EP0028548A1 - Optisches Realzeit-Korrelationssystem - Google Patents
Optisches Realzeit-Korrelationssystem Download PDFInfo
- Publication number
- EP0028548A1 EP0028548A1 EP80401397A EP80401397A EP0028548A1 EP 0028548 A1 EP0028548 A1 EP 0028548A1 EP 80401397 A EP80401397 A EP 80401397A EP 80401397 A EP80401397 A EP 80401397A EP 0028548 A1 EP0028548 A1 EP 0028548A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- objects
- beams
- correlation system
- illuminating
- photosensitive support
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 230000003287 optical effect Effects 0.000 title claims description 19
- 238000005286 illumination Methods 0.000 claims abstract description 13
- 239000000463 material Substances 0.000 claims abstract description 9
- 230000001427 coherent effect Effects 0.000 claims abstract description 5
- 238000005314 correlation function Methods 0.000 claims abstract description 5
- JSILWGOAJSWOGY-UHFFFAOYSA-N bismuth;oxosilicon Chemical compound [Bi].[Si]=O JSILWGOAJSWOGY-UHFFFAOYSA-N 0.000 claims description 4
- 230000005684 electric field Effects 0.000 claims description 4
- ORCSMBGZHYTXOV-UHFFFAOYSA-N bismuth;germanium;dodecahydrate Chemical compound O.O.O.O.O.O.O.O.O.O.O.O.[Ge].[Ge].[Ge].[Bi].[Bi].[Bi].[Bi] ORCSMBGZHYTXOV-UHFFFAOYSA-N 0.000 claims description 2
- XOTVYQNEABUPLI-UHFFFAOYSA-N [Si].[Bi]=O Chemical compound [Si].[Bi]=O XOTVYQNEABUPLI-UHFFFAOYSA-N 0.000 abstract 1
- 238000003909 pattern recognition Methods 0.000 abstract 1
- 239000013078 crystal Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- CPBQJMYROZQQJC-UHFFFAOYSA-N helium neon Chemical compound [He].[Ne] CPBQJMYROZQQJC-UHFFFAOYSA-N 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- UKDIAJWKFXFVFG-UHFFFAOYSA-N potassium;oxido(dioxo)niobium Chemical compound [K+].[O-][Nb](=O)=O UKDIAJWKFXFVFG-UHFFFAOYSA-N 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000001429 visible spectrum Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06E—OPTICAL COMPUTING DEVICES; COMPUTING DEVICES USING OTHER RADIATIONS WITH SIMILAR PROPERTIES
- G06E3/00—Devices not provided for in group G06E1/00, e.g. for processing analogue or hybrid data
- G06E3/001—Analogue devices in which mathematical operations are carried out with the aid of optical or electro-optical elements
- G06E3/005—Analogue devices in which mathematical operations are carried out with the aid of optical or electro-optical elements using electro-optical or opto-electronic means
Definitions
- the invention relates to optical correlation systems making it possible to obtain the function of correlating one image with another.
- Such systems allow for example to recognize a predetermined graphic in a composite pattern.
- a known correlation method consists in recording on a photosensitive support a system of interference fringes representing the diffraction pattern provided by a lens which corresponds to two light beams on the path of which are interposed respectively two objects with non-uniform transparency, generally l object to analyze and a reference object.
- This photosensitive support is read by a reading beam and a characteristic intensity distribution is obtained in the focal plane of a second lens in certain zones of the correlation product between the two objects.
- the reference object carries a pattern that one seeks to find in the object to be analyzed
- the image obtained is formed of peaks indicating the presence and the position of the reference pattern in the object to be analyzed.
- This correlation method has been tested with interference fringe supports of photographic and thermoplastic types.
- Such supports require a treatment, chemical or thermal, between the recording and reading phases, which implies a delay between the two operations.
- they are generally not erasable. They therefore do not allow operation in real time.
- the object of the invention is to use the correlation method described above in real-time applications such as automatic reading, target tracking, machine guidance, etc.
