, Calciumoxid oder Yttriumoxid stabilisiertes Zirkoniumdioxid verwendet.
  • Ausschlaggebend für die Wahl des stabilisierenden Oxidzusatzes ist dabei die später im Einsatz auftretende thermische Belastung. Für hohe thermische Belastungsfälle bis ca. 1600 oC kommt dabei Yttriumoxid-stabilisiertes Zirkoniumdioxid in Frage. Für geringere thermische Belastungen bis ca. 1100 oC genügt die Zugabe von Calciumoxid oder Magnesiumoxid. Anstelle von Zirkoniumoxidschichten können auch Zirkoniumsilikatschichten oder aus Mischungen von Zirkoniumdioxid und -silikat bestehende Schichten verwendet werden.
  • Generell ist für den Zweck der Wärmedämmung eine niedrige Wärmeleitfähigkeit erforderlich. Dies bedingt, neben den gegebenen stoffspezifischen Eigenschaften, eine möglichst hohe Porosität der zum Einsatz gelangenden Schichten. Mit steigender Porosität sinkt jedoch die Festigkeit des Werkstoffs, und die mechanische Belastbarkeit nimmt ab, so daß bei zunehmender mechanischer Belastbarkeit für gleiche Wärmedämmwirkung insgesamt größere Schichtdicken mit verringerter Porosität erforderlich sind. Die Porosität der Keramikschichten beträgt erfindungsgemäß ca. 3-15 Vol.-%.
  • Die Cermetschichten bestehen z.B. aus stabilisiertem Zirkoniumdioxid und/oder Zirkoniumsilikat sowie aus einer Metallkomponente. Als Metalle werden vorzugsweise Nickel-Aluminium- oder Nickel-Chrom-Aluminium-Legierungen verwendet. Die ebenfalls im Laminat vorhandenen Metallschichten bestehen vorzugsweise aus den gleichen Legierungen, die auch in den Cermetschichten vorhanden sind.
  • Beschichtungen hoher Belastbarkeit und Thermoschockbeständigkeit werden durch möglichst dünne Schichten der erfindungsgemäßen Schichtfolgen erhalten. Vorzugsweise beträgt die Gesamtdicke des Laminates zwischen 0,2 und 10 mm, wobei die einzelnen Schichten eine Dicke zwischen 5 und 1000µm, vorzugsweise 50 bis 200µm aufweisen.
  • Die minimal erreichbare Schichtdicke wird dabei von der Korngröße der eingesetzten Pulver vorgegeben und liegt etwa im Bereich von 5µm. Die einzelnen Schichten können gleiche oder unterschiedliche Dicken aufweisen. Nach einer Ausführungsform der Erfindung können die sich wiederholenden Metall- und Cermetschichten gleiche Dicken besitzen, während die Dicke der sich wiederholenden Keramikschichten zur Deckschicht hin allmählich zunimmt. Nach einer weiteren Ausführungsform der Erfindung können die Keramikschichten die gleiche Schichtdicke aufweisen, während die Dicke der Metall- und Cermetschichten zur Deckschicht hin allmählich abnimmt. Es ist auch möglich, zur Deckschicht hin allmählich dicker werdende Keramikschichten mit dazwischen, zur Deckschicht hin allmählich dünner werdenden Metall- oder Cermetschichten vorzusehen. Eine weitere Modifikation kann dadurch erzielt werden, daß man in den cermetischen Schichten zur Deckschicht hin den Metallanteil laufend verringert.
  • Vorzugsweise wird bei der Beschichtung gemäß der Erfindung die der Wärmequelle zugewandte Seite der Beschichtung mit einer keramischen, korrosions- oder verschleißhemmenden Schicht versehen.
  • Die Erfindung wird in der Beschreibung sowie an Hand der schematischen Zeichnung näher erläutert. Es zeigen:
    • Fig. 1 den üblichen Aufbau von Wärmedämsystemän auf Zr02-Basis und
    • Fig. 2 eine Ausführungsform der erfindungsgemäßen Beschichtung.
  • Gemäß Fig. 1 bestehen bekannte Schichtsysteme aus einem metallischen Substrat 1, eine metallischen Haftschicht 2, meist mehreren cermetischen Zwischenschichten 3 und einer keramischen Deckschicht 4.
