EP0044758A1 - Dispositif de terminaison d'une ligne de transmission, en hyperfréquence, à taux d'ondes stationnaires minimal - Google Patents
Dispositif de terminaison d'une ligne de transmission, en hyperfréquence, à taux d'ondes stationnaires minimal Download PDFInfo
- Publication number
- EP0044758A1 EP0044758A1 EP81400958A EP81400958A EP0044758A1 EP 0044758 A1 EP0044758 A1 EP 0044758A1 EP 81400958 A EP81400958 A EP 81400958A EP 81400958 A EP81400958 A EP 81400958A EP 0044758 A1 EP0044758 A1 EP 0044758A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- resistive layer
- ground
- conductor
- layer
- resistive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/24—Terminating devices
- H01P1/26—Dissipative terminations
- H01P1/268—Strip line terminations
Definitions
- the invention relates to a transmission line termination device in which it is sought to minimize the standing wave rate originating from the reflection of microwaves on a resistive load placed at the end of the line.
- Such resistive loads are frequently produced, of value equal to the modulus of the characteristic impedance of the transmission line, in the form of a deposit etched on an insulator, in particular a layer of nickel and chromium alloy deposited. -on an insulating ceramic.
- the first condition is easy to achieve, in the case of charges deposited by etching using a conventional adjustment process which can be erosion by sandblasting or attack by laser beam.
- the second condition is more difficult to achieve because we observe capacitive or inductive effects from the non-negligible surface and irregularities of the nickel-chromium layer.
- This surface cannot be reduced either in width, in length or in two dimensions without observing certain drawbacks.
- a thinner layer of nickel-chromium therefore more resistive and therefore of smaller surface cannot withstand certain heat dissipation, which limits the power withstand of the device;
- a layer of normal thickness but for example, narrower and longer, to present the same surface would give a discontinuity, and therefore an energy reflection, producing undesirable standing waves, at the transition point between the conductor of the microstrip line and the resistive layer.
- the invention aims to remedy these drawbacks by seeking to correct the impedance of the resistive load, either by modifying its shape, or by adding a capacitance thereto, or finally by combining the two aforementioned means.
- the device according to the invention comprises a conductor constituted by a metal strip deposited on an insulating substrate and at least one ground electrode, the metal strip being connected at its end to a resistive layer itself connected to ground, the device being of the type in which the resistive layer is of decreasing width between its points of connection to the metal strip and to ground, or in which the inherent inductance of the resistive layer is compensated, in the operating frequency range, by at least a conductive deposit capacitively coupled with this ground electrode and electrically connected to this resistive layer.
- the resistive layer is interrupted by a transverse conductive strip located closer to the conductor than to the ground connection point, two conductive deposits being formed on the substrate on either side of the long sides of the trapezoid and interconnected by the conductive strip.
- a microstrip line element comprises a dielectric substrate 1, for example made of pure alumina, in the form of an elongated and flat parallelepiped having two large faces: one of these faces is entirely metallized and constitutes the ground plane 2. The other is metallized only over part of its width and constitutes a strip 3 which is none other than the upper conductor of the microstrip line.
- This strip is produced for example by depositing successive layers of chromium, copper and gold. It is connected along a transverse straight line 11 to a layer 4 of resistive alloy constituting a termination charge. This layer 4 is itself connected along a transverse straight line 12 to a metallization 5 connected to the ground plane by a connection of negligible ohmic resistance.
- the connection to the ground plane can be carried out either by etching the end face 6 of the substrate, or by welding a flexible metal strip, not shown, or even by a metallized hole (not shown) between the metallizations 5 and 2 .
- Layer 4 is constituted for example by a deposit of nickel and chromium alloy, carried out by evaporation under vacuum and reaching a few hundred angstroms. It is known to obtain a layer resistance of 25 ohms per square by this method. To obtain a resistance of 50 ohms between lines 11 and 12, a deposit twice as long as wide is then carried out, that is to say in the case of an alumina substrate 0.4 mm thick, with a strip 3 of 0.35 mm in width giving substantially a microstrip line of 50 ohms, a layer 4 of 0.7 mm in length.
- the deposit of nickel and chromium alloy can advantageously be carried out over a longer length than is necessary so that the useful length can then be easily adjusted by depositing a layer of gold on the parts. to short-circuit, by protecting, during the gilding operation, the useful part of the load using a resin layer obtained by photomasking.
