EP0048794B1 - Use of spherical packings for galvanic baths and process for the production of such packings and of anode cages - Google Patents
Use of spherical packings for galvanic baths and process for the production of such packings and of anode cages Download PDFInfo
- Publication number
- EP0048794B1 EP0048794B1 EP81104888A EP81104888A EP0048794B1 EP 0048794 B1 EP0048794 B1 EP 0048794B1 EP 81104888 A EP81104888 A EP 81104888A EP 81104888 A EP81104888 A EP 81104888A EP 0048794 B1 EP0048794 B1 EP 0048794B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- anode
- packings
- spherical
- balls
- wire
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D17/00—Constructional parts, or assemblies thereof, of cells for electrolytic coating
- C25D17/10—Electrodes, e.g. composition, counter electrode
- C25D17/12—Shape or form
Definitions
- the invention relates to the use of spherical fillers for anode containers to be used in electroplating baths and to a method for their production.
- the invention further relates to a method for producing an anode container to be used in galvanic baths.
- High-purity anode metal fillings e.g. B. of copper, and for acidic baths, eg. B. copper alloyed with phosphorus used.
- Auxiliary anodes in the form of titanium baskets, which are filled with the appropriate metal fillers, are often used for the electroplating of printing cylinders, printed circuit boards or other electronic device parts. It is important that these auxiliary anodes have the same filling over their entire area, so that the same possible deposition weight and the same deposition area are ensured during the whole operation, which are of crucial importance for exact support layers. These requirements are not met with the granules made of electrolytic copper scrap or sections of copper wires known in practice.
- the balls are produced in a known manner using the casting process, then a more or less strong cast skin is formed on the surface of the ball, which is also irregularly distributed over the surface.
- the electrolytic conductivity of this mostly oxidized cast skin is greatly reduced, which is why uneven erosion and hollows occur on these balls.
- the known packing balls are therefore not well suited for the electroplating of high-quality electronic device parts, because they cannot be used to achieve uniformly thin support layers that also extend over larger areas, with or without gaps.
- the invention is therefore based on the object of using improved spherical fillers for anode containers which consist of a homogeneous mass throughout and whose uniformly shaped surface is free from oxydod. Like. Layers is.
- spherical fillers made of wire pieces of anode material formed into spheres are used according to the invention.
- a preferred method for producing these packing elements is characterized in that pieces of a predetermined length are cut from a wire made of copper alloyed with phosphorus as the anode material and then these pieces of wire are made spherical by mechanical processing.
- anode containers are produced by first cutting pieces of a predetermined length from a wire made of the anode material to form the filler, then bringing these wire pieces into spherical shape by mechanical processing and finally filling these balls into the mesh basket.
- the diameter of the packing balls is advantageously designed so that the balls individually roll through the loading opening of the anode container and its diameter is slightly smaller than the depth, but larger than half the depth of the anode container.
- the most common ball diameters are therefore 5-30 mm, preferably 10-15 mm. If the balls are so large that only a single ball passes through the loading opening, there can be no blockages.
- the balls in the specified sizes also only form a stack layer. Optimal results are achieved if the balls of the filling of an anode container are the same size.
- the wire to be formed into balls can be produced in the usual way by rolling, casting or pressing. Depending on the intended use, it will consist of pure or alloyed metal.
- the wire diameter can be determined on a trial basis. Experience has shown that it is about 20% below that of the ball diameter.
- the drawing shows part of an anode container in section with the packing elements according to the invention.
- Packing balls 3 are filled in an anode basket 1 made of a titanium wire mesh 2. Since the diameter d of the balls is slightly smaller than the depth t of the basket, the balls are stacked in one layer. Even if these balls are slightly offset or shifted, the contact surface is always the same due to the evenly rounded surface of the balls. Due to the spherical shape, the packing elements will always be arranged without gaps and without blocking, even when refilling, and thus enable a uniform filling level.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electroplating Methods And Accessories (AREA)
- Electrolytic Production Of Metals (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
Die Erfindung betrifft die Verwendung von kugelförmigen Füllkörpern für in galvanische Bäder einzusetzende Anodenbehälter sowie ein Verfahren zu deren Herstellung. Ferner betrifft die Erfindung ein Verfahren zum Herstellen eines in galvanische Bäder einzusetzenden Anodenbehälters.The invention relates to the use of spherical fillers for anode containers to be used in electroplating baths and to a method for their production. The invention further relates to a method for producing an anode container to be used in galvanic baths.