  • Die Wärmeausdehnungskoeffizienten von Substrat 1 und keramischer Deckschicht 4 weisen in der Regel erhebliche Unterschiede auf. Zu deren Kompensation werden zwischen Substrat 1 und Deckschicht 4 möglichst zahlreiche cermetische Zwischenschichten 3 vorgesehen. Allerdings ist man bei einer derartigen Anordnung in der Gesamtschichtdicke begrenzt. Bei bekannten Systemen erreicht man solche Gesamtschichtdicken von etwa 2 mm. Geht man über diese Dicke hinaus, so nimmt die Thermoschockbeständigkeit, die gegeben sein muß, erheblich ab.
  • Die erfindungsgemäße Beschichtung ergibt sich aus Fig. 2. Zwischen der keramischen Deckschicht 4 und der metallischen Haftschicht 2 sind mehrere alternierend angeordnete Oxid- oder Silikatschichten 5 und Metall- oder Cermetschichten 6 vorgesehen. Mit einer derartigen Anordnung können Dämmschichten realisiert werden, die die Eigenschaften und die Wirksamkeit üblicher Anordnungen und ein Mehrfaches übertreffen. Trotz der zum Teil erheblichen Unterschied in den Wärmeausdehnungskoeffizienten der vorgesehenen Schichten werden durch den erfindungsgemäßen Schichtaufbau thermisch hochbelastbare, thermoschockbeständige sowie wärmedämmende Beschichtungen erhalten. Die Thermoschockbeständigkeit steigt mit abnehmender Dicke der einzelnen Schichten der Schichtfolge oder des Laminats.
  • Gemäß der Erfindung ist vorgesehen, die nach Fig. 2 vorgesehenen Schichten im Wege des an sich bekannten Flamm- oder Plasmaspritzens aufzubringen, vgl. H.S. Ingham and A.P. Shopärd, Metco Flame Spray Handbook, Volume III, Plasma Flame Process, Metco Ltd., Chobham, Woking, England 1965. Das Flamm- oder Plasmaspritzen bietet darüber hinaus die Möglichkeit die erfindungsgemäße Beschichtung bei geometrisch relativ komplizierten Bauteilen einzusetzen, beispielsweise nichtebene Flächen, Vertiefungen aufweisende Kolbenböden, Rohrwandungen od. dgl.
  • Diese erfindungsgemäß angewandte Beschichtungstechniken ermöglichen es weiterhin, einzelne Schichten optimal an gegebene Belastungsverhältnisse anzupassen. Schließlich ermöglicht das Flamm- und Plasmaspritzen das Aufbringen einer äußeren Schicht auf eine hergestellte Beschichtung derart, daß nach Abtrennen der Beschichtung von ihrem ursprünglichen Substrat sie durch Schweißen, Eingießen, Löten od. dgl. mit einem metallischen Bauteil verbunden werden kann. Die äußere Schicht ist in diesem Falle dann in der Regel eine Metallschicht.
  • In Abwandlung des gezeigten Ausführungsbeispiels gemäß Fig. 2 können die Schichten 5 und 6 auch aus Cermet und Metall bestehen. Darüber hinaus ist es möglich, daß die Schichtenfolge zwischen Deckschicht 4 und Haftschicht 2 aus einer Vierschichten- oder Sechsschichtenfolge aus Keramik-Cermet, und/oder Keramik-Metall und /oder Cermet-Metall bestehen.
  • Bei Kompaktwerkstoffen sind laminatartig aus Metall und Keramik aufgebaute Systeme bekannt, die durch Sintern bzw. Heißpressen hergestellt werden. Bei diesen Herstellungsverfahren sind die Möglichkeiten zur Realisierung geometrisch komplizierter Bauteile stark eingeschränkt. Außerdem kann die Porosität in den einzelnen Schichten gezielt im Sinne einer optimierten Anpassung des Werkstoffs an gegebene Belastungsverhältnisse nicht modifiziert und -mindestens ohne erheblichen Aufwand- die Schichtdicken der einzelnen Lagen nicht variiert werden, was bei Flamm-und Plasmaspritzen ohne weiteres gegeben ist. Außerdem lassen . sich bei der Herstellung von kompakten Formteilen durch das Flamm- und Plasmaspritzen in einem Arbeitsgang als äußere Schicht Materialien aufspritzen, die das Verbinden des so hergestellten Werkstoffs mit anderen Bauteilen durch Einschweißen, Eingießen, Auftragsschweißen, Auftragslöten und dergleichen ermöglichen.