- the standing wave rate observed for a frequency of 18 GHz, is greater than 3. This is due in particular to the fact that at such frequency, the wavelength in the propagation medium (l alumina of the substrate) is 6.5 mm, length before which that of a resistive layer of 0.7 mm is by no means negligible. The resistance therefore does not act as a localized constant, which partly explains the importance of the standing wave rate observed.
- layer 4 is given the shape of a trapezoid, the large base of which is the connection line 11 and the small base MN is connected to the metallization 5 over a length as small as possible while obtaining a good ground return contact, ie approximately 0.03 mm.
- the resistance R (ohms) of the load is given by the formula: in which R denotes the resistance per square (in ohms) of the resistive layer 4, h is the height of the trapezoid formed by this layer, and "ln" means that we take the natural logarithm of the ratio a / b.
- a transverse conductive strip 30 is inserted, leading to two metallizations 31 and 32, which constitute the armatures of capacitors whose other armature is the ground plane.
- the two metallizations measure 100 microns in width by 300 microns in length and are connected together by a band 30 of width equal to one hundred microns, distant about 200 microns from line 11.
- the standing wave rate observed is for example 1.6 to 18 GHz.
- a standing wave rate of 1.3 is observed for a frequency of 18 GHz.
- the decrease in width is all the smaller for the strip 4 as one moves away from the line 11 separating the strip 3 from the resistive load.
- the invention also applies to lines of the "stripline" type where two ground planes are separated from a single central strip by two dielectric substrates.
- the strip can be etched on one of the substrates according to the same characteristics as those found in Figures 2 to 3.
- FIG. 6 an end of such a line, comprising, on a substrate 1, visible only between the metallizations, a conductive strip 3 deposited by etching entered two lateral strips 61 and 62 deposited by etching between two lateral bands 61 and 62 deposited at the same time as the band 3 and connected together by a deposit 60 of the same kind, constituting a mass return.
- a resistive layer 4 of trapezoidal shape is deposited so as to be connected to the strip 3 on the one hand and to the deposit 60 on the other hand.
- Capacities 63 and 64 consist of insulating deposits on the strips 63 and 64, deposits then covered with a conductive layer connected to the layer 4 by connections 65 and 66, connected to layer 4 by two small pads 67 and 68 constituted by deposit of gold.
- capacitors 63 and 64 It is also possible to use bare pads of ceramic capacitors to form the capacitors 63 and 64.
Landscapes
- Non-Reversible Transmitting Devices (AREA)
- Waveguides (AREA)
Abstract
Description
- L'invention concerne un dispositif de terminaison de ligne de transmission dans lequel on cherche à rendre minimal le taux d'ondes stationnaires provenant de la réflexion des micro-ondes sur une charge résistive placée en bout de ligne.
- On réalise fréquemment de telles charges résistives, de valeur égale au module de l'impédance caractéristique de la ligne de transmission, sous la forme d'un dépôt gravé sur un isolant, notamment d'une couche d'alliage de nickel et de chrome déposée-sur une céramique isolante.
- Cette technique est particulièrement intéressante dans le cas des lignes du type "microbande" (de l'anglais "microstrip") par exemple dans la fabrication des coupleurs directifs dans lesquels il existe une voie dite "découplée" où toute l'énergie hyperfréquence doit être absorbée, et cela même dans des bandes de fréquences s'élevant jusqu'à 20 GHz.
- Elle est applicable également aux lignes d'un type analogue à deux plans de masse (en anglais "stripline") et aux lignes coplanaires.
- Dans tous les cas la charge absorbante doit répondre à deux exigences :
- 1°/ avoir une impédance dont la partie réelle est égale à l'impédance caractéristique de la ligne ;
- 2°/ avoir une partie imaginaire aussi voisine que possible de zéro.
- La première condition est facile à réaliser, dans le cas des charges déposées par gravure en utilisant un procédé classique d'ajustage qui peut être l'érosion au jet de sable ou l'attaque par rayon laser.
- La deuxième condition est plus difficile à réaliser car on observe des effets capacitifs ou inductifs provenant de la surface non négligeable et des irrégularités de la couche de nickel-chrome. On ne peut diminuer cette surface soit en largeur, soit en longueur, soit dans les deux dimensions sans observer certains inconvénients. D'une part, en effet, une couche plus mince de nickel-chrome, donc plus résistive et donc de moindre surface ne peut supporter certaines dissipations thermiques, ce qui limite la tenue puissance du dispositif ; d'autre part, une couche d'épaisseur normale mais par exemple, plus étroite et plus longue, pour présenter la même surface, donnerait une discontinuité, et donc une réflexion d'énergie, produisant des ondes stationnaires indésirables, au point de transition entre le conducteur de la ligne microbande et la couche résistive.