In galvanischen Hochleistungsanlagen werden für zyanidische Bäder hochreineAnodenmetall-Füllkörper, z. B. aus Kupfer, und für saure Bäder legierte Füllkörper, z. B. Kupfer mit Phosphor legiert, verwendet. Beim Galvanisieren von Druckzylindern, Leiterplatten oder anderen elektronischen Geräteteilen kommen häufig Hilfsanoden in Form von Titankörben, die mit den entsprechenden Metall-Füllkörpern gefüllt sind, zum Einsatz. Dabei ist es wichtig, daß diese Hilfsanoden über ihre gesamte Fläche eine gleiche Füllung aufweisen, damit während des ganzen Betriebes ein möglichst gleiches Abscheidungsgewicht und eine gleiche Abscheidungsfläche gewährleistet sind, die für exakte Auflageschichten von ausschlaggebender Bedeutung sind. Mit den in der Praxis bekannten Granalien aus Elektrolyt-Kupfer-Schrott oder Abschnittsstücken von Kupferdrähten werden diese Forderungen nicht erfüllt. Die hierbei sich ergebenden ungleichen Kontaktflächen führen zu unterschiedlichen Abscheidungsflächen und die Sperrigkeit der Füllkörper begünstigt häufig eine Brückenbildung an den Einfüllöffnungen und im Innern der Anodenkörbe. Mit diesem bekannten Füllkörper ist es vor allem wegen der unkontrollierbaren Beschickung notwendig, die galvanische Anlage täglich für einen bestimmten Zeitraum außer Betrieb zu setzen. Fällt dann während dieser Auffüllphase die Betriebstemperatur ab, dann muß die Anlage vor Inbetriebnahme wieder aufgeheizt werden, wodurch häufig mehrstündige Betriebsausfälle entstehen. Mit kugelförmigen Füllkörpern (GB-PS 357 977; US-PS 3 300 396) konnten diese Beschickungsschwierigkeiten weitgehend behoben werden. Werden die Kugeln aber in bekannter Weise im Gießverfahren hergestellt, dann bildet sich auf der Kugeloberfläche eine mehr oder weniger starke Gußhaut, die zudem noch unregelmäßig auf die Oberfläche verteilt ist. Die elektrolytische Leitfähigkeit dieser meist oxydierten Gußhaut ist stark vermindert, weshalb sich auf diesen Kugeln ungleichmäßige Abtragungen und Aushöhlungen einstellen. Die bekannten FüllkörperKugeln eignen sich daher zum Galvanisieren von hochwertigen elektronischen Geräteteilen nicht gut, weil mit ihnen keine gleichmäßig dünnen Auflageschichten, die sich auch über größere Flächen, mit oder ohne Zwischenräume, erstrekken, erzielt werden können. Werden nach einem anderen Vorschlag (DE-GM 1 985 826) Granalien aus Elektrolyt-Kupfer-Schrotten zu kugeligen Formkörpern umgeformt, dann entstehen keine homogen verdichtete Kugelformen, sondern sehr unterschiedlich zusammengesetzte und mit Spalten und Rissen versehene Schrottkugeln, die eine ungleichförmige Oberfläche aufweisen. Eine unregelmäßige und ungleichförmige Kugeloberfläche begünstigt wiederum ein ungleichmäßiges Abtragen des Werkstoffes und ein verstärktes Aushöhlen der Kugeloberfläche. Bei der Herstellung von Kugeln aus Gußstahl ist es schon bekannt (DE-C-217 938), von einem runden Draht entsprechend lange Stücke abzuschneiden und diese einem Kugel-Preßwerkzeug zuzuführen. Hierbei handelt es sich nicht um aus einem Anodenwerkstoff geformte Füllkörper für Anodenbehälter.High-purity anode metal fillings, e.g. B. of copper, and for acidic baths, eg. B. copper alloyed with phosphorus used. Auxiliary anodes in the form of titanium baskets, which are filled with the appropriate metal fillers, are often used for the electroplating of printing cylinders, printed circuit boards or other electronic device parts. It is important that these auxiliary anodes have the same filling over their entire area, so that the same possible deposition weight and the same deposition area are ensured during the whole operation, which are of crucial importance for exact support layers. These requirements are not met with the granules made of electrolytic copper scrap or sections of copper wires known in practice. The resulting unequal contact surfaces lead to different deposition surfaces and the bulkiness of the packing often favors bridging at the filling openings and inside the anode baskets. With this known filler body, it is necessary, above all because of the uncontrollable loading, to shut down the galvanic system daily for a certain period of time. If the operating temperature then drops during this filling phase, the system must be heated up again before commissioning, which often results in operating failures lasting several hours. With spherical fillers (GB-PS 357 977; US-