  • Die Erfindung wird anhand nachfolgender Beispiele näher erläutert:
  • Beispiel 1 (Metall/Cermet-Laminataufbau):
  • Zur Herstellung eines Rohrsegmentes aus dem erfindungsgemäßen Schichtwerkstoff wurde eine zylindrische Kernform aus Aluminium erwärmt, Natriumchloridlösung aufgesprüht und weiter auf 300 oC erwärmt. Anschließend wurden die Wärmedämmschichten gemäß Tabelle 1, mit der Plasmapistole aufgetragen. Als äußerste Schicht wurde Nickel aufgebracht, wodurch das Einlöten des Rohrsegmentes in das vorgesehene rohrförmige Bauteil möglich war.
  • Aufgrund der unterschiedlichen Wärmeausdehnungs-Koeffizienten von Aluminium und dem erfindungsgemäßen Schichtwerkstoff trennt sich dieser gut beim Abkühlen der Form. Zusätzlich begünstigt wurde dieses Abtrennen durch Eintauchen in Wasser, wodurch sich das Natriumchlorid auflöst. Der fertige Rohrabschnitt mit einem Innendurchmesser von 100 mm und einer Länge von 50 mm wurde dann in das vorgesehene rohrförmige Bauteil eingelötet. Zu diesem Zweck wurde Lötblech (Weichlot) in der entsprechenden Größe um das Rohr gelegt, in das rohrförmige Bauteil eingeschoben und auf ca. 350 OC erhitzt. Beginnend mit der Rohrinnenseite war der Schichtaufbau wie in der Tabelle 1 zusammengestellt, gestaltet:
    Figure imgb0001
    Figure imgb0002
  • Für die Untersuchungen wurden insgesamt drei Rohrabschnitte mit unterschiedlichen Schichtdicken hergestellt. Rohr Nr. 1 war aus fünf Schichtfolgen, Rohr Nr. 2 aus 11 und Rohr Nr. 3 aus 2o Schichtfolgen aufgebaut. Zusätzlich hatten die Rohre auf der Außenseite ein 50µm starke Nickelschicht. Bei den Versuchen zum Einlöten der Rohrabschnitte in das vorgesehene Bauteil zeigte sich, daß Rohr Nr. 1 und Nr. 2, den thermischen Spannungen beim Abkühlen nach dem Einlöten nicht widerstand. Befriedigende Ergebnisse konnten mit dem dritten Rohrabschnitt, mit eine Gesamtwandstärke von 1,2 mm erzielt werden.
  • Beispiel 2 (Keramik/Cermet - Laminataufbau):
  • Zur Beschichtung eines Kolbenbodens (Dieselmotore) zum Zwecke der Wärmedämmung wurde dieser zunächst entfettet und sandgestrahlt, anschließend erfolgte die Plasmabeschichtung ohne Unterbrechung. Die Schichtanordnung ergibt sich aus Tabelle 2:
    Figure imgb0003
  • Um bei späteren Untersuchungen die Auswirkungen unterschiedlicher Wärmedämmaßnahmen auf den Verbrennungsablauf feststellen zu können, wurden auch hier drei Beschichtungen mit unterschiedlicher Dicke realisiert.
  • Kolbenboden Nr. 1 hatte sechs Schichtfolgen, Kolbenboden Nr. 2, 12 Schichtfolgen und Kolbenboden Nr. 3 schließlich 24 Schichtfolgen. Bei Kolbenboden Nr. 1 und Nr. 2 hatte die jeweils letzte Schicht abweichend von der Tabelle 2 eine Schichtdicke von 200µm. Alle drei Kolbenböden wurden einem Probelauf von 10 h in einem Dieselmotor (1 Zylinder Prüfmotor MWM KD 12E) unterzogen, ohne daß es zur Schädigung der Beschichtung kam.
  • Beispiel 3/4 (Metall/Keramik-, und Keramik/Cermet/ Keramik/Metall-Laminataufbau):
  • Zum Zwecke der Wärmeisolierung des Brennraumes bei einem Dieselmotor und des Bauteilschutzes vor thermischer Überlastung wurde die in Tabelle 3 angegebene Schichtfolge auf je ein Ein- und ein Auslaßventil (Durchmesser 50 mm) aufgespritzt. Da auf Ventile sowohl thermischer als auch mechanische Belastungen einwirken, wurden zur weiteren Verbesserung der Schlagfestigkeit zusätzliche metallische Schichten in die Schichtfolge eingebaut. Dieser Aufbau ist in Tabelle 4 gezeigt. Die Ventile wurden ebenfalls einem Testlauf von 100 h im beschriebenen Prüfmotor unterzogen, ohne daß die Beschichtungen Schaden nahmen.
    Figure imgb0004
    Figure imgb0005

