[go: up one dir, main page]

EP0044758B1 - Terminating arrangement for a microwave transmission line with minimal v.s.w.r. - Google Patents

Terminating arrangement for a microwave transmission line with minimal v.s.w.r. Download PDF

Info

Publication number
EP0044758B1
EP0044758B1 EP81400958A EP81400958A EP0044758B1 EP 0044758 B1 EP0044758 B1 EP 0044758B1 EP 81400958 A EP81400958 A EP 81400958A EP 81400958 A EP81400958 A EP 81400958A EP 0044758 B1 EP0044758 B1 EP 0044758B1
Authority
EP
European Patent Office
Prior art keywords
layer
capacitors
line
resistive layer
micro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81400958A
Other languages
German (de)
French (fr)
Other versions
EP0044758A1 (en
Inventor
Sylviane Bitoune
Pierre Dufond
François Herrbach
Maurice Lecreff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0044758A1 publication Critical patent/EP0044758A1/en
Application granted granted Critical
Publication of EP0044758B1 publication Critical patent/EP0044758B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/24Terminating devices
    • H01P1/26Dissipative terminations
    • H01P1/268Strip line terminations

Definitions

  • the invention relates to a transmission line termination device in which it is sought to minimize the standing wave rate originating from the reflection of microwaves on a resistive load placed at the end of the line.
  • Fréquemmen is carried out t of such fillers re- sistives, value equal to the transmission line of the characteristic impedance module in the form of an engraved deposition on an insulator, in particular an alloy layer of nickel and of chromium deposited on an insulating ceramic.
  • the first condition is easy to achieve, in the case of charges deposited by etching using a conventional adjustment process which can be erosion by sandblasting or attack by laser beam.
  • the second condition is more difficult to achieve because we observe capacitive or inductive effects from the non-negligible surface and irregularities of the nickel-chromium layer.
  • This surface cannot be reduced either in width, in length or in two dimensions without observing certain drawbacks.
  • a thinner layer of nickel-chromium, and of smaller surface, therefore more resistive cannot withstand certain thermal dissipations, which limits the power withstand of the device;
  • a layer of normal thickness but for example, narrower and longer, to present the same surface would give a discontinuity, and therefore an energy reflection, producing undesirable standing waves, at the transition point between the conductor of the microstrip line and the resistive layer.
  • the invention aims to remedy these drawbacks by seeking to correct the impedance of the resistive load, either by modifying its shape, or by adding a capacitance thereto, or finally by combining the two aforementioned means.
  • a microstrip line element comprises a dielectric substrate 1, for example made of pure alumina, in the form of an elongated and flat parallelepiped having two large faces: one of these faces is entirely metallized and constitutes the ground plane 2. The other n 'is metallized only over part of its width and constitutes a strip 3 which is none other than the upper conductor of the microstrip line.
  • This strip is produced for example by depositing successive layers of chromium, copper and gold. She is connects along a transverse straight line 11 to a layer 4 of resistive alloy constituting a termination charge.
  • This layer 4 is itself connected along a transverse straight line 12 to a metallization 5 forming a ground electrode and connected to the ground plane by a connection of negligible ohmic resistance.
  • the connection to the ground plane can be carried out either by etching a metal layer deposited on the terminal face 6 of the substrate, or by welding a flexible metal strip, not shown, or even by a metallized hole (not shown) between metallizations 5 and 2.
  • Layer 4 is constituted for example by a deposit of nickel and chromium alloy, carried out by evaporation under vacuum and reaching a few hundred angstroms (a few dezames of nancreters). It is known to obtain a layer resistance of 25 ohms per square by this method. To obtain a resistance of 50 ohms between lines 11 and 12, a deposit twice as long as wide is then carried out, that is to say in the case of an alumina substrate 0.4 mm thick, with a strip 3 of 0.35 mm in width giving substantially a microstrip line of 50 ohms, a layer 4 of 0.7 mm in length.
  • the deposit of nickel and chromium alloy can advantageously be carried out over a longer length than is necessary so that the useful length can then be easily adjusted by depositing a layer of gold on the parts. to short-circuit, by protecting, during the gilding operation, the useful part of the load using a resin layer obtained by photomasking.
  • the standing wave rate observed for a frequency of 18 GHz, is greater than 3. This is due in particular to the fact that at such frequency, the wavelength in the propagation medium (l alumina of the substrate) is 6.5 mm, length before which that of a resistive layer of 0.7 mm is by no means negligible. The resistance therefore does not act as a localized constant, which partly explains the importance of the standing wave rate observed.
  • layer 4 is given in the form of a trapezoid, the large base of which is the connection line 11 and the small base MN is connected to the metallization 5 over a length as small as possible while obtaining good return contact. mass is about 0.03 mm.
  • R (ohms) of the load is given by the formula: in which R o denotes the resistance per square (in ohms) of the resistive layer 4, h is the height of the trapezoid formed by this layer, and "In" means that we take a natural logarithm of the ratio a / b. For example, if we have: a 50 ohm load is obtained and a standing wave rate of the order of 1.7 for a frequency of 18 GHz.
  • a transverse conductive strip 30 is inserted, closer to the microstrip 3 than to the metallized layer 5, leading to two metallizations 31 and 32, which constitute the armatures of capacitors, the other armature of which is the ground plane.
  • the two metallizations measure 100 microns in width by 300 microns in length and are connected together by a band 30 of width equal to one hundred microns, distant about 200 microns from line 11.
  • the standing wave rate observed is for example 1.6 to 18 GHz.
  • the preceding characteristics are combined.
  • a standing wave rate of 1.3 is observed for a frequency of 18 GHz.
  • the invention also applies to lines of the "stripline" type where two ground planes are separated from a single central strip by two dielectric substrates.
  • the strip can be engraved on one of the substrates according to the same characteristics as those shown in fig. 2 to 5.
  • FIG. 6 one end of such a line, comprising, on a substrate 1, visible only between the metallizations, a conductive strip 3 deposited by etching between two lateral strips 61 and 62 deposited at the same time as the strip 3 and connected together by a deposit 60 of the same kind, constituting a mass return.
  • a resistive layer 4 of trapezoidal shape is deposited so as to be connected to the strip 3 on the one hand and to the deposit 60 on the other hand.
  • Capacities 63 and 64 consist of insulating deposits on the strips 61 and 62, deposits then covered with a conductive layer connected to layer 4 by connections 65 and 66, connected to layer 4 by two small pads 67 and 68 constituted by deposit of gold.
  • capacitors 63 and 64 It is also possible to use bare pads of ceramic capacitors to form the capacitors 63 and 64.