- L'invention vise à remédier ces inconvénients en cherchant à corriger l'impédance de la charge résistive, soit en modifiant sa forme, soit en lui adjoignant une capacité, soit enfin en combinant les deux moyens précités.
- Le dispositif selon l'invention comporte un conducteur constitué par une bande métallique déposée sur un substrat isolant et au moins une électrode de masse, la bande métallique étant raccordée à son extrémité à une couche résistive elle-même raccordée à la masse, le dispositif étant du type dans lequel la couche résistive est de largeur décroissante entre ses points de raccordement à la bande métallique et à la masse, ou dans lequel l'inductance propre de la couche résistive est compensée, dans la gamme de fréquence de fonctionnement, par au moins un dépôt conducteur couplé capacitivement avec cette électrode de masse et relié électriquement à cette couche résistive. Il est caractérisé en ce que la couche résistive est interrompue par une bande conductrice transversale située plus près du conducteur que du point de raccordement à la masse, deux dépôts conducteurs étant formés sur le substrat de part et d'autre des grands côtés du trapèze et reliés entre eux par la bande conductrice.
- L'invention sera mieux comprise, et d'autres caractéristiques ap- paraitront, au moyen de la description qui suit, et des dessins qui l'accompagnent, parmi lesquels :
- la figure 1 est une vue en perspective d'une ligne microbande terminée par une charge gravée ;
- les figures 2 à 6 représentent schématiquement diverses réalisations de l'invention.
- Un élément de ligne microbande, figure 1, comporte un substrat diélectrique 1, par exemple en alumine pure, sous la forme d'un parallépi- pède allongé et plat comportant deux grandes faces : l'une de ces faces est entièrement métallisée et constitue le plan de masse 2. L'autre n'est métallisée que sur une partie de sa largeur et constitue une bande 3 qui n'est autre que le conducteur supérieur de la ligne microbande. Cette bande est fabriquée par exemple par dépôt de couches successives de chrome, de cuivre et d'or. Elle se raccorde suivant une ligne droite transversale 11 à une couche 4 d'alliage résistif constituant une charge de terminaison. Cette couche 4 est elle-même raccordée suivant une ligne droite transversale 12 à une métallisation 5 reliée au plan de masse par une connexion de résistance ohmique négligeable. Le raccordement au plan de masse peut s'effectuer soit par gravure de la face terminale 6 du substrat, soit par soudure d'une bande métallique souple, non représentée, soit même par un trou métallisé (non représenté) entre les métallisations 5 et 2.
- La couche 4 est constituée par exemple par un dépôt d'alliage de nickel et de chrome, effectué par évaporation sous vide et atteignant quelques centaines d'angstrôms. On sait obtenir par cette méthode une résistance de couche de 25 ohms par carré. Pour obtenir une résistance de 50 ohms entre les lignes 11 et 12 on réalise alors un dépôt deux fois plus long que large, soit dans le cas d'un substrat d'alumine de 0,4 mm d'épaisseur, avec une bande 3 de 0,35 mm de largeur donnant sensiblement une ligne microbande de 50 ohms, une couche 4 de 0,7 mm de longueur.
- Le dépôt d'alliage de nickel et de chrome peut être effectué avantageusement sur une plus grande longueur qu'il n'est nécessaire de telle sorte que l'on puisse ensuite ajuster facilement la longueur utile en déposant une couche d'or sur les parties à court-circuiter, en protégeant, pendant l'opération de dorure, la partie utile de la charge à l'aide d'une couche de résine obtenue par photomasquage.
- Dans l'exemple choisi, le taux d'onde stationnaire constaté, pour une fréquence de 18 GHz, est supérieur à 3. Ceci est dû notamment au fait qu'à telle fréquence, la longueur d'onde dans le milieu de propagation (l'alumine du substrat) est de 6,5 mm, longueur devant laquelle celle d'une couche résistive de 0,7 mm n'est nullement négligeable. La résistance n'agit donc pas comme une constante localisée, ce qui explique en partie l'importance du taux d'ondes stationnaires observé.