Claims (12)

1. Wärmedämmende, hochtemperatur-und thermoschockbeständige Beschichtung auf der Basis von flamm- oder plasmagespritzten keramischen Materialien, dadurch gekennzeichnet, daß sie mehrere Schichtfolgen im wesentlichen gleicher Materialien aufweist und daß in jeder Schichtfolge mindestens je eine Schicht aus Keramik und Cermet und/oder Keramik und Metall und/oder Cermet und Metall vorhanden ist.
2. Beschichtung nach Anspruch 1, dadurch gekennzeichnet, daß seine Dicke mindestens 200µm beträgt und daß die einzelnen Schichten eine Dicke von 5 bis 1000µm, vorzugsweise 5o bis 200µm aufweisen.
3. Beschichtung nach Anspruch I oder 2, dadurch gekennzeichnet, daß die Schichten unterschiedliche Dicken aufweisen.
4. Beschichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Metall- und Cermetschichten gleiche Dicken aufweisen, während die Dicke der Keramikschichten zu einer Deckschicht hin zunimmt.
5. Beschichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Keramikschichten die gleiche Dicken aufweisen, während die Dicke der Metall- und Cermetschichten zur Deckschicht hin abnimmt.
6. Beschichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Dicke der Keramikschichten zur Deckschicht hin zunimmt und die Dicke der Metall- und Cermetschichten zur Deckschicht hin abnimmt.
7. Beschichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß in den Cermetschichten die Konzentration der Metallkomponenten zur Deckschicht hin allmählich abnimmt.
8. Beschichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Schichten verschleiß- und korrosionsbeständig sind.
9. Beschichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Cermetschichten aus Metall, vorzugsweise Nickel-Aluminium oder Nickel-Chrom-Aluminium, und stabilisiertem Zirkoniumdioxid und/oder Zirkoniumsilikat und die Keramikschichten aus stabilisiertem Zirkoniumdioxid und/oder Zirkoniumsilikat bestehen.
10.Beschichtung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die der Belastung zügewandte Deckschicht aus Zirkoniumdioxid und/oder Zirkoniumsilikat besteht, welche vorzugsweise dicker ist als die übrigen Schichten.
11.Beschichtung nach Anspruch 1 bis 10, dadurch gekennzeichnet, daß sie ablösbar auf einem Substrat hergestellt ist und daß eine Außenschicht aus metallischem Material aufweist, über die die Beschichtung mit einem metallischen Werkstück verbindbar ist.
12.Verwendung der Beschichtung nach den Ansprüchen 1 bis 11 in Brennräumen von Antriebsaggregaten mit reduzierender oder oxidierender Atmosphäre.
EP82108405A 1981-09-23 1982-09-11 Wärmedämmende, hochtemperatur- und thermoschockbeständige Beschichtung auf Keramikbasis Withdrawn EP0075228A3 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19813137731 DE3137731A1 (de) 1981-09-23 1981-09-23 Hochtemperatur- und thermoschockbestaendige kompaktwerkstoffe und beschichtungen
DE3137731 1981-09-23