Landscapes

  • Non-Reversible Transmitting Devices (AREA)
  • Waveguides (AREA)

Description

L'invention concerne un dispositif de terminaison de ligne de transmission dans lequel on cherche à rendre minimal le taux d'ondes stationnaires provenant de la réflexion des micro- ondes sur une charge résistive placée en bout de ligne.The invention relates to a transmission line termination device in which it is sought to minimize the standing wave rate originating from the reflection of microwaves on a resistive load placed at the end of the line.

On réalise fréquemment de telles charges ré- sistives, de valeur égale au module de l'impédance caractéristique de la ligne de transmission, sous la forme d'un dépôt gravé sur un isolant, notamment d'une couche d'alliage de nickel et de chrome déposée sur une céramique isolante.Fréquemmen is carried out t of such fillers re- sistives, value equal to the transmission line of the characteristic impedance module in the form of an engraved deposition on an insulator, in particular an alloy layer of nickel and of chromium deposited on an insulating ceramic.

Cette technique est particulièrement intéressante dans le cas de lignes du type »microbande« (de l'anglais »microstrip«) par exemple dans la fabrication des coupleurs directifs dans lesquels il existe une voie dite »découplée« où toute l'énergie hyperfréquence doit être absorbée, et cela même dans des bandes de fréquences s'élevant jusqu'à 20 GHz.This technique is particularly advantageous in the case of lines of the "microstrip" type (for example "microstrip"), for example in the manufacture of directional couplers in which there is a so-called "decoupled" channel where all the microwave energy must be absorbed, even in frequency bands up to 20 GHz.

Elle est applicable également aux lignes d'un type analogue à deux plans de masse (en anglais »stripline«) et aux lignes coplanaires.It is also applicable to lines of a type analogous to two ground planes (in English "stripline") and to coplanar lines.

