[go: up one dir, main page]

EP0048794B1 - Use of spherical packings for galvanic baths and process for the production of such packings and of anode cages - Google Patents

Use of spherical packings for galvanic baths and process for the production of such packings and of anode cages Download PDF

Info

Publication number
EP0048794B1
EP0048794B1 EP81104888A EP81104888A EP0048794B1 EP 0048794 B1 EP0048794 B1 EP 0048794B1 EP 81104888 A EP81104888 A EP 81104888A EP 81104888 A EP81104888 A EP 81104888A EP 0048794 B1 EP0048794 B1 EP 0048794B1
Authority
EP
European Patent Office
Prior art keywords
anode
packings
spherical
balls
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81104888A
Other languages
German (de)
French (fr)
Other versions
EP0048794B2 (en
EP0048794A1 (en
Inventor
Joachim Betschler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Holl und Cie GmbH
Original Assignee
Holl und Cie GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6113249&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0048794(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Holl und Cie GmbH filed Critical Holl und Cie GmbH
Priority to AT81104888T priority Critical patent/ATE15914T1/en
Publication of EP0048794A1 publication Critical patent/EP0048794A1/en
Application granted granted Critical
Publication of EP0048794B1 publication Critical patent/EP0048794B1/en
Publication of EP0048794B2 publication Critical patent/EP0048794B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode
    • C25D17/12Shape or form

Definitions

  • the invention relates to the use of spherical fillers for anode containers to be used in electroplating baths and to a method for their production.
  • the invention further relates to a method for producing an anode container to be used in galvanic baths.
  • High-purity anode metal fillings e.g. B. of copper, and for acidic baths, eg. B. copper alloyed with phosphorus used.
  • Auxiliary anodes in the form of titanium baskets, which are filled with the appropriate metal fillers, are often used for the electroplating of printing cylinders, printed circuit boards or other electronic device parts. It is important that these auxiliary anodes have the same filling over their entire area, so that the same possible deposition weight and the same deposition area are ensured during the whole operation, which are of crucial importance for exact support layers. These requirements are not met with the granules made of electrolytic copper scrap or sections of copper wires known in practice.
  • the balls are produced in a known manner using the casting process, then a more or less strong cast skin is formed on the surface of the ball, which is also irregularly distributed over the surface.
  • the electrolytic conductivity of this mostly oxidized cast skin is greatly reduced, which is why uneven erosion and hollows occur on these balls.
  • the known packing balls are therefore not well suited for the electroplating of high-quality electronic device parts, because they cannot be used to achieve uniformly thin support layers that also extend over larger areas, with or without gaps.
  • the invention is therefore based on the object of using improved spherical fillers for anode containers which consist of a homogeneous mass throughout and whose uniformly shaped surface is free from oxydod. Like. Layers is.
  • spherical fillers made of wire pieces of anode material formed into spheres are used according to the invention.
  • a preferred method for producing these packing elements is characterized in that pieces of a predetermined length are cut from a wire made of copper alloyed with phosphorus as the anode material and then these pieces of wire are made spherical by mechanical processing.
  • anode containers are produced by first cutting pieces of a predetermined length from a wire made of the anode material to form the filler, then bringing these wire pieces into spherical shape by mechanical processing and finally filling these balls into the mesh basket.
  • the diameter of the packing balls is advantageously designed so that the balls individually roll through the loading opening of the anode container and its diameter is slightly smaller than the depth, but larger than half the depth of the anode container.
  • the most common ball diameters are therefore 5-30 mm, preferably 10-15 mm. If the balls are so large that only a single ball passes through the loading opening, there can be no blockages.
  • the balls in the specified sizes also only form a stack layer. Optimal results are achieved if the balls of the filling of an anode container are the same size.
  • the wire to be formed into balls can be produced in the usual way by rolling, casting or pressing. Depending on the intended use, it will consist of pure or alloyed metal.
  • the wire diameter can be determined on a trial basis. Experience has shown that it is about 20% below that of the ball diameter.
  • the drawing shows part of an anode container in section with the packing elements according to the invention.
  • Packing balls 3 are filled in an anode basket 1 made of a titanium wire mesh 2. Since the diameter d of the balls is slightly smaller than the depth t of the basket, the balls are stacked in one layer. Even if these balls are slightly offset or shifted, the contact surface is always the same due to the evenly rounded surface of the balls. Due to the spherical shape, the packing elements will always be arranged without gaps and without blocking, even when refilling, and thus enable a uniform filling level.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

Anode bodies for a galvanic plating bath, e.g. for electrodeposition of copper, are spheres which can be received in an anode holder in the bath and have advantages over irregular and other anode shapes deriving from the fact that the metal is solubilized uniformly substantially over the entire surface area of the anode bodies and a uniform reproducible contact is made between them. The invention also comprehends a method of making such bodies by pressing cylindrical blanks, e.g. wire sections, to spherical shape, and a method of operating an electroplating bath which involves the use of such anode bodies.