Der Erfindung liegt daher die Aufgabe zugrunde, verbesserte kugelförmige Füllkörper für Anodenbehälter anzuwenden, die aus durchgehend homogener Masse bestehen und deren gleichmäßig geformte Oberfläche frei von Oxydod. dgl. Belagschichten ist.The invention is therefore based on the object of using improved spherical fillers for anode containers which consist of a homogeneous mass throughout and whose uniformly shaped surface is free from oxydod. Like. Layers is.
Zur Lösung dieser Aufgabe werden gemäß der Erfindung kugelförmige Füllkörper aus zu Kugeln umgeformten Drahtstücken aus Anodenwerkstoff verwendet.In order to achieve this object, spherical fillers made of wire pieces of anode material formed into spheres are used according to the invention.
Ein bevorzugtes Verfahren zum Herstellen dieser Füllkörper ist dadurch gekennzeichnet, daß von einem aus mit Phosphor legiertem Kupfer als Anodenwerkstoff bestehenden Draht Stücke vorbestimmter Länge abgetrennt und dann diese Drahtstücke durch mechanische Bearbeitung in Kugelform gebracht werden.A preferred method for producing these packing elements is characterized in that pieces of a predetermined length are cut from a wire made of copper alloyed with phosphorus as the anode material and then these pieces of wire are made spherical by mechanical processing.
Nach einem weiteren vorteilhaften Verfahren werden Anodenbehälter dadurch hergestellt, daß zunächst zur Bildung der Füllkörper von einem aus dem Anodenwerkstoff bestehenden Draht Stücke vorbestimmter Länge abgetrennt werden, dann diese Drahtstücke durch mechanische Bearbeitung in Kugelform gebracht und schließlich diese Kugeln in den Geflechtkorb eingefüllt werden.According to a further advantageous method, anode containers are produced by first cutting pieces of a predetermined length from a wire made of the anode material to form the filler, then bringing these wire pieces into spherical shape by mechanical processing and finally filling these balls into the mesh basket.
Durch die Verwendung gleichmäßig geformter und geschichteter Kugeln ergeben sich gleiche Abscheidungsflächen und im wesentlichen auch gleiches Füllgewicht.The use of uniformly shaped and layered balls results in the same separation surfaces and essentially the same filling weight.
Auch bei weitgehendem Verbrauch der Kugeln kommt es nicht zu zusammengebackenen Füllungszonen, so daß sich ein ununterbrochener Betrieb ohne Ausfallzeiten erreichen läßt. Die umgeformten Drahtstücke aus homogenem Anodenwerkstoff ergeben geometrisch genau definierte Kugelkörper, die frei von nachteiliger Guß- bzw. Oxydhaut sind. Die mechanische Bearbeitung führt zu einem homogenen, gleichmäßig verdichteten und verfestigten Werkstoffgefüge. Daraus ergibt sich eine gute elektrische Kontakteigenschaft und ein gleichmäßiges Abtragen des Anodenwerkstoffes rund um die Kugel. Besonders vorteilhaft sind Kugeln, die aus mit Phosphor legiertem Kupfer hergestellt werden. Ein mit diesen Füllkörpern gefüllter Anodenbehälter gewährleistet besonders lange Betriebszeiten bei hoher Leistung.Even when the balls are largely used, there are no caked filling zones, so that uninterrupted operation can be achieved without downtimes. The formed wire pieces made of homogeneous anode material result in geometrically precisely defined spherical bodies that are free from disadvantageous cast or oxide skin. Mechanical processing leads to a homogeneous, evenly compressed and solidified material structure. This results in a good electrical contact property and even removal of the anode material around the ball. Balls made of copper alloyed with phosphorus are particularly advantageous. An anode container filled with these packing elements guarantees particularly long operating times with high performance.