Dans tous les cas la charge absorbante doit répondre à deux exigences:

  • 1° / avoir une impédance dont la partie réelle est égale à l'impédance caractéristique de la ligne;
  • 2° avoir une partie imaginaire aussi voisine que possible de zéro.
In all cases, the absorbent filler must meet two requirements:
  • 1 ° / have an impedance the real part of which is equal to the characteristic line impedance;
  • 2 ° to have an imaginary part as close as possible to zero.

La première condition est facile à réaliser, dans le cas des charges déposées par gravure en utilisant un procédé classique d'ajustage qui peut être l'érosion au jet de sable ou l'attaque par rayon laser.The first condition is easy to achieve, in the case of charges deposited by etching using a conventional adjustment process which can be erosion by sandblasting or attack by laser beam.

La deuxième condition est plus difficile à réaliser car on observe des effets capacitifs ou inductifs provenant de la surface non négligeable et des irrégularités de la couche de nickel-chrome. On ne peut diminuer cette surface soit en largeur, soit en longueur, soit dans les deux dimensions sans observer certains inconvénients. D'une part, en effet, une couche plus mince de nickel-chrome, et de moindre surface, donc plus résistive, ne peut supporter certaines dissipations thermiques, ce qui limite la tenue puissance du dispositif; d'autre part, une couche d'épaisseur normale mais par exemple, plus étroite et plus longue, pour présenter la même surface, donnerait une discontinuité, et donc une réflexion d'énergie, produisant des ondes stationnaires indésirables, au point de transition entre le conducteur de la ligne microbande et la couche résistive.The second condition is more difficult to achieve because we observe capacitive or inductive effects from the non-negligible surface and irregularities of the nickel-chromium layer. This surface cannot be reduced either in width, in length or in two dimensions without observing certain drawbacks. On the one hand, in fact, a thinner layer of nickel-chromium, and of smaller surface, therefore more resistive, cannot withstand certain thermal dissipations, which limits the power withstand of the device; on the other hand, a layer of normal thickness but for example, narrower and longer, to present the same surface, would give a discontinuity, and therefore an energy reflection, producing undesirable standing waves, at the transition point between the conductor of the microstrip line and the resistive layer.

Il est connu du brevet US-A-3 582 833 un dispositif de terminaison de ligne, dans la technologie à deux plans de masse, dans lequel la ligne microbande, située dans un plan entre les deux plans de masse, est prolongée par un dépôt résistif rectangulaire, de même largeur que la ligne microbande. Une liaison électrique est établie entre ce dépôt résistif et au moins un plan de masse au moyen d'une lame de ressort, dorée en surface et inclinée par rapport aux plans de la ligne et de masse. A l'effet de peau de la couche d'or s'ajoute un effet capacitif distribué le long de la lame de ressort, qui réunit ainsi la terminaison de la ligne à la masse. Cette solution n'est pas applicable à des circuits plans, c'est-à-dire de types hybrides ou intégrés.It is known from US-A-3,582,833 a line termination device, in the technology with two ground planes, in which the microstrip line, located in a plane between the two ground planes, is extended by a deposition resistive rectangular, of the same width as the microstrip line. An electrical connection is established between this resistive deposit and at least one ground plane by means of a leaf spring, gilded at the surface and inclined relative to the planes of the line and ground. To the skin effect of the gold layer is added a capacitive effect distributed along the leaf spring, which thus joins the termination of the line to ground. This solution is not applicable to flat circuits, that is to say of hybrid or integrated types.

L'invention vise à remédier à ces inconvénients en cherchant à corriger l'impédance de la charge résistive, soit en modifiant sa forme, soit en lui adjoignant une capacité, soit enfin en combinant les deux moyens précités.The invention aims to remedy these drawbacks by seeking to correct the impedance of the resistive load, either by modifying its shape, or by adding a capacitance thereto, or finally by combining the two aforementioned means.