- the correlation system according to the invention comprises a photosensitive support that is continuously recyclable, that is to say writable without development and erasable at will.
- Particularly suitable materials are electro-optical materials such as bismuth-silicon oxide, in which spatial variations in light intensity can be converted in real time into spatial variations in refractive index. Registration is done by volume, and not on the surface, the optimal reading conditions are defined by Bragg's law which imposes a value distinct from the reading angle for each spatial frequency recorded. Knowing that the correlation peaks are linked to the recorded spatial frequencies, the invention provides an angular scanning of the read beam making it possible to explore the whole spectrum of the recorded spatial frequencies.
- FIG. 1 represents a known optical system carrying out the recording trement of the algebraic sum of the Fourier transforms of two two-dimensional functions.
- the two functions represent the transmittances of the two objects A and B lit by parallel beams FA and FB contiguous or not coming from the same coherent source.
- Objects A and B are placed on either side of the optical axis z of a lens L 1 of focal distance fl, in the same plane PO perpendicular to this axis.
- the focal plane PF of the lens L 1 an amplitude distribution proportional to the Fourier transform of the amplitude distribution in the object plane is obtained.
- a photosensitive support 1 photographic or thermoplastic being placed in the plane PF records the superposition of fringe systems of intensity of different steps, the average step p being equal to where ⁇ 1 is the optical wavelength of the beams FA and F B and ⁇ 0 the half angle between the two beams which interfere.
- the resulting intensity distribution along x, y axes of the PF plane is proportional to the square of the module of the Fourier transform of the amplitude distribution in the object plane PO.
- the positions of the objects A and B in this plane are represented in figure 2.
- the sign X expresses the correlation product.
- k is the magnification ratio: .
- FIG. 5 represents an embodiment of the invention. Part of the elements of the correlation device are common with those of Figures 1 and 3 and bear the same references.
- the interference fringes resulting from the superposition of the beams F A and F B which illuminate the objects A and B, after the focusing effected by the lens L are recorded in a photosensitive plate 10 centered on the focal image plane PF of the lens L 1 and made of an electro-optical material polarized by a field electric obtained by means of a voltage source V. Its orientation is such that the electric field produces a transverse electro-optical effect. Spatial variations in light intensity existing in the PF plane are instantly reflected in the plate by spatial variations in refractive index, the interference planes being almost perpendicular to the direction of the applied electric field.
- the thickness of the crystal must be equal to or greater than the width of the diffraction zone corresponding to the intersection of the diffraction ellipsoids of the two beams FA and FB whose dimensions depend on the numerical aperture of the lens L 1 .
- a useful thickness can be defined, which is in any case clearly greater than the wavelength of the two beams so that the recording in the slide can be considered as three-dimensional. It is a superposition of arrays of surfaces.
- these surfaces can be assimilated to planes perpendicular to the plane of the figure and whose pitch p and inclination f relative to the z axis depend on the angle of the interfering rays, the wavelength ⁇ 1 and the refractive index n of the plate 10.
- the materials which can be used to form the strip 10 must be both photosensitive and electro-optical.
- Bismuth-silicon oxide (Bi 12 Si 0 20 ) and bismuth-germanium oxide (Bi 12 Ge 020) are particularly suitable for the invention because they are very sensitive, in the range of wavelengths commonly used (visible and infrared spectrum) and it is known to obtain single crystals of sufficient dimensions (several cm) and having good optical qualities.
- Other materials could also be suitable but generally do not have as good optical qualities: potassium niobate (KNb0 3 ), KTN, SBN.
- the invention provides for angular scanning of the reading beam F L.
- This is supplied by a laser 4 of low power and of wavelength ⁇ 2 chosen outside the range of wavelengths to which the material constituting the lamelO is sensitive.
- the beam F L is deflected by a conventional acousto-optical or mechanical deflector 5 carrying out the angular scanning in a manner which will be detailed later.