Description

Die Erfindung betrifft die Verwendung von kugelförmigen Füllkörpern für in galvanische Bäder einzusetzende Anodenbehälter sowie ein Verfahren zu deren Herstellung. Ferner betrifft die Erfindung ein Verfahren zum Herstellen eines in galvanische Bäder einzusetzenden Anodenbehälters.The invention relates to the use of spherical fillers for anode containers to be used in electroplating baths and to a method for their production. The invention further relates to a method for producing an anode container to be used in galvanic baths.

In galvanischen Hochleistungsanlagen werden für zyanidische Bäder hochreineAnodenmetall-Füllkörper, z. B. aus Kupfer, und für saure Bäder legierte Füllkörper, z. B. Kupfer mit Phosphor legiert, verwendet. Beim Galvanisieren von Druckzylindern, Leiterplatten oder anderen elektronischen Geräteteilen kommen häufig Hilfsanoden in Form von Titankörben, die mit den entsprechenden Metall-Füllkörpern gefüllt sind, zum Einsatz. Dabei ist es wichtig, daß diese Hilfsanoden über ihre gesamte Fläche eine gleiche Füllung aufweisen, damit während des ganzen Betriebes ein möglichst gleiches Abscheidungsgewicht und eine gleiche Abscheidungsfläche gewährleistet sind, die für exakte Auflageschichten von ausschlaggebender Bedeutung sind. Mit den in der Praxis bekannten Granalien aus Elektrolyt-Kupfer-Schrott oder Abschnittsstücken von Kupferdrähten werden diese Forderungen nicht erfüllt. Die hierbei sich ergebenden ungleichen Kontaktflächen führen zu unterschiedlichen Abscheidungsflächen und die Sperrigkeit der Füllkörper begünstigt häufig eine Brückenbildung an den Einfüllöffnungen und im Innern der Anodenkörbe. Mit diesem bekannten Füllkörper ist es vor allem wegen der unkontrollierbaren Beschickung notwendig, die galvanische Anlage täglich für einen bestimmten Zeitraum außer Betrieb zu setzen. Fällt dann während dieser Auffüllphase die Betriebstemperatur ab, dann muß die Anlage vor Inbetriebnahme wieder aufgeheizt werden, wodurch häufig mehrstündige Betriebsausfälle entstehen. Mit kugelförmigen Füllkörpern (GB-PS 357 977; US-PS 3 300 396) konnten diese Beschickungsschwierigkeiten weitgehend behoben werden. Werden die Kugeln aber in bekannter Weise im Gießverfahren hergestellt, dann bildet sich auf der Kugeloberfläche eine mehr oder weniger starke Gußhaut, die zudem noch unregelmäßig auf die Oberfläche verteilt ist. Die elektrolytische Leitfähigkeit dieser meist oxydierten Gußhaut ist stark vermindert, weshalb sich auf diesen Kugeln ungleichmäßige Abtragungen und Aushöhlungen einstellen. Die bekannten FüllkörperKugeln eignen sich daher zum Galvanisieren von hochwertigen elektronischen Geräteteilen nicht gut, weil mit ihnen keine gleichmäßig dünnen Auflageschichten, die sich auch über größere Flächen, mit oder ohne Zwischenräume, erstrekken, erzielt werden können. Werden nach einem anderen Vorschlag (DE-GM 1 985 826) Granalien aus Elektrolyt-Kupfer-Schrotten zu kugeligen Formkörpern umgeformt, dann entstehen keine homogen verdichtete Kugelformen, sondern sehr unterschiedlich zusammengesetzte und mit Spalten und Rissen versehene Schrottkugeln, die eine ungleichförmige Oberfläche aufweisen. Eine unregelmäßige und ungleichförmige Kugeloberfläche begünstigt wiederum ein ungleichmäßiges Abtragen des Werkstoffes und ein verstärktes Aushöhlen der Kugeloberfläche. Bei der Herstellung von Kugeln aus Gußstahl ist es schon bekannt (DE-C-217 938), von einem runden Draht entsprechend lange Stücke abzuschneiden und diese einem Kugel-Preßwerkzeug zuzuführen. Hierbei handelt es sich nicht um aus einem Anodenwerkstoff geformte Füllkörper für Anodenbehälter.High-purity anode metal fillings, e.g. B. of copper, and for acidic baths, eg. B. copper alloyed with phosphorus used. Auxiliary anodes in the form of titanium baskets, which are filled with the appropriate metal fillers, are often used for the electroplating of printing cylinders, printed circuit boards or other electronic device parts. It is important that these auxiliary anodes have the same filling over their entire area, so that the same possible deposition weight and the same deposition area are ensured during the whole operation, which are of crucial importance for exact support layers. These requirements are not met with the granules made of electrolytic copper scrap or sections of copper wires known in practice. The resulting unequal contact surfaces lead to different deposition surfaces and the bulkiness of the packing often favors bridging at the filling openings and inside the anode baskets. With this known filler body, it is necessary, above all because of the uncontrollable loading, to shut down the galvanic system daily for a certain period of time. If the operating temperature then drops during this filling phase, the system must be heated up again before commissioning, which often results in operating failures lasting several hours. With spherical fillers (GB-PS 357 977; US-PS 3 300 396) these loading difficulties could largely be eliminated. However, if the balls are produced in a known manner using the casting process, then a more or less strong cast skin is formed on the surface of the ball, which is also irregularly distributed over the surface. The electrolytic conductivity of this mostly oxidized cast skin is greatly reduced, which is why uneven erosion and hollows occur on these balls. The known packing balls are therefore not well suited for the electroplating of high-quality electronic device parts, because they cannot be used to achieve uniformly thin support layers that also extend over larger areas, with or without gaps. If, according to another proposal (DE-GM 1 985 826), granules made from electrolytic copper scrap are formed into spherical shaped bodies, then there are no homogeneously compacted spherical shapes, but rather very differently composed scrap balls with gaps and cracks, which have a non-uniform surface. An irregular and non-uniform spherical surface in turn favors an uneven removal of the material and an increased hollowing out of the spherical surface. In the manufacture of cast steel balls, it is already known (DE-C-217 938) to cut correspondingly long pieces from a round wire and to feed these to a ball press tool. These are not fillers for anode containers formed from an anode material.