De façon plus précise, l'invention consiste en un dispositif de charge, adapté à l'impédance caractéristique d'une ligne de transmission hyperfréquence, à structure plane, comportant une ligne microbande déposée sur un substrat isolant et une électrode de masse dont une partie au moins est située dans le plan de la ligne microbande, du côté de son extrémité recevant le dispositif de charge, celui-ci étant caractérisé en ce qu'il comporte:

  • - une couche résistive, réunissant l'extrémité de la ligne microbande à l'électrode de masse, la couche résistive ayant une forme de trapèze dont la grande base est raccordée à la ligne microbande et dont la petite base est raccordée à l'électrode de masse,
  • - deux condensateurs, découplant la résistance de charge à la masse, sont situés de part et d'autre de la couche résistive, sur la même face du substrat isolant, et sont réunis à ladite couche par une liaison électrique en un point plus proche de la grande base du trapèze que de l'électrode de masse.
More specifically, the invention consists of a charging device, adapted to the characteristic impedance of a microwave transmission line, with a flat structure, comprising a microstrip line deposited on an insulating substrate and a ground electrode, part of which at least is situated in the plane of the microstrip line, on the side of its end receiving the charging device, the latter being characterized in that it comprises:
  • - a resistive layer, joining the end of the microstrip line to the ground electrode, the resistive layer having a trapezoid shape whose large base is connected to the microstrip line and whose small base is connected to the mass,
  • - two capacitors, decoupling the load resistance to ground, are located on either side of the resistive layer, on the same face of the insulating substrate, and are joined to said layer by an electrical connection at a point closer to the larger base of the trapezoid than the ground electrode.

L'invention sera mieux comprise, et d'autres caractéristiques apparaitront, au moyen de la description qui suit, et des dessins qui l'accompagnent, parmi lesquels:

  • la fig. 1 est une vue en perspective d'une ligne microbande terminée par une charge gravée, selon l'art connu,
  • les fig. 2 à 6 représentent schématiquement des caractéristiques de diverses réalisations de l'invention.
The invention will be better understood, and other characteristics will appear, by means of the description which follows, and of the accompanying drawings, among which:
  • fig. 1 is a perspective view of a microstrip line terminated by an etched charge, according to known art,
  • fig. 2 to 6 schematically represent characteristics of various embodiments of the invention.

Un élément de ligne microbande, fig. 1, comporte un substrat diélectrique 1, par exemple en alumine pure, sous la forme d'un parallépipède allongé et plat comportant deux grandes faces: l'une de ces faces est entièrement métallisée et constitue le plan de masse 2. L'autre n'est métallisée que sur une partie de sa largeur et constitue une bande 3 qui n'est autre que le conducteur supérieur de la ligne microbande. Cette bande est fabriquée par exemple par dépôt de couches successives de chrome, de cuivre et d'or. Elle se raccorde suivant une ligne droite transversale 11 à une couche 4 d'alliage résistif constituant une charge de terminaison. Cette couche 4 est elle-même raccordée suivant une ligne droite transversale 12 à une métallisation 5 formant électrode de masse et reliée au plan de masse par une connexion de résistance ohmique négligeable. Le raccordement au plan de masse peut s'effectuer soit par gravure d'une couche métallique déposée sur la face terminale 6 du substrat, soit par soudure d'une bande métallique souple, non représentée, soit même par un trou métallisé (non représenté) entre les métallisations 5 et 2.A microstrip line element, fig. 1, comprises a dielectric substrate 1, for example made of pure alumina, in the form of an elongated and flat parallelepiped having two large faces: one of these faces is entirely metallized and constitutes the ground plane 2. The other n 'is metallized only over part of its width and constitutes a strip 3 which is none other than the upper conductor of the microstrip line. This strip is produced for example by depositing successive layers of chromium, copper and gold. She is connects along a transverse straight line 11 to a layer 4 of resistive alloy constituting a termination charge. This layer 4 is itself connected along a transverse straight line 12 to a metallization 5 forming a ground electrode and connected to the ground plane by a connection of negligible ohmic resistance. The connection to the ground plane can be carried out either by etching a metal layer deposited on the terminal face 6 of the substrate, or by welding a flexible metal strip, not shown, or even by a metallized hole (not shown) between metallizations 5 and 2.

La couche 4 est constituée par exemple par un dépôt d'alliage de nickel et de chrome, effectué par évaporation sous vide et atteignant quelques centaines d'angstrôms (quelques dezames de nancrètres). On sait obtenir par cette méthode une résistance de couche de 25 ohms par carré. Pour obtenir une résistance de 50 ohms entre les lignes 11 et 12 on réalise alors un dépôt deux fois plus long que large, soit dans le cas d'un substrat d'alumine de 0,4 mm d'épaisseur, avec une bande 3 de 0,35 mm de largeur donnant sensiblement une ligne microbande de 50 ohms, une couche 4 de 0,7 mm de longueur.Layer 4 is constituted for example by a deposit of nickel and chromium alloy, carried out by evaporation under vacuum and reaching a few hundred angstroms (a few dezames of nancreters). It is known to obtain a layer resistance of 25 ohms per square by this method. To obtain a resistance of 50 ohms between lines 11 and 12, a deposit twice as long as wide is then carried out, that is to say in the case of an alumina substrate 0.4 mm thick, with a strip 3 of 0.35 mm in width giving substantially a microstrip line of 50 ohms, a layer 4 of 0.7 mm in length.