Der Durchmesser der Füllkörperkugeln ist vorteilhaft so ausgelegt, daß die Kugeln einzeln durch die Beschickungsöffnung des Anodenbehälters rollen und ihr Durchmesser etwas kleiner als die Tiefe, jedoch größer als die halbe Tiefe des Anodenbehälters ist. Die gebräuchlichsten Kugeldurchmesser sind daher 5-30 mm, vorzugsweise 10-15 mm. Sind somit die Kugeln so groß, daß stets nur eine einzige Kugel durch die Beschickungsöffnung geht, so kann es zu keinen Sperrungen kommen. Die Kugeln in den angegebenen Größen bilden auch nur eine Stapelschicht. Optimale Ergebnisse werden erzielt, wenn die Kugeln einer Füllung eines Anodenbehälters gleich groß sind.The diameter of the packing balls is advantageously designed so that the balls individually roll through the loading opening of the anode container and its diameter is slightly smaller than the depth, but larger than half the depth of the anode container. The most common ball diameters are therefore 5-30 mm, preferably 10-15 mm. If the balls are so large that only a single ball passes through the loading opening, there can be no blockages. The balls in the specified sizes also only form a stack layer. Optimal results are achieved if the balls of the filling of an anode container are the same size.
Der zu Kugeln umzuformende Draht kann auf übliche Weise durch Walzen, Gießen oder Pressen hergestellt werden. Je nach dem Verwendungszweck wird er aus reinem oder legiertem Metall bestehen. Der Drahtdurchmesser läßt sich versuchsweise ermitteln. Erfahrungsgemäß liegt er etwa 20% unter dem des Kugeldurchmessers. Die fortlaufend vom Draht abgeschnittenen Zylinderstücke gelangen anschließend zwischen Preßwerkzeuge, die fortlaufend Kugeln pressen und auswerfen. Mit diesem einfachen und vorteilhaften Herstellungsverfahren lassen sich die Kugeln vollautomatisch und daher kostengünstig herstellen.The wire to be formed into balls can be produced in the usual way by rolling, casting or pressing. Depending on the intended use, it will consist of pure or alloyed metal. The wire diameter can be determined on a trial basis. Experience has shown that it is about 20% below that of the ball diameter. The cylinder pieces, which are continuously cut from the wire, then pass between pressing tools, which continuously press and eject balls. With this simple and advantageous manufacturing process, the balls can be produced fully automatically and therefore inexpensively.
Die Zeichnung zeigt einen Teil eines Anodenbehälters im Schnitt mit den erfindungsgemäßen Füllkörpern.The drawing shows part of an anode container in section with the packing elements according to the invention.