Der Erfindung liegt daher die Aufgabe zugrunde, verbesserte kugelförmige Füllkörper für Anodenbehälter anzuwenden, die aus durchgehend homogener Masse bestehen und deren gleichmäßig geformte Oberfläche frei von Oxydod. dgl. Belagschichten ist.The invention is therefore based on the object of using improved spherical fillers for anode containers which consist of a homogeneous mass throughout and whose uniformly shaped surface is free from oxydod. Like. Layers is.

Zur Lösung dieser Aufgabe werden gemäß der Erfindung kugelförmige Füllkörper aus zu Kugeln umgeformten Drahtstücken aus Anodenwerkstoff verwendet.In order to achieve this object, spherical fillers made of wire pieces of anode material formed into spheres are used according to the invention.

Ein bevorzugtes Verfahren zum Herstellen dieser Füllkörper ist dadurch gekennzeichnet, daß von einem aus mit Phosphor legiertem Kupfer als Anodenwerkstoff bestehenden Draht Stücke vorbestimmter Länge abgetrennt und dann diese Drahtstücke durch mechanische Bearbeitung in Kugelform gebracht werden.A preferred method for producing these packing elements is characterized in that pieces of a predetermined length are cut from a wire made of copper alloyed with phosphorus as the anode material and then these pieces of wire are made spherical by mechanical processing.

Nach einem weiteren vorteilhaften Verfahren werden Anodenbehälter dadurch hergestellt, daß zunächst zur Bildung der Füllkörper von einem aus dem Anodenwerkstoff bestehenden Draht Stücke vorbestimmter Länge abgetrennt werden, dann diese Drahtstücke durch mechanische Bearbeitung in Kugelform gebracht und schließlich diese Kugeln in den Geflechtkorb eingefüllt werden.According to a further advantageous method, anode containers are produced by first cutting pieces of a predetermined length from a wire made of the anode material to form the filler, then bringing these wire pieces into spherical shape by mechanical processing and finally filling these balls into the mesh basket.