Le dépôt d'alliage de nickel et de chrome peut être effectué avantageusement sur une plus grande longueur qu'il n'est nécessaire de telle sorte que l'on puisse ensuite ajuster facilement la longueur utile en déposant une couche d'or sur les parties à court-circuiter, en protégeant, pendant l'opération de dorure, la partie utile de la charge à l'aide d'une couche de résine obtenue par photomasquage.The deposit of nickel and chromium alloy can advantageously be carried out over a longer length than is necessary so that the useful length can then be easily adjusted by depositing a layer of gold on the parts. to short-circuit, by protecting, during the gilding operation, the useful part of the load using a resin layer obtained by photomasking.

Dans l'exemple choisi, le taux d'onde stationnaire constaté, pour une fréquence de 18 GHz, est supérieur à 3. Ceci est dû notamment au fait qu'à telle fréquence, la longueur d'onde dans le milieu de propagation (l'alumine du substrat) est de 6,5 mm, longueur devant laquelle celle d'une couche résistive de 0,7 mm n'est nullement négligeable. La résistance n'agit donc pas comme une constante localisée, ce qui explique en partie l'importance du taux d'ondes stationnaires observé.In the example chosen, the standing wave rate observed, for a frequency of 18 GHz, is greater than 3. This is due in particular to the fact that at such frequency, the wavelength in the propagation medium (l alumina of the substrate) is 6.5 mm, length before which that of a resistive layer of 0.7 mm is by no means negligible. The resistance therefore does not act as a localized constant, which partly explains the importance of the standing wave rate observed.

Selon une des caractéristiques de l'invention, schématisée à la fig. 2, on donne à la couche 4 la forme d'un trapèze dont la grande base est la ligne de raccordement 11 et la petite base MN se raccorde à la métallisation 5 sur une longueur aussi petite que possible tout en obtenant un bon contact de retour de masse soit environ 0,03 mm. Si l'on appelle a et b les longueurs respectives de la ligne 11 et de la base MN, la résistance R (ohms) de la charge est donnée par la formule:

Figure imgb0001
dans laquelle Ro désigne la résistance par carré (en ohms) de la couche résistive 4, h est la hauteur du trapèze formé par cette couche, et »In« signifie que l'on prend de logarithme népérien du rapport a/b. A titre d'exemple, si l'on a:
Figure imgb0002
on obtient une charge de 50 ohms et un taux d'ondes stationnaires de l'ordre de 1,7 pour une fréquence de 18 GHz.According to one of the characteristics of the invention, shown diagrammatically in FIG. 2, layer 4 is given in the form of a trapezoid, the large base of which is the connection line 11 and the small base MN is connected to the metallization 5 over a length as small as possible while obtaining good return contact. mass is about 0.03 mm. If we call a and b the respective lengths of line 11 and base MN, the resistance R (ohms) of the load is given by the formula:
Figure imgb0001
in which R o denotes the resistance per square (in ohms) of the resistive layer 4, h is the height of the trapezoid formed by this layer, and "In" means that we take a natural logarithm of the ratio a / b. For example, if we have:
Figure imgb0002
a 50 ohm load is obtained and a standing wave rate of the order of 1.7 for a frequency of 18 GHz.