- Dans un premier mode de réalisation de l'invention, schématisé à la figure 2, on donne à la couche 4 la forme d'un trapèze dont la grande base est la ligne de raccordement 11 et la petite base MN se raccorde à la métallisation 5 sur une longueur aussi petite que possible tout en obtenant un bon contact de retour de masse soit environ 0,03 mm. Si l'on appelle a et b les longueurs respectives de la ligne 11 et de la base MN, la résistance R (ohms) de la charge est donnée par la formule :
- A titre d'exemple, si l'on a :
- R = 26 ohms o
- a = 0,35 mm
- b = 0,03 mm
- h = 0,25 mm
- Dans un deuxième mode de réalisation, schématisé à la figure 3, on revient à une forme rectangulaire pour la couche 4, de même largeur que la bande 3, mais on intercale une bande conductrice transversale 30 conduisant à deux métallisations 31 et 32, lesquelles constituent les armatures de condensateurs dont l'autre armature est le plan de masse. A titre d'exemple les deux métallisations mesurent 100 microns de largeur sur 300 microns de longueur et sont reliées entre elles par une bande 30 de largeur égale à cent microns, distante d'environ 200 microns de la ligne 11. Pour une largeur de bande 3 de 350 microns, le taux d'ondes stationnaires observé est par exemple de 1,6 à 18 GHz.
- Dans une troisième réalisation, schématisé à la figure 4, on conjugue les modes de réalisation précédents. Pour une bande 30 située à 50 microns de la ligne 11 et des armatures de dimensions 100 x 150 microns on observe un taux d'ondes stationnaires de 1,3 pour une fréquence de 18 GHz.
- On peut aussi constituer la charge résistive par une bande de largeur décroissante suivant une loi de décroissance non linéaire. Dans l'exemple illustré par la figure 5, la décroissance de largeur est d'autant plus faible pour la bande 4 que l'on s'éloigne de la ligne 11 séparant la bande 3 de la charge résistive.
- L'invention s'applique également aux lignes du type "stripline" où deux plans de masse sont séparés d'une bande centrale unique par deux substrats diélectriques. La bande peut être gravée sur un des substrats selon les mêmes caractéristiques que celles que l'on trouve aux figures 2 à 3.
- L'invention s'applique également aux lignes coplanaires. A titre d'exemple on a représenté à la figure 6 une extrémité d'une telle ligne, comportant, sur un substrat 1, visible uniquement entre les métallisations, une bande conductrice 3 déposée par gravure entré deux bandes latérales 61 et 62 déposées par gravure entre deux bandes latérales 61 et 62 déposées en même temps que la bande 3 et raccordées entre elles par un dépôt 60 de même nature, constituant un retour de masse. Une couche résistive 4 de forme trapézoïdale est déposée de façon à se raccorder à la bande 3 d'une part et au dépôt 60 d'autre part. Des capacités 63 et 64 sont constituées par des dépôts isolants sur les bandes 63 et 64, dépôts recouverts ensuite d'une couche conductrice reliée à la couché 4 par des connexions 65 et 66, raccordées à la couche 4 par deux petites plages 67 et 68 constituées par dépôt d'or.
- On peut aussi utiliser des pastilles nues de condensateurs céramiques pour constituer les capacités 63 et 64.
on obtient une charge de 50 ohms et un taux d'ondes stationnaires de l'ordre de 1,7 pour une fréquence de 18 GHz.