Publications (2)

Publication Number Publication Date
EP0075228A2 true EP0075228A2 (de) 1983-03-30
EP0075228A3 EP0075228A3 (de) 1984-04-25

Family

ID=6142345

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82108405A Withdrawn EP0075228A3 (de) 1981-09-23 1982-09-11 Wärmedämmende, hochtemperatur- und thermoschockbeständige Beschichtung auf Keramikbasis

Country Status (5)

Country Link
US (1) US4471017A (de)
EP (1) EP0075228A3 (de)
JP (1) JPS58140380A (de)
CA (1) CA1186568A (de)
DE (1) DE3137731A1 (de)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0123952A2 (de) * 1983-04-29 1984-11-07 Goetze Ag Verschleissfeste Beschichtung
EP0136741A1 (de) * 1983-08-24 1985-04-10 KOLBENSCHMIDT Aktiengesellschaft Kolben für Brennkraftmaschinen
EP0170359A1 (de) * 1984-07-02 1986-02-05 Energy Conversion Devices, Inc. Beschichtung mit mehreren Schichtfolgen
EP0183638A1 (de) * 1984-11-28 1986-06-04 United Technologies Corporation Verfahren zum Aufbringen einer kontinuierlich abgestuften Metallkeramikschicht auf metallischen Substraten
EP0217991A1 (de) * 1985-10-04 1987-04-15 Repco Limited Beschichtung auf Keramikbasis
EP0221873A2 (de) * 1985-11-08 1987-05-13 Oktan Aktiebolag Brennkraftmaschine mit niedrigem Oktanzahlbedürfnis
WO1988008926A1 (en) * 1987-05-08 1988-11-17 Oktan Ab Provision for the combustion chamber surfaces of an internal combustion engine
EP0367434A2 (de) * 1988-11-01 1990-05-09 Fosbel International Limited Schweissen eines Cermets
WO1993024672A1 (en) * 1992-05-29 1993-12-09 United Technologies Corporation Ceramic thermal barrier coating for rapid thermal cycling applications
US5534308A (en) * 1993-02-04 1996-07-09 Mtu Motoren-Und Turbinen-Union Munchen Gmbh Ceramic, Heat insulation layer on metal structural part and process for its manufacture
RU2493813C2 (ru) * 2011-12-27 2013-09-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тольяттинский государственный университет" Способ получения металлокерамических покрытий на поверхности зубных протезов
AT517589B1 (de) * 2015-07-03 2017-03-15 Ge Jenbacher Gmbh & Co Og Kolben für eine Brennkraftmaschine
CN112111702A (zh) * 2020-10-13 2020-12-22 中国南方电网有限责任公司超高压输电公司柳州局 一种高致密度、耐腐蚀梯度金属陶瓷复合涂层及其喷涂方法
DE102022127482A1 (de) 2022-10-19 2024-04-25 Htm Reetz Gmbh Verfahren zur Herstellung einer Wärmedämmung für einen Hochtemperatur-Rohrofen und Wärmedämmung für einen Hochtemperatur-Rohrofen