Selon une autre caractéristique de l'invention schématisée à la fig. 3, (dans laquelle on est revenu à une forme rectangulaire pour la couche 4, de même largeur que la bande 3), on intercale une bande conductrice transversale 30, plus proche de la microbande 3 que de la couche métallisée 5, conduisant à deux métallisations 31 et 32, lesquelles constituent les armatures de condensateurs dont l'autre armature est le plan de masse. A titre d'exemple les deux métallisations mesurent 100 microns de largeur sur 300 microns de longueur et sont reliées entre elles par une bande 30 de largeur égale à cent microns, distante d'environ 200 microns de la ligne 11. Pour une largeur de bande 3 de 350 microns, le taux d'ondes stationnaires observé est par exemple de 1,6 à 18 GHz.According to another characteristic of the invention shown diagrammatically in FIG. 3, (in which we returned to a rectangular shape for the layer 4, of the same width as the strip 3), a transverse conductive strip 30 is inserted, closer to the microstrip 3 than to the metallized layer 5, leading to two metallizations 31 and 32, which constitute the armatures of capacitors, the other armature of which is the ground plane. By way of example, the two metallizations measure 100 microns in width by 300 microns in length and are connected together by a band 30 of width equal to one hundred microns, distant about 200 microns from line 11. For a band width 3 of 350 microns, the standing wave rate observed is for example 1.6 to 18 GHz.

Dans un mode de réalisation, schématisé à la fig. 4, on conjugue les caractéristiques précédentes. Pour une bande 30 située à 50 microns de la ligne 11 et des armatures de dimensions 100 x 150 microns on observe un taux d'ondes stationnaires de 1,3 pour une fréquence de 18 GHz.In one embodiment, shown diagrammatically in FIG. 4, the preceding characteristics are combined. For a band 30 located 50 microns from line 11 and armatures of dimensions 100 × 150 microns, a standing wave rate of 1.3 is observed for a frequency of 18 GHz.

On peut aussi constituer la charge résistive par une bande de largeur décroissante suivant une loi de décroissance non linéaire. Selon la caractéristique illustrée par la fig. 5, la décroissance de largeur est d'autant plus faible pour la bande 4 que l'on s'éloigne de la ligne 11 séparant la bande 3 de la charge résistive.One can also constitute the resistive load by a strip of decreasing width according to a nonlinear law of decrease. According to the characteristic illustrated in FIG. 5, the decrease in width is all the smaller for the strip 4 as one moves away from the line 11 separating the strip 3 from the resistive load.

L'invention s'applique également aux lignes du type »stripline« où deux plans de masse sont séparés d'une bande centrale unique par deux substrats diélectriques. La bande peut être gravée sur un des substrats selon les mêmes caractéristi- quesquecellesquel'ontrouveauxfig. 2à5.The invention also applies to lines of the "stripline" type where two ground planes are separated from a single central strip by two dielectric substrates. The strip can be engraved on one of the substrates according to the same characteristics as those shown in fig. 2 to 5.

L'invention s'applique également aux lignes coplanaires. A titre d'exemple on a représenté à la fig. 6 une extrémité d'une telle ligne, comportant, sur un substrat 1, visible uniquement entre les métallisations, une bande conductrice 3 déposée par gravure entre deux bandes latérales 61 et 62 déposées en même temps que la bande 3 et raccordées entre elles par un dépôt 60 de même nature, constituant un retour de masse. Une couche résistive 4 de forme trapézoïdale est déposée de façon à se raccorder à la bande 3 d'une part et au dépôt 60 d'autre part. Des capacités 63 et 64 sont constituées par des dépôts isolants sur les bandes 61 et 62, dépôts recouverts ensuite d'une couche conductrice reliée à la couche 4 par des connexions 65 et 66, raccordées à la couche 4 par deux petites plages 67 et 68 constituées par dépôt d'or.The invention also applies to coplanar lines. By way of example, FIG. 6 one end of such a line, comprising, on a substrate 1, visible only between the metallizations, a conductive strip 3 deposited by etching between two lateral strips 61 and 62 deposited at the same time as the strip 3 and connected together by a deposit 60 of the same kind, constituting a mass return. A resistive layer 4 of trapezoidal shape is deposited so as to be connected to the strip 3 on the one hand and to the deposit 60 on the other hand. Capacities 63 and 64 consist of insulating deposits on the strips 61 and 62, deposits then covered with a conductive layer connected to layer 4 by connections 65 and 66, connected to layer 4 by two small pads 67 and 68 constituted by deposit of gold.

On peut aussi utiliser des pastilles nues de condensateurs céramiques pour constituer les capacités 63 et 64.It is also possible to use bare pads of ceramic capacitors to form the capacitors 63 and 64.