In einem Anodenkorb 1 aus einem Titandrahtgeflecht 2 sind Füllkörperkugeln 3 eingefüllt. Da der Durchmesser d der Kugeln geringfügig kleiner als die Tiefe t des Korbes ist, kommt es zu einer einschichtigen Aufstapelung der Kugeln. Auch wenn diese Kugeln dabei etwas versetzt bzw. verschoben sind, ist infolge der gleichmäßig gerundeten Oberfläche der Kugeln die Kontaktfläche stets die gleiche. Durch die Kugelform werden sich die Füllkörper auch beim Nachfüllen stets lückenlos und ohne Sperrung einordnen und so einen gleichmäßigen Füllstand ermöglichen.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT81104888T ATE15914T1 (en) | 1980-09-30 | 1981-06-24 | USE OF SPHERICAL FILLERS FOR GALVANIC BATHS AND PROCESSES FOR THE MANUFACTURE OF THESE FILLERS AND ANODE CONTAINERS. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3036937A DE3036937C2 (en) | 1980-09-30 | 1980-09-30 | Process for the production of packing elements for anode containers and packing elements produced therefrom |
DE3036937 | 1980-09-30 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0048794A1 EP0048794A1 (en) | 1982-04-07 |
EP0048794B1 true EP0048794B1 (en) | 1985-10-02 |
EP0048794B2 EP0048794B2 (en) | 1990-03-07 |
Family
ID=6113249
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP81104888A Expired - Lifetime EP0048794B2 (en) | 1980-09-30 | 1981-06-24 | Use of spherical packings for galvanic baths and process for the production of such packings and of anode cages |
Country Status (7)
Country | Link |
---|---|
US (1) | US4447298A (en) |
EP (1) | EP0048794B2 (en) |
AT (1) | ATE15914T1 (en) |
CA (1) | CA1177779A (en) |
DE (1) | DE3036937C2 (en) |
ES (1) | ES269127Y (en) |
GR (1) | GR75050B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FI874603L (en) * | 1987-10-20 | 1989-04-21 | Outokumpu Oy | FORMSTYCKE FOER ELECTROLYTISK BEHANDLING OCH FOERFARANDE FOER FRAMSTAELLNING AV DETSAMMA. |
US5628887A (en) * | 1996-04-15 | 1997-05-13 | Patterson; James A. | Electrolytic system and cell |
US5744013A (en) * | 1996-12-12 | 1998-04-28 | Mitsubishi Semiconductor America, Inc. | Anode basket for controlling plating thickness distribution |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE217938C (en) * | ||||
US1204127A (en) * | 1915-02-23 | 1916-11-07 | Ferdinand Mora Canda | Process of and apparatus for forging balls. |
US1765706A (en) * | 1927-08-13 | 1930-06-24 | Westinghouse Electric & Mfg Co | Dual anode |
US1868052A (en) * | 1929-11-13 | 1932-07-19 | Udylite Process Company | Anode |
FR697729A (en) * | 1930-02-20 | 1931-01-21 | Udylite Process Company | Anode refinements |
US2313876A (en) * | 1940-06-18 | 1943-03-16 | Westinghouse Electric & Mfg Co | Method of making balls |
US2614317A (en) * | 1949-08-19 | 1952-10-21 | Deussen Emil | Method of making metal balls |
US3300396A (en) * | 1965-11-24 | 1967-01-24 | Charles T Walker | Electroplating techniques and anode assemblies therefor |
-
1980
- 1980-09-30 DE DE3036937A patent/DE3036937C2/en not_active Expired
-
1981
- 1981-06-24 EP EP81104888A patent/EP0048794B2/en not_active Expired - Lifetime
- 1981-06-24 AT AT81104888T patent/ATE15914T1/en not_active IP Right Cessation
- 1981-09-22 US US06/304,373 patent/US4447298A/en not_active Expired - Lifetime
- 1981-09-22 CA CA000386405A patent/CA1177779A/en not_active Expired
- 1981-09-23 GR GR66118A patent/GR75050B/el unknown
- 1981-09-29 ES ES1981269127U patent/ES269127Y/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
CA1177779A (en) | 1984-11-13 |
ATE15914T1 (en) | 1985-10-15 |
DE3036937C2 (en) | 1983-05-19 |
DE3036937A1 (en) | 1982-04-08 |
EP0048794B2 (en) | 1990-03-07 |
ES269127Y (en) | 1984-01-01 |
GR75050B (en) | 1984-07-12 |
EP0048794A1 (en) | 1982-04-07 |
ES269127U (en) | 1983-06-16 |
US4447298A (en) | 1984-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102007017754B4 (en) | Method for producing a workpiece with at least one free space | |
DE19883018C2 (en) | Methods of machining a surface of a mold using an electric discharge, electrode used in such machining, and methods of manufacturing such an electrode | |
DE102007017762B4 (en) | Method for producing a workpiece with at least one free space | |
DE10296884T5 (en) | Production of solid state electronic components | |
EP0048794B1 (en) | Use of spherical packings for galvanic baths and process for the production of such packings and of anode cages | |
DE69013640T2 (en) | ELECTROEROSION ELECTRODE AND METHOD FOR THE PRODUCTION THEREOF. | |
DE3874106T2 (en) | MECHANICAL PLATING PROCESS. | |
AT402436B (en) | COATING BASE ON COPPER BASE | |