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4554898A (en) * 1980-10-31 1985-11-26 Nippon Kokan Kabushiki Kaisha Exhaust valve for diesel engine and production thereof
US4530322A (en) * 1980-10-31 1985-07-23 Nippon Kokan Kabushiki Kaisha Exhaust valve for diesel engine and production thereof
EP0185603B1 (de) * 1984-11-28 1989-11-08 United Technologies Corporation Verbesserung der Lebensdauer von metallvulkanischen Turbinenabdichtungen
FR2577471B1 (fr) * 1985-02-15 1987-03-06 Aerospatiale Structure refractaire multicouche et paroi pourvue d'une telle structure refractaire
US5154862A (en) * 1986-03-07 1992-10-13 Thermo Electron Corporation Method of forming composite articles from CVD gas streams and solid particles of fibers
JPH0536990Y2 (de) * 1987-02-23 1993-09-20
JPH024981A (ja) * 1988-06-23 1990-01-09 Ishikawajima Harima Heavy Ind Co Ltd セラミックス被覆方法
AU3323193A (en) * 1991-12-24 1993-07-28 Detroit Diesel Corporation Thermal barrier coating and method of depositing the same on combustion chamber component surfaces
US5660211A (en) * 1992-01-06 1997-08-26 Sumitomo Metal Industries Galvanic corrosion resistant insulating pipe having excellent film adhesion
US5679464A (en) * 1992-03-31 1997-10-21 Nippon Steel Corporation Joined product of heat-resisting alloys and method for joining heat-resisting alloys
EP0754847B1 (de) * 1995-07-20 1999-05-26 Spx Corporation Verfahren zur Produktion einer Zylinderfutterbohrung einer Brennkraftmaschine
US6422008B2 (en) 1996-04-19 2002-07-23 Engelhard Corporation System for reduction of harmful exhaust emissions from diesel engines
US5987882A (en) * 1996-04-19 1999-11-23 Engelhard Corporation System for reduction of harmful exhaust emissions from diesel engines
JP3022909B2 (ja) * 1996-10-07 2000-03-21 富士電機株式会社 磁気記録媒体およびその製造方法
US6306515B1 (en) 1998-08-12 2001-10-23 Siemens Westinghouse Power Corporation Thermal barrier and overlay coating systems comprising composite metal/metal oxide bond coating layers
DE19942857C2 (de) * 1999-09-08 2001-07-05 Sulzer Metco Ag Wohlen Durch Plasmaspritzen erzeugte dicke Schichten auf Aluminiumoxid-Basis
JP4520626B2 (ja) * 2000-11-27 2010-08-11 池袋琺瑯工業株式会社 グラスライニングの施工方法
US6652987B2 (en) * 2001-07-06 2003-11-25 United Technologies Corporation Reflective coatings to reduce radiation heat transfer
US6655369B2 (en) * 2001-08-01 2003-12-02 Diesel Engine Transformations Llc Catalytic combustion surfaces and method for creating catalytic combustion surfaces
US6508240B1 (en) 2001-09-18 2003-01-21 Federal-Mogul World Wide, Inc. Cylinder liner having EGR coating
JP4267459B2 (ja) * 2002-02-28 2009-05-27 コンセントラ マリーン アンド パワー アクツィエボラーグ ピストンリングの溶射
WO2003072844A1 (en) * 2002-02-28 2003-09-04 Man B & W Diesel A/S Thermal spraying of a machine part
EP1629924B1 (de) * 2003-06-04 2012-08-01 Mitsubishi Denki Kabushiki Kaisha Laserbearbeitungsdüse, schweissdüse oder kontaktspitze zum schweissen ; verfahren zur herstellung einer solchen düse oder spitze
US9771861B2 (en) 2014-09-09 2017-09-26 Avl Powertrain Engineering, Inc. Opposed piston two-stroke engine with thermal barrier
CN104438339A (zh) * 2014-10-16 2015-03-25 绍兴斯普瑞微纳科技有限公司 一种轧辊修复层及修复轧辊的方法
US9845764B2 (en) 2015-03-31 2017-12-19 Achates Power, Inc. Cylinder liner for an opposed-piston engine
JP6559454B2 (ja) * 2015-04-02 2019-08-14 株式会社東芝 レーザ溶接ヘッド
US10578050B2 (en) 2015-11-20 2020-03-03 Tenneco Inc. Thermally insulated steel piston crown and method of making using a ceramic coating
US10519854B2 (en) 2015-11-20 2019-12-31 Tenneco Inc. Thermally insulated engine components and method of making using a ceramic coating
DE102017111262A1 (de) * 2017-05-23 2018-11-29 Man Truck & Bus Ag Wärmeisoliertes Lufteinlasssystem für einen Verbrennungsmotor
CN114853486A (zh) * 2022-04-22 2022-08-05 江苏盛耐新材料有限公司 一种抗热震性复合水口砖的制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1005997A (fr) * 1947-10-27 1952-04-17 Snecma Perfectionnement aux organes de machines thermiques
US3031331A (en) * 1959-10-23 1962-04-24 Jr William L Aves Metal-ceramic laminated skin surface
US3054694A (en) * 1959-10-23 1962-09-18 Jr William L Aves Metal-ceramic laminated coating and process for making the same
US3091548A (en) * 1959-12-15 1963-05-28 Union Carbide Corp High temperature coatings
FR1393475A (fr) * 1964-02-11 1965-03-26 Desmarquest Et Cie L Revêtements thermiquement isolants pour soupapes, pistons et chambres d'explosion de moteurs
FR1434158A (fr) * 1964-11-25 1966-04-08 Sfec Perfectionnements aux revêtements protecteurs réfractaires, et procédé de fabrication de ces éléments
US3293064A (en) * 1962-07-23 1966-12-20 Ling Temco Vought Inc Method of making heat resistant article
FR1500175A (fr) * 1965-08-06 1967-11-03 Montedison Spa Revêtements protecteurs sur matériaux métalliques, ferreux ou non, capables de former écran antioxydant et écran thermique, obtenus par combinaison des poudres d'unalliage métallique, d'un métal et d'un oxyde
FR2226469A1 (de) * 1973-04-23 1974-11-15 Toyo Calorizing Ind Co
DE2521286A1 (de) * 1975-05-13 1976-11-18 Kawasaki Heavy Ind Ltd Verfahren zur drahtexplosionsspruehbeschichtung von gleitflaechen
FR2378576A1 (fr) * 1977-01-27 1978-08-25 Europ Propulsion Procede pour le depot d'une poudre sur un substrat notamment pour la realisation d'elements d'isolation multicouches