Claims (5)

1. Device for terminating a hyperfrequency transmission line being of plane structure and adapted to the characteristic impedance of said line, comprising a micro-strip line (3) deposited on an insulating substrate (1) and a ground electrode of which at least a part is formed by a metallized layer (5, 60) situated in the plane of the micro-strip line (3) on the side of its end receiving the termination device, the latter being characterized in that it comprises:
- a load resistance which is formed by a resistive layer (4) which connects the end of the microstrip line (3) to the metallized layer (5, 60), the resistive layer (4) having a trapezoidal form of which the major base (11) is connected to the micro-strip line (3) and the minor base is connected to the metallized layer (5),
- two capacitors decoupling the load resistor from ground and situated on either side of the resistive layer (4) on the same side of the insulating substrate (1) and connected to said layer by an electrical connection (30, 65, 66) at a point of said layer which is nearer to the major base (11) of the trapezium than to the minor base thereof in contact with the metallized layer (5, 60).
2. Load device according to claim 1, characterized in that the two capacitors are formed by two metallizations (31, 32) deposited on the face of the substrate (1) which carries the micro-strip line (3), and by the ground plane (2) deposited on the other face of the substrate (1), the material of the substrate (1) being the dielectric of said capacitors, and that the electrical connection (30) between the capacitors and the resistive layer (4) is formed by a conductor strip deposited on the substrate (1) at the same time as the metallizations (31, 32).
3. Load device according to claim 1, characterized in that with a transmission line coplaner with its ground plane (60 + 61 + 62) the two capacitors are formed by two deposits of insulating material which are covered by two metallic deposits forming two discrete capacitors (63, 64) which are positioned on the portions (61, 62) of the ground plane close to the end thereof receiving the load device, and that the electrical connection between the capacitors and the resistive layer (4) is formed by two metal wires (65, 66) which are soldered or welded to the capacitors (63, 64) and the resistive layer (4).
4. Device according to claim 1, characterized in that the resistive layer (4) has a width decreasing from the micro-strip line (3) towards the metallized layer (5) in accordance with a linear decreasing law (rectilinear trapezium sides).
5. Load device according to claim 1, characterized in that the resistive layer (4) has a width which from the micro-strip line (3) towards the metallized layer (5) decreases in accordance with a non-linear decreasing law (curved trapezium sides).
EP81400958A 1980-07-11 1981-06-16 Terminating arrangement for a microwave transmission line with minimal v.s.w.r. Expired EP0044758B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8015497A FR2486720A1 (en) 1980-07-11 1980-07-11 DEVICE FOR TERMINATING A TRANSMISSION LINE, IN HYPERFREQUENCY, AT MINIMUM STATIONARY WAVE RATES
FR8015497 1980-07-11

Publications (2)

Publication Number Publication Date
EP0044758A1 EP0044758A1 (en) 1982-01-27
EP0044758B1 true EP0044758B1 (en) 1984-05-16

Family

ID=9244122

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81400958A Expired EP0044758B1 (en) 1980-07-11 1981-06-16 Terminating arrangement for a microwave transmission line with minimal v.s.w.r.

Country Status (4)

Country Link
US (1) US4413241A (en)
EP (1) EP0044758B1 (en)
DE (1) DE3163615D1 (en)
FR (1) FR2486720A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2525383A1 (en) * 1982-04-16 1983-10-21 Cables De Lyon Geoffroy Delore DISTRIBUTED CONSTANT RESISTORS FOR HEAVY DUTY MICROWAVE DISSIPATION LOADS
US4670723A (en) * 1985-03-18 1987-06-02 Tektronix, Inc. Broad band, thin film attenuator and method for construction thereof
CA1323911C (en) * 1988-10-14 1993-11-02 Diethard Hansen Reflection-free termination of a tem-waveguide
WO1990009040A1 (en) * 1989-02-02 1990-08-09 Fujitsu Limited Film resistor terminator
FR2779577B1 (en) * 1998-06-09 2001-01-05 Deti PASSIVE MICROWAVE COMPONENT WITH RESISTIVE LOAD HAVING INTEGRATED MICROWAVE ADJUSTMENT ELEMENTS
US6600384B2 (en) 2001-05-18 2003-07-29 Endwave Corporation Impedance-compensating circuit
GB2383199B (en) * 2001-12-11 2005-11-16 Marconi Optical Components Ltd Transmission line structures
US20040085150A1 (en) * 2002-10-30 2004-05-06 Dove Lewis R. Terminations for shielded transmission lines fabricated on a substrate
DE10350033A1 (en) * 2003-10-27 2005-05-25 Robert Bosch Gmbh Component with coplanar line
KR20140037456A (en) * 2012-09-18 2014-03-27 한국전자통신연구원 Compact waveguide termination
WO2017122269A1 (en) * 2016-01-12 2017-07-20 三菱電機株式会社 Terminator and high-frequency circuit