DE3203893A1 (en) | ELECTRIC CONTACT | |
DE2256739B2 (en) | Method of manufacturing an electrolytic capacitor | |
DE8026170U1 (en) | FILLED BODIES FOR ANODE CONTAINERS TO BE INSERTED IN GALVANIC BATHS | |
EP0338401B1 (en) | Powder-metallurgical process for the production of a semi-finished product for electrical contacts made from a composite material based on silver and iron | |
DE1771612C3 (en) | Process for the production of a porous shaped body consisting of metal-coated abrasive particles | |
DE3049304C2 (en) | ||
DE1933455A1 (en) | Cell-like, rigid, three-dimensional body, its manufacturing process and tools for electrolytic processing | |
WO2024133737A1 (en) | Metal body and element for producing the metal body | |
DE2265265C3 (en) | Semi-finished contact spring products for the manufacture of potentiometer sliders | |
DE1589786B2 (en) | PROCESS FOR MANUFACTURING VALVE METAL SINTER ANODES FOR ELECTROLYTE CAPACITORS | |
DE2143843C3 (en) | Process for the production of two-layer contact pieces as a molded part | |
EP1249518B1 (en) | Use of substantially oxygen-free, dendritic and uncoated copper for galvanic plating of printing cylinders | |
DE2726480A1 (en) | ELECTRICAL CONTACT MATERIAL | |
DE3507341A1 (en) | Method for forming electrically conductive tracks on a substrate | |
DE2224392B2 (en) | Bipolar conductive particle for the electrodeposition of metals | |
DE2037022A1 (en) | Electrolytic coulomb meter cell - with gold plated soft wire electrode | |
DE3142488A1 (en) | Method of electrolytically graining aluminium plates or strips by means of alternating current and constant cathode potential |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH FR GB IT NL SE |
|
17P | Request for examination filed |
Effective date: 19820616 |
|
ITF | It: translation for a ep patent filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH FR GB IT LI NL SE |
|
REF | Corresponds to: |
Ref document number: 15914 Country of ref document: AT Date of ref document: 19851015 Kind code of ref document: T |
|
ET | Fr: translation filed | ||
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
26 | Opposition filed |
Opponent name: KABEL- UND METALLWERKE GUTEHOFFNUNGSHUETTE AKTIEN Effective date: 19860221 |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: KABEL-UND METALLWERKE GUTEHOFFNUNGSHUETTE AG |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
26 | Opposition filed |
Opponent name: CUIVRE ET ALLIAGES Effective date: 19860510 |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: CUIVRE ET ALLIAGES |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
R26 | Opposition filed (corrected) |
Opponent name: KABEL- UND METALLWERKE GUTEHOFFNUNGSHUETTE AKTIEN Effective date: 19860221 |
|
PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
27A | Patent maintained in amended form |
Effective date: 19900307 |
|
AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): AT BE CH FR GB IT NL SE |
|
ITF | It: translation for a ep patent filed | ||
ET3 | Fr: translation filed ** decision concerning opposition | ||
NLR2 | Nl: decision of opposition | ||
NLR3 | Nl: receipt of modified translations in the netherlands language after an opposition procedure | ||
ITTA | It: last paid annual fee | ||
EAL | Se: european patent in force in sweden |
Ref document number: 81104888.3 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20000511 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20000517 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20000519 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20000522 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20000523 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20000524 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20000615 Year of fee payment: 20 |
|
BE20 | Be: patent expired |
Free format text: 20010624 *HOLL & CIE G.M.B.H. |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20010623 Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20010623 Ref country code: CH Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20010623 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20010624 Ref country code: AT Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20010624 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 20010629 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Effective date: 20010623 |
|
EUG | Se: european patent has lapsed |
Ref document number: 81104888.3 |
|
NLV7 | Nl: ceased due to reaching the maximum lifetime of a patent |
Effective date: 20010624 |