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3715265A (en) * 1969-09-03 1973-02-06 Mc Donnell Douglas Corp Composite thermal insulation
CH540990A (fr) * 1971-07-07 1973-08-31 Battelle Memorial Institute Procédé pour augmenter la résistance à l'usure de la surface d'un outil de coupe
JPS5111013A (en) * 1974-07-19 1976-01-28 Nippon Steel Corp Tainetsunitsukerugokinno seizoho
JPS5222724A (en) * 1975-08-14 1977-02-21 Matsushita Electric Ind Co Ltd Alkaline battery
JPS52123410A (en) * 1976-04-09 1977-10-17 Nippon Tungsten Treatment of ferrule for furnaces
US4109031A (en) * 1976-12-27 1978-08-22 United Technologies Corporation Stress relief of metal-ceramic gas turbine seals
JPS53138905A (en) * 1977-05-12 1978-12-04 Kawasaki Steel Co Blast furnace exit
JPS55141566A (en) * 1979-04-23 1980-11-05 Goto Gokin Kk Forming method of heat resistant, thermal shock resistant protective film on copper or copper alloy surface
US4269903A (en) * 1979-09-06 1981-05-26 General Motors Corporation Abradable ceramic seal and method of making same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1005997A (fr) * 1947-10-27 1952-04-17 Snecma Perfectionnement aux organes de machines thermiques
US3031331A (en) * 1959-10-23 1962-04-24 Jr William L Aves Metal-ceramic laminated skin surface
US3054694A (en) * 1959-10-23 1962-09-18 Jr William L Aves Metal-ceramic laminated coating and process for making the same
US3091548A (en) * 1959-12-15 1963-05-28 Union Carbide Corp High temperature coatings
US3293064A (en) * 1962-07-23 1966-12-20 Ling Temco Vought Inc Method of making heat resistant article
FR1393475A (fr) * 1964-02-11 1965-03-26 Desmarquest Et Cie L Revêtements thermiquement isolants pour soupapes, pistons et chambres d'explosion de moteurs
FR1434158A (fr) * 1964-11-25 1966-04-08 Sfec Perfectionnements aux revêtements protecteurs réfractaires, et procédé de fabrication de ces éléments
FR1500175A (fr) * 1965-08-06 1967-11-03 Montedison Spa Revêtements protecteurs sur matériaux métalliques, ferreux ou non, capables de former écran antioxydant et écran thermique, obtenus par combinaison des poudres d'unalliage métallique, d'un métal et d'un oxyde
FR2226469A1 (de) * 1973-04-23 1974-11-15 Toyo Calorizing Ind Co
DE2521286A1 (de) * 1975-05-13 1976-11-18 Kawasaki Heavy Ind Ltd Verfahren zur drahtexplosionsspruehbeschichtung von gleitflaechen
FR2378576A1 (fr) * 1977-01-27 1978-08-25 Europ Propulsion Procede pour le depot d'une poudre sur un substrat notamment pour la realisation d'elements d'isolation multicouches

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, Band 91, Nr. 2, Juli 1979, Seite 202, Nr. 8334m, Columbus, Ohio, US *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0123952A3 (en) * 1983-04-29 1985-05-02 Goetze Ag Wear-resistant coating
US4612256A (en) * 1983-04-29 1986-09-16 Goetze Ag Wear-resistant coating
EP0123952A2 (de) * 1983-04-29 1984-11-07 Goetze Ag Verschleissfeste Beschichtung
EP0136741A1 (de) * 1983-08-24 1985-04-10 KOLBENSCHMIDT Aktiengesellschaft Kolben für Brennkraftmaschinen
EP0170359A1 (de) * 1984-07-02 1986-02-05 Energy Conversion Devices, Inc. Beschichtung mit mehreren Schichtfolgen
EP0183638A1 (de) * 1984-11-28 1986-06-04 United Technologies Corporation Verfahren zum Aufbringen einer kontinuierlich abgestuften Metallkeramikschicht auf metallischen Substraten
EP0217991A1 (de) * 1985-10-04 1987-04-15 Repco Limited Beschichtung auf Keramikbasis
EP0221873A2 (de) * 1985-11-08 1987-05-13 Oktan Aktiebolag Brennkraftmaschine mit niedrigem Oktanzahlbedürfnis
EP0221873A3 (en) * 1985-11-08 1988-07-06 Oktan Aktiebolag An internal combustion engine having low octane number requirements
US4941439A (en) * 1987-05-08 1990-07-17 Oktan Ab Combustion chamber surfaces of an internal combustion engine
WO1988008926A1 (en) * 1987-05-08 1988-11-17 Oktan Ab Provision for the combustion chamber surfaces of an internal combustion engine
EP0367434A2 (de) * 1988-11-01 1990-05-09 Fosbel International Limited Schweissen eines Cermets
EP0367434A3 (de) * 1988-11-01 1991-04-10 Fosbel International Limited Schweissen eines Cermets
WO1993024672A1 (en) * 1992-05-29 1993-12-09 United Technologies Corporation Ceramic thermal barrier coating for rapid thermal cycling applications
US5534308A (en) * 1993-02-04 1996-07-09 Mtu Motoren-Und Turbinen-Union Munchen Gmbh Ceramic, Heat insulation layer on metal structural part and process for its manufacture
US5721057A (en) * 1993-02-04 1998-02-24 Mtu Motoren-Und Turbinen-Union Munchen Gmgh Ceramic, heat insulation layer on metal structural part and process for its manufacture
RU2493813C2 (ru) * 2011-12-27 2013-09-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тольяттинский государственный университет" Способ получения металлокерамических покрытий на поверхности зубных протезов
AT517589B1 (de) * 2015-07-03 2017-03-15 Ge Jenbacher Gmbh & Co Og Kolben für eine Brennkraftmaschine
AT517589A4 (de) * 2015-07-03 2017-03-15 Ge Jenbacher Gmbh & Co Og Kolben für eine Brennkraftmaschine
US10634090B2 (en) 2015-07-03 2020-04-28 Ge Jenbacher Gmbh & Co Og Piston for an internal combustion engine
CN112111702A (zh) * 2020-10-13 2020-12-22 中国南方电网有限责任公司超高压输电公司柳州局 一种高致密度、耐腐蚀梯度金属陶瓷复合涂层及其喷涂方法
DE102022127482A1 (de) 2022-10-19 2024-04-25 Htm Reetz Gmbh Verfahren zur Herstellung einer Wärmedämmung für einen Hochtemperatur-Rohrofen und Wärmedämmung für einen Hochtemperatur-Rohrofen