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3582833A (en) * 1969-12-23 1971-06-01 Bell Telephone Labor Inc Stripline thin-film resistive termination wherein capacitive reactance cancels out undesired series inductance of resistive film
JPS5132946B1 (en) * 1970-05-04 1976-09-16
US3678417A (en) * 1971-07-14 1972-07-18 Collins Radio Co Planar r. f. load resistor for microstrip or stripline
DE2421784C3 (en) * 1974-05-06 1980-07-17 Siemens Ag, 1000 Berlin Und 8000 Muenchen Line device for transmission lines with coaxial cables for the transmission of digital signals
DE2634812C2 (en) * 1976-08-03 1983-05-05 Spinner-GmbH Elektrotechnische Fabrik, 8000 München HF power terminating resistor
US4118112A (en) * 1976-12-03 1978-10-03 Xerox Corporation Method for reducing power dissipation in tapered resistor devices
JPS5376728A (en) * 1976-12-20 1978-07-07 Toshiba Corp Microwave circuit
JPS5930323B2 (en) * 1976-12-27 1984-07-26 日本電気株式会社 Reflection-free termination for strip line

Also Published As

Publication number Publication date
FR2486720B1 (en) 1984-08-10
US4413241A (en) 1983-11-01
EP0044758A1 (en) 1982-01-27
FR2486720A1 (en) 1982-01-15
DE3163615D1 (en) 1984-06-20

Similar Documents

Publication Publication Date Title
EP0605046B1 (en) Microwave device comprising at least one transition between a transmission line integrated on a substrate and a waveguide
EP0457872B1 (en) Impedance-matching coupler
EP0013222A1 (en) Diode phase shifter for microwaves and electronic scanning antenna comprising same
EP0044758B1 (en) Terminating arrangement for a microwave transmission line with minimal v.s.w.r.
EP0113273B1 (en) Encapsulating housing for a power semiconductor with input-output insulation
FR2797351A1 (en) STRIP-SHAPED LINE FEEDING DEVICE
EP0201409A1 (en) Broad-band directional coupler for a microstrip line
FR2468223A1 (en) HIGH PRECISION ATTENUATOR FOR ELECTRICAL SIGNALS
US7348865B2 (en) Impedance-matching coupler
FR2778025A1 (en) RESONANT DIELECTRIC APPARATUS
EP0040559B1 (en) Piezoelectric convolution device using elastic waves
EP0022700A1 (en) Magnetostatic wave device comprising a conductive-track changing structure
EP0023873A1 (en) Passive power limiter using semiconductors realised in a striplike configuration, and microwave circuit using such a limiter
EP0015610B1 (en) Microwave image-frequency reflecting filter and microwave receiver comprising such a filter
EP0335788B1 (en) Microwave phase shifter
EP0223673B1 (en) Coupling device between an electromagnetic surface wave transmission line and an external microstrip transmission line
FR2837983A1 (en) INTEGRATED MICROWAVE CIRCUIT COMPRISING A SEMICONDUCTOR PELLET
FR2901781A1 (en) RADIOFREQUENCY OR HYPERFREQUENCY MICRO-SWITCH STRUCTURE AND METHOD OF MANUFACTURING SUCH STRUCTURE
EP0586010B1 (en) High frequency circuit device and method for making the same
EP0073165B1 (en) Microwave switch
FR2561444A1 (en) HYPERFREQUENCY SEMICONDUCTOR DEVICE WITH EXTERNAL CONNECTIONS TAKEN BY MEANS OF BEAMS
EP0983616B1 (en) Method and device for connecting two millimetric elements
EP0040567A1 (en) Resistive element using microstrip
EP0296929B1 (en) Balanced microwave transmission line with two coplanar conductors
EP0136941A2 (en) Millimeter-wave switch

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE GB NL

17P Request for examination filed

Effective date: 19820208

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE GB NL

REF Corresponds to:

Ref document number: 3163615

Country of ref document: DE

Date of ref document: 19840620

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920520

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920521

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19920630

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930616

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940301