Durch die Verwendung gleichmäßig geformter und geschichteter Kugeln ergeben sich gleiche Abscheidungsflächen und im wesentlichen auch gleiches Füllgewicht.The use of uniformly shaped and layered balls results in the same separation surfaces and essentially the same filling weight.

Auch bei weitgehendem Verbrauch der Kugeln kommt es nicht zu zusammengebackenen Füllungszonen, so daß sich ein ununterbrochener Betrieb ohne Ausfallzeiten erreichen läßt. Die umgeformten Drahtstücke aus homogenem Anodenwerkstoff ergeben geometrisch genau definierte Kugelkörper, die frei von nachteiliger Guß- bzw. Oxydhaut sind. Die mechanische Bearbeitung führt zu einem homogenen, gleichmäßig verdichteten und verfestigten Werkstoffgefüge. Daraus ergibt sich eine gute elektrische Kontakteigenschaft und ein gleichmäßiges Abtragen des Anodenwerkstoffes rund um die Kugel. Besonders vorteilhaft sind Kugeln, die aus mit Phosphor legiertem Kupfer hergestellt werden. Ein mit diesen Füllkörpern gefüllter Anodenbehälter gewährleistet besonders lange Betriebszeiten bei hoher Leistung.Even when the balls are largely used, there are no caked filling zones, so that uninterrupted operation can be achieved without downtimes. The formed wire pieces made of homogeneous anode material result in geometrically precisely defined spherical bodies that are free from disadvantageous cast or oxide skin. Mechanical processing leads to a homogeneous, evenly compressed and solidified material structure. This results in a good electrical contact property and even removal of the anode material around the ball. Balls made of copper alloyed with phosphorus are particularly advantageous. An anode container filled with these packing elements guarantees particularly long operating times with high performance.

Der Durchmesser der Füllkörperkugeln ist vorteilhaft so ausgelegt, daß die Kugeln einzeln durch die Beschickungsöffnung des Anodenbehälters rollen und ihr Durchmesser etwas kleiner als die Tiefe, jedoch größer als die halbe Tiefe des Anodenbehälters ist. Die gebräuchlichsten Kugeldurchmesser sind daher 5-30 mm, vorzugsweise 10-15 mm. Sind somit die Kugeln so groß, daß stets nur eine einzige Kugel durch die Beschickungsöffnung geht, so kann es zu keinen Sperrungen kommen. Die Kugeln in den angegebenen Größen bilden auch nur eine Stapelschicht. Optimale Ergebnisse werden erzielt, wenn die Kugeln einer Füllung eines Anodenbehälters gleich groß sind.The diameter of the packing balls is advantageously designed so that the balls individually roll through the loading opening of the anode container and its diameter is slightly smaller than the depth, but larger than half the depth of the anode container. The most common ball diameters are therefore 5-30 mm, preferably 10-15 mm. If the balls are so large that only a single ball passes through the loading opening, there can be no blockages. The balls in the specified sizes also only form a stack layer. Optimal results are achieved if the balls of the filling of an anode container are the same size.

Der zu Kugeln umzuformende Draht kann auf übliche Weise durch Walzen, Gießen oder Pressen hergestellt werden. Je nach dem Verwendungszweck wird er aus reinem oder legiertem Metall bestehen. Der Drahtdurchmesser läßt sich versuchsweise ermitteln. Erfahrungsgemäß liegt er etwa 20% unter dem des Kugeldurchmessers. Die fortlaufend vom Draht abgeschnittenen Zylinderstücke gelangen anschließend zwischen Preßwerkzeuge, die fortlaufend Kugeln pressen und auswerfen. Mit diesem einfachen und vorteilhaften Herstellungsverfahren lassen sich die Kugeln vollautomatisch und daher kostengünstig herstellen.The wire to be formed into balls can be produced in the usual way by rolling, casting or pressing. Depending on the intended use, it will consist of pure or alloyed metal. The wire diameter can be determined on a trial basis. Experience has shown that it is about 20% below that of the ball diameter. The cylinder pieces, which are continuously cut from the wire, then pass between pressing tools, which continuously press and eject balls. With this simple and advantageous manufacturing process, the balls can be produced fully automatically and therefore inexpensively.

Die Zeichnung zeigt einen Teil eines Anodenbehälters im Schnitt mit den erfindungsgemäßen Füllkörpern.The drawing shows part of an anode container in section with the packing elements according to the invention.