Also Published As

Publication number Publication date
CA1186568A (en) 1985-05-07
JPH0343339B2 (de) 1991-07-02
JPS58140380A (ja) 1983-08-20
US4471017A (en) 1984-09-11
EP0075228A3 (de) 1984-04-25
DE3137731A1 (de) 1983-04-14

Similar Documents

Publication Publication Date Title
EP0075228A2 (de) Wärmedämmende, hochtemperatur- und thermoschockbeständige Beschichtung auf Keramikbasis
DE19741223C2 (de) Als Hitzesperre fungierendes Überzugselement und Verfahren zu dessen Herstellung
DE3725614C2 (de)
DE69811851T2 (de) Metallischer Artikel mit einer wärmedämmenden Beschichtung und Verfahren zum Aufbringen derselben
EP0112453B1 (de) Spritzpulver, insbesondere für die Herstellung verschleissfester und temperaturbeständiger Beschichtungen von insbesondere Maschinenteilen in Verbrennungskraftmaschinen
EP0984839B1 (de) Metall-keramik-gradientenwerkstoff, erzeugnis daraus und verfahren zur herstellung eines metall-keramik-gradientenwerkstoffes
DE19918900B4 (de) Hochtemperatur-Komponente für eine Gasturbine und Verfahren zu deren Herstellung
DE3535548C2 (de) Beschichteter Gegenstand und Verfahren zum Herstellen einer Beschichtung eines Gegenstandes
DE10056617C2 (de) Werkstoff für temperaturbelastete Substrate
DE2149634A1 (de) Verfahren zur Herstellung von korrosionswiderstandsfaehigen,zusammengesetzten Teilen
DE3110358A1 (de) Verfahren zum aufbringen von oberflaechenueberzuegen und pulverfoermiges ueberzugsmittel hierfuer
DE19729017C2 (de) Zylinderlaufbuchse
EP0302252B1 (de) Filter für kleine Partikel
DE3321338A1 (de) Aufspritzmaterial, vor allem fuer das plasmaspritzen
CH695689A5 (de) Verfahren zum Erzeugen eines wärmedämmenden Schichtsystems auf einem metallischen Substrat.
EP3728695B1 (de) Korrosions- und erosionsbeständige beschichtung für turbinenschaufeln von gasturbinen
DE4015010C1 (de)
DE9010077U1 (de) Verbrennungskraftmaschine
DE2809709B2 (de) Verfahren zur Herstellung eines mindestens eine Keramikschicht aufweisenden Schutzüberzugs für thermisch hochbelastete Bauteile, insbesondere Waffenkomponenten
DE3640767A1 (de) Lagerung
DE69302444T2 (de) Verfahren zur Herstellung eines keramischen Überzuges mit metallischen Substraten
EP0432699B1 (de) Bauteil aus Metall mit einem Schutz gegen Titanfeuer und Verfahren zur Herstellung des Bauteils
DE19536312C1 (de) Verfahren zur Herstellung eines mehrlagig beschichteten Bauteils mit Bohrungen
EP0571796B1 (de) Oberflächenschutzschicht sowie Verfahren zur Herstellung derselben
DE4317350C2 (de) Verfahren zum Beschichten von Tassenstösseln

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19840905

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19860509

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WEIBEL, GUIDO

Inventor name: SCHWAEMMLEIN, WOLFGANG

Inventor name: POESCHEL, EVA, DR.