- the semi strip -transparent L is interposed on the path of the beams FA and F B and must be designed so as to allow these beams to pass. It inevitably introduces a phase shift, which is not annoying since it is identical for the two beams.
- the orientation relative to the blade 10 of the reading beam, parallel is variable as a function of time and controlled by the deflector 5.
- n is the refractive index of the plate 10 and d the thickness of the useful diffraction zone in the plate 10.
- the detection of the correlation peaks is carried out by means 18 such as, for example: mosaic of detectors or vidicon tube connected to a television system.
- the scanning beam scanning speed is advantageously equal to the television scanning speed.
- the device was produced with a monocrystalline bismuth-silicon oxide blade of length 2 mm and thickness 1 mm polarized by a voltage V 0 of the order of 2000 V, which provides an electric field of the order of 10 kV / cm 1 , the wavelength of the illumination beams ⁇ , was 0.5 ⁇ m, which corresponds to good sensitivity of the crystal.
- the focal length of the lens L 1 was: 30 cm and that of the lens L 2 : 10 cm.
- the magnification k was therefore equal to 0.4.
- the objects were 2 cm x 2 cm slides.
- the extent of each zone II and III was thus 0.8 x 0.8 cm, observable with a vidicon tube whose diameter is typically 1.5 cm.
- a semiconductor laser with a wavelength of 0.8 ⁇ m can also be used.
- FIG. 5 admits numerous variants, in particular as to the means supplying the beams F A , F B , F L , to the means for detecting the correlation peaks obtained in the plane P and at the respective location of the different elements optical.
- FIG. 6 represents an alternative embodiment concerning the means supplying the bundles F A and F B. It avoids the use of a lens L 1 with a large aperture. In fact, according to the previous embodiment, the width of the objects being typically 2 or 3 cm and the distance between their centers at least equal to this value, the necessary diameter of the lens L 1 reaches close to 10 cm.
- the lens L 1 is replaced by two lenses LA and L B , smaller since their dimensions correspond to those of objects A and B, and whose optical axes are merged respectively with the axes of the beams FA and F B which are no longer parallel but each form with respect to the z axis an angle ⁇ ⁇ o, which remains unchanged after the lenses.
- the beams FA and F B come from a single beam F delivered by a laser 7, argon for example, after widening by a widener 13 and separation and return by mirrors 14, 15, 16, 17.
- Objects A and B are centered with respect to the respective axes of the two beams.
- the correlation system is represented in the case of its application to the tracking of targets: Object A is the reference object.
- Object B has a variable pattern. It consists of an electro-optical modulator controlled by a signal S from, for example, a television camera aiming at the object to be pursued.
- the correlation system allows the detection of the coincidence between the target landscape and the fixed landscape.
- the illumination due to this reference beam creates a first variation of index which is not spatially modulated, to which are added the variations due to interference systems due to the illumination beams of objects A and B. additional interference is formed but it can be ensured, by suitably choosing the inclination of the reference beam, that the reflected rays which result therefrom are clearly outside the zones examined, centered around I and J.
- An exemplary embodiment of system in which a constant level of index modulation is created is shown in FIG. 7.
- the reference beam FR comes from the same source 7 as the beams F A and F B.
- a semi-reflecting plate 8 and a mirror 9 make it possible to separate the beam F R.
- the beams F A F B on the one hand and F R on the other hand are widened by means of wideners 11 and 12.
- the rest of the system is similar to that of FIG. 5 or of one of the variants thereof. .