Claims (6)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8015497A FR2486720A1 (fr) | 1980-07-11 | 1980-07-11 | Dispositif de terminaison d'une ligne de transmission, en hyperfrequence, a taux d'ondes stationnaires minimal |
FR8015497 | 1980-07-11 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0044758A1 true EP0044758A1 (fr) | 1982-01-27 |
EP0044758B1 EP0044758B1 (fr) | 1984-05-16 |
Family
ID=9244122
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP81400958A Expired EP0044758B1 (fr) | 1980-07-11 | 1981-06-16 | Dispositif de terminaison d'une ligne de transmission, en hyperfréquence, à taux d'ondes stationnaires minimal |
Country Status (4)
Country | Link |
---|---|
US (1) | US4413241A (fr) |
EP (1) | EP0044758B1 (fr) |
DE (1) | DE3163615D1 (fr) |
FR (1) | FR2486720A1 (fr) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2525383A1 (fr) * | 1982-04-16 | 1983-10-21 | Cables De Lyon Geoffroy Delore | Resistances en constantes reparties pour charges a forte dissipation en hyperfrequence |
EP0195649A2 (fr) * | 1985-03-18 | 1986-09-24 | Tektronix, Inc. | Atténuateur à couche mince et à large bande et méthode de fabrication d'un tel élément |
EP0363831A1 (fr) * | 1988-10-14 | 1990-04-18 | Asea Brown Boveri Ag | Terminaison non réfléchissante d'un TEM-conducteur |
EP0424536A1 (fr) * | 1989-02-02 | 1991-05-02 | Fujitsu Limited | Terminaison en resistance en couche pour ligne microstrip |
FR2779577A1 (fr) * | 1998-06-09 | 1999-12-10 | Deti | Composant passif hyperfrequence a charge resistive comportant des elements d'adaptation hyperfrequence integres |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6600384B2 (en) | 2001-05-18 | 2003-07-29 | Endwave Corporation | Impedance-compensating circuit |
GB2383199B (en) * | 2001-12-11 | 2005-11-16 | Marconi Optical Components Ltd | Transmission line structures |
US20040085150A1 (en) * | 2002-10-30 | 2004-05-06 | Dove Lewis R. | Terminations for shielded transmission lines fabricated on a substrate |
DE10350033A1 (de) * | 2003-10-27 | 2005-05-25 | Robert Bosch Gmbh | Bauelement mit Koplanarleitung |
KR20140037456A (ko) * | 2012-09-18 | 2014-03-27 | 한국전자통신연구원 | 소형 도파관 종단기 |
JP6279189B2 (ja) * | 2016-01-12 | 2018-02-14 | 三菱電機株式会社 | 終端器及び高周波回路 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3582833A (en) * | 1969-12-23 | 1971-06-01 | Bell Telephone Labor Inc | Stripline thin-film resistive termination wherein capacitive reactance cancels out undesired series inductance of resistive film |
FR2270730A1 (fr) * | 1974-05-06 | 1975-12-05 | Siemens Ag | |
US4118112A (en) * | 1976-12-03 | 1978-10-03 | Xerox Corporation | Method for reducing power dissipation in tapered resistor devices |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5132946B1 (fr) * | 1970-05-04 | 1976-09-16 | ||
US3678417A (en) * | 1971-07-14 | 1972-07-18 | Collins Radio Co | Planar r. f. load resistor for microstrip or stripline |
DE2634812C2 (de) * | 1976-08-03 | 1983-05-05 | Spinner-GmbH Elektrotechnische Fabrik, 8000 München | HF-Leistungsabschlußwiderstand |
JPS5376728A (en) * | 1976-12-20 | 1978-07-07 | Toshiba Corp | Microwave circuit |
JPS5930323B2 (ja) * | 1976-12-27 | 1984-07-26 | 日本電気株式会社 | ストリツプ線路用無反射終端 |
-
1980
- 1980-07-11 FR FR8015497A patent/FR2486720A1/fr active Granted
-
1981
- 1981-06-16 DE DE8181400958T patent/DE3163615D1/de not_active Expired
- 1981-06-16 EP EP81400958A patent/EP0044758B1/fr not_active Expired
- 1981-07-08 US US06/281,393 patent/US4413241A/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3582833A (en) * | 1969-12-23 | 1971-06-01 | Bell Telephone Labor Inc | Stripline thin-film resistive termination wherein capacitive reactance cancels out undesired series inductance of resistive film |
FR2270730A1 (fr) * | 1974-05-06 | 1975-12-05 | Siemens Ag | |
US4118112A (en) * | 1976-12-03 | 1978-10-03 | Xerox Corporation | Method for reducing power dissipation in tapered resistor devices |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2525383A1 (fr) * | 1982-04-16 | 1983-10-21 | Cables De Lyon Geoffroy Delore | Resistances en constantes reparties pour charges a forte dissipation en hyperfrequence |
EP0092137A1 (fr) * | 1982-04-16 | 1983-10-26 | LES CABLES DE LYON Société anonyme dite: | Résistances en constantes reparties pour charges à forte dissipation en hyperfréquence |
US4456894A (en) * | 1982-04-16 | 1984-06-26 | Les Cables De Lyon | Distributed-constant resistance for use as a high dissipation load at hyperfrequencies |
EP0195649A2 (fr) * | 1985-03-18 | 1986-09-24 | Tektronix, Inc. | Atténuateur à couche mince et à large bande et méthode de fabrication d'un tel élément |