In einem Anodenkorb 1 aus einem Titandrahtgeflecht 2 sind Füllkörperkugeln 3 eingefüllt. Da der Durchmesser d der Kugeln geringfügig kleiner als die Tiefe t des Korbes ist, kommt es zu einer einschichtigen Aufstapelung der Kugeln. Auch wenn diese Kugeln dabei etwas versetzt bzw. verschoben sind, ist infolge der gleichmäßig gerundeten Oberfläche der Kugeln die Kontaktfläche stets die gleiche. Durch die Kugelform werden sich die Füllkörper auch beim Nachfüllen stets lückenlos und ohne Sperrung einordnen und so einen gleichmäßigen Füllstand ermöglichen.Packing balls 3 are filled in an anode basket 1 made of a titanium wire mesh 2. Since the diameter d of the balls is slightly smaller than the depth t of the basket, the balls are stacked in one layer. Even if these balls are slightly offset or shifted, the contact surface is always the same due to the evenly rounded surface of the balls. Due to the spherical shape, the packing elements will always be arranged without gaps and without blocking, even when refilling, and thus enable a uniform filling level.

Claims (3)

1. Use of spherical packings made of pieces of wire of anode material formed to balls for anode cages which are to be immersed in galvanic baths.
2. Method for the production of spherical packings for anode cages which are to be immersed in galvanic baths, characterized in that from a wire consisting of copper alloyed with phosphorus as anode material pieces of predetermined length are separated and then made spherical by mechanical treatment.
3. Method for the production of anode cages which are to be immersed in galvanic baths, the anode cages containing in a wire mesh cage spherical packings of anode material, characterized in that first for forming the packings pieces of predetermined length are separated from a wire of anode material, then these pieces of wire are made spherical by mechanical treatment and finally these balls are filled into the wire mesh cage.
EP81104888A 1980-09-30 1981-06-24 Use of spherical packings for galvanic baths and process for the production of such packings and of anode cages Expired - Lifetime EP0048794B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT81104888T ATE15914T1 (en) 1980-09-30 1981-06-24 USE OF SPHERICAL FILLERS FOR GALVANIC BATHS AND PROCESSES FOR THE MANUFACTURE OF THESE FILLERS AND ANODE CONTAINERS.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3036937A DE3036937C2 (en) 1980-09-30 1980-09-30 Process for the production of packing elements for anode containers and packing elements produced therefrom
DE3036937 1980-09-30

Publications (3)

Publication Number Publication Date
EP0048794A1 EP0048794A1 (en) 1982-04-07
EP0048794B1 true EP0048794B1 (en) 1985-10-02
EP0048794B2 EP0048794B2 (en) 1990-03-07

Family

ID=6113249

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81104888A Expired - Lifetime EP0048794B2 (en) 1980-09-30 1981-06-24 Use of spherical packings for galvanic baths and process for the production of such packings and of anode cages

Country Status (7)

Country Link
US (1) US4447298A (en)
EP (1) EP0048794B2 (en)
AT (1) ATE15914T1 (en)
CA (1) CA1177779A (en)
DE (1) DE3036937C2 (en)
ES (1) ES269127Y (en)
GR (1) GR75050B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI874603L (en) * 1987-10-20 1989-04-21 Outokumpu Oy FORMSTYCKE FOER ELECTROLYTISK BEHANDLING OCH FOERFARANDE FOER FRAMSTAELLNING AV DETSAMMA.
US5628887A (en) * 1996-04-15 1997-05-13 Patterson; James A. Electrolytic system and cell
US5744013A (en) * 1996-12-12 1998-04-28 Mitsubishi Semiconductor America, Inc. Anode basket for controlling plating thickness distribution

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE217938C (en) *
US1204127A (en) * 1915-02-23 1916-11-07 Ferdinand Mora Canda Process of and apparatus for forging balls.
US1765706A (en) * 1927-08-13 1930-06-24 Westinghouse Electric & Mfg Co Dual anode
US1868052A (en) * 1929-11-13 1932-07-19 Udylite Process Company Anode
FR697729A (en) * 1930-02-20 1931-01-21 Udylite Process Company Anode refinements
US2313876A (en) * 1940-06-18 1943-03-16 Westinghouse Electric & Mfg Co Method of making balls
US2614317A (en) * 1949-08-19 1952-10-21 Deussen Emil Method of making metal balls
US3300396A (en) * 1965-11-24 1967-01-24 Charles T Walker Electroplating techniques and anode assemblies therefor