EP0195649A3 (fr) * | 1985-03-18 | 1988-08-10 | Tektronix, Inc. | Atténuateur à couche mince et à large bande et méthode de fabrication d'un tel élément |
EP0363831A1 (fr) * | 1988-10-14 | 1990-04-18 | Asea Brown Boveri Ag | Terminaison non réfléchissante d'un TEM-conducteur |
US5055806A (en) * | 1988-10-14 | 1991-10-08 | Asea Brown Boveri Ltd. | Reflection-free termination of a tem waveguide |
EP0424536A1 (fr) * | 1989-02-02 | 1991-05-02 | Fujitsu Limited | Terminaison en resistance en couche pour ligne microstrip |
EP0424536A4 (en) * | 1989-02-02 | 1991-07-03 | Fujitsu Limited | Film resistor terminator |
FR2779577A1 (fr) * | 1998-06-09 | 1999-12-10 | Deti | Composant passif hyperfrequence a charge resistive comportant des elements d'adaptation hyperfrequence integres |
WO1999065104A1 (fr) * | 1998-06-09 | 1999-12-16 | Deti (Societe Anonyme) | Composant passif hyperfrequence a charge resistive |
Also Published As
Publication number | Publication date |
---|---|
FR2486720B1 (fr) | 1984-08-10 |
EP0044758B1 (fr) | 1984-05-16 |
DE3163615D1 (en) | 1984-06-20 |
FR2486720A1 (fr) | 1982-01-15 |
US4413241A (en) | 1983-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0013222B1 (fr) | Déphaseur hyperfréquence à diodes et antenne à balayage électronique comportant un tel déphaseur | |
EP0605046B1 (fr) | Dispositif hyperfréquences comprenant au moins une transition entre une ligne de transmission intégrée sur un substrat et un guide d'onde | |
EP0113273B1 (fr) | Boîtier d'encapsulation pour semiconducteur de puissance, à isolement entrée-sortie amélioré | |
EP0044758B1 (fr) | Dispositif de terminaison d'une ligne de transmission, en hyperfréquence, à taux d'ondes stationnaires minimal | |
US7348865B2 (en) | Impedance-matching coupler | |
FR2778025A1 (fr) | Appareil resonant a dielectrique | |
EP0022700A1 (fr) | Dispositif à ondes magnétostatiques comportant une structure d'échange à bandes conductrices | |
EP0023873B1 (fr) | Limiteur passif de puissance à semi-conducteurs réalisé sur des lignes à structure plane, et circuit hyperfréquence utilisant un tel limiteur | |
EP0017530A1 (fr) | Source rayonnante constituée par un dipole excité par un guide d'onde extra-plat, et son utilisation dans une antenne à balayage électronique | |
EP0335788B1 (fr) | Circuit déphaseur hyperfréquence | |
EP0586010B1 (fr) | Circuit pour des fréquences élevées, et procédé pour le réaliser | |
EP0040567B1 (fr) | Elément résistif en technique microbande | |
EP0136941B1 (fr) | Perfectionnement aux commutateurs d'ondes électromagnétiques millimétriques | |
EP0073165B1 (fr) | Commutateur d'ondes électromagnétiques | |
FR2561444A1 (fr) | Dispositif semi-conducteur hyperfrequence a connexions externes prises au moyen de poutres | |
FR2774216A1 (fr) | Module a hautes frequences pour communications | |
EP0296929B1 (fr) | Ligne de transmission hyperfréquence de type symétrique et à deux conducteurs coplanaires | |
FR2805085A1 (fr) | Dispositif a circuit non reciproque et dispositif de telecommunications l'utilisant | |
EP0983616B1 (fr) | Procede et dispositif pour connecter deux elements millimetriques | |
WO2022218935A1 (fr) | Systeme d'absorption d'onde electromagnetique et dispositif mettant en oeuvre ce systeme | |
FR2729472A1 (fr) | Dispositif de controle de l'influence electromagnetique d'appareils electroniques, comportant un guide d'ondes tem | |
FR2539933A1 (fr) | Filtre commutable pour micro-ondes | |
FR2662308A1 (fr) | Dispositif de transition entre deux lignes hyperfrequence realisees en technologie planaire. | |
JP2001298201A (ja) | 半導体制御回路素子およびそれを用いた電気回路 | |
FR2508242A1 (fr) | Procede de fabrication collective de charges resistives en tres haute frequence et charge resistive fabriquee par ce procede |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): DE GB NL |
|
17P | Request for examination filed |
Effective date: 19820208 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): DE GB NL |
|
REF | Corresponds to: |
Ref document number: 3163615 Country of ref document: DE Date of ref document: 19840620 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19920520 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19920521 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19920630 Year of fee payment: 12 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19930616 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19940101 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19930616 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19940301 |