Also Published As

Publication number Publication date
CA1177779A (en) 1984-11-13
ATE15914T1 (en) 1985-10-15
DE3036937C2 (en) 1983-05-19
DE3036937A1 (en) 1982-04-08
EP0048794B2 (en) 1990-03-07
ES269127Y (en) 1984-01-01
GR75050B (en) 1984-07-12
EP0048794A1 (en) 1982-04-07
ES269127U (en) 1983-06-16
US4447298A (en) 1984-05-08

Similar Documents

Publication Publication Date Title
DE102007017754B4 (en) Method for producing a workpiece with at least one free space
DE19883018C2 (en) Methods of machining a surface of a mold using an electric discharge, electrode used in such machining, and methods of manufacturing such an electrode
DE102007017762B4 (en) Method for producing a workpiece with at least one free space
DE10296884T5 (en) Production of solid state electronic components
EP0048794B1 (en) Use of spherical packings for galvanic baths and process for the production of such packings and of anode cages
DE69013640T2 (en) ELECTROEROSION ELECTRODE AND METHOD FOR THE PRODUCTION THEREOF.
DE3874106T2 (en) MECHANICAL PLATING PROCESS.
AT402436B (en) COATING BASE ON COPPER BASE
DE3203893A1 (en) ELECTRIC CONTACT
DE2256739B2 (en) Method of manufacturing an electrolytic capacitor
DE8026170U1 (en) FILLED BODIES FOR ANODE CONTAINERS TO BE INSERTED IN GALVANIC BATHS
EP0338401B1 (en) Powder-metallurgical process for the production of a semi-finished product for electrical contacts made from a composite material based on silver and iron
DE1771612C3 (en) Process for the production of a porous shaped body consisting of metal-coated abrasive particles
DE3049304C2 (en)
DE1933455A1 (en) Cell-like, rigid, three-dimensional body, its manufacturing process and tools for electrolytic processing
WO2024133737A1 (en) Metal body and element for producing the metal body
DE2265265C3 (en) Semi-finished contact spring products for the manufacture of potentiometer sliders
DE1589786B2 (en) PROCESS FOR MANUFACTURING VALVE METAL SINTER ANODES FOR ELECTROLYTE CAPACITORS
DE2143843C3 (en) Process for the production of two-layer contact pieces as a molded part
EP1249518B1 (en) Use of substantially oxygen-free, dendritic and uncoated copper for galvanic plating of printing cylinders
DE2726480A1 (en) ELECTRICAL CONTACT MATERIAL
DE3507341A1 (en) Method for forming electrically conductive tracks on a substrate
DE2224392B2 (en) Bipolar conductive particle for the electrodeposition of metals
DE2037022A1 (en) Electrolytic coulomb meter cell - with gold plated soft wire electrode
DE3142488A1 (en) Method of electrolytically graining aluminium plates or strips by means of alternating current and constant cathode potential

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH FR GB IT NL SE

17P Request for examination filed

Effective date: 19820616

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 15914

Country of ref document: AT

Date of ref document: 19851015

Kind code of ref document: T

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: KABEL- UND METALLWERKE GUTEHOFFNUNGSHUETTE AKTIEN

Effective date: 19860221

NLR1 Nl: opposition has been filed with the epo

Opponent name: KABEL-UND METALLWERKE GUTEHOFFNUNGSHUETTE AG

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: CUIVRE ET ALLIAGES

Effective date: 19860510

NLR1 Nl: opposition has been filed with the epo

Opponent name: CUIVRE ET ALLIAGES

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: KABEL- UND METALLWERKE GUTEHOFFNUNGSHUETTE AKTIEN

Effective date: 19860221

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 19900307

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE CH FR GB IT NL SE

ITF It: translation for a ep patent filed
ET3 Fr: translation filed ** decision concerning opposition
NLR2 Nl: decision of opposition
NLR3 Nl: receipt of modified translations in the netherlands language after an opposition procedure
ITTA It: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 81104888.3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000511

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20000517

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20000519

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20000522

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000523

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20000524

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20000615

Year of fee payment: 20

BE20 Be: patent expired

Free format text: 20010624 *HOLL & CIE G.M.B.H.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20010623

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20010623

Ref country code: CH

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20010623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20010624

Ref country code: AT

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20010624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 20010629

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Effective date: 20010623

EUG Se: european patent has lapsed

Ref document number: 81104888.3

NLV7 Nl: ceased due to reaching the maximum lifetime of a patent

Effective date: 20010624