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Mathematical Physics (AREA)
- Nonlinear Science (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Holo Graphy (AREA)
- Optical Recording Or Reproduction (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR7927218A FR2468947A1 (fr) | 1979-11-05 | 1979-11-05 | Systeme de correlation optique en temps reel |
FR7927218 | 1979-11-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
EP0028548A1 true EP0028548A1 (de) | 1981-05-13 |
Family
ID=9231296
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP80401397A Ceased EP0028548A1 (de) | 1979-11-05 | 1980-10-02 | Optisches Realzeit-Korrelationssystem |
Country Status (4)
Country | Link |
---|---|
US (1) | US4383734A (de) |
EP (1) | EP0028548A1 (de) |
JP (1) | JPS5675618A (de) |
FR (1) | FR2468947A1 (de) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0058592A1 (de) * | 1981-02-06 | 1982-08-25 | Thomson-Csf | Optische Anordnung zur Fouriertransformation und optischer Korrelator zu deren Anwendung |
GB2230125A (en) * | 1989-04-06 | 1990-10-10 | British Aerospace | Pattern recognition apparatus |
WO1997022849A1 (de) * | 1995-12-15 | 1997-06-26 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren und vorrichtung zur hochauflösenden bestimmung von abständen im fokussierten bild eines linsen-pupillen-systems |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2518766A1 (fr) * | 1981-12-18 | 1983-06-24 | Thomson Csf | Dispositif de commutation de faisceaux optiques et central telephonique comprenant un tel dispositif |
US4539651A (en) * | 1983-02-09 | 1985-09-03 | Ludman Jacques E | Optical correlator |
US5078501A (en) * | 1986-10-17 | 1992-01-07 | E. I. Du Pont De Nemours And Company | Method and apparatus for optically evaluating the conformance of unknown objects to predetermined characteristics |
US5159474A (en) * | 1986-10-17 | 1992-10-27 | E. I. Du Pont De Nemours And Company | Transform optical processing system |
US4903314A (en) * | 1988-05-31 | 1990-02-20 | Grumman Aerospace Corporation | Single plate compact optical correlator |
JPH0830830B2 (ja) * | 1988-09-07 | 1996-03-27 | セイコー電子工業株式会社 | 光学的相関処理装置 |
IT1232051B (it) * | 1989-03-24 | 1992-01-23 | Cselt Centro Studi Lab Telecom | Dispositivo per la correlazione fra fasci ottici |
US5107351A (en) * | 1990-02-16 | 1992-04-21 | Grumman Aerospace Corporation | Image enhanced optical correlator system |
US5029220A (en) * | 1990-07-31 | 1991-07-02 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Optical joint correlator for real-time image tracking and retinal surgery |
US5276636A (en) * | 1992-09-14 | 1994-01-04 | Cohn Robert W | Method and apparatus for adaptive real-time optical correlation using phase-only spatial light modulators and interferometric detection |
IL110771A (en) * | 1994-08-25 | 1998-02-08 | Holon Holon Hanni | A priori and adaptive filtering for detection of signals corrupted by noise |
US5900620A (en) * | 1997-08-27 | 1999-05-04 | Trw Inc. | Magic mirror hot spot tracker |
FR2755516B1 (fr) | 1996-11-05 | 1999-01-22 | Thomson Csf | Dispositif compact d'illumination |
FR2819061B1 (fr) * | 2000-12-28 | 2003-04-11 | Thomson Csf | Dispositif de controle de polarisation dans une liaison optique |
FR2860291B1 (fr) * | 2003-09-26 | 2005-11-18 | Thales Sa | Dispositif capteur de vitesse de rotation interferometrique a fibre optique |
US10337851B2 (en) * | 2015-04-02 | 2019-07-02 | Ramot At Tel-Aviv University Ltd. | Fast phase processing of off-axis interferograms |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2362466A1 (fr) * | 1976-08-19 | 1978-03-17 | Thomson Csf | Cellule d'enregistrement holographique, memoire et dispositif de calcul optique utilisant une telle cellule |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3519992A (en) * | 1966-08-10 | 1970-07-07 | North American Rockwell | Photointerpretation system |
US3544197A (en) * | 1967-03-23 | 1970-12-01 | Research Corp | Optical crosscorrelation |
US3761154A (en) * | 1971-12-27 | 1973-09-25 | Bendix Corp | Display device generating many superimposed output signals to provide an image |
US3812496A (en) * | 1972-08-22 | 1974-05-21 | Trw Inc | Optical signal recording system |
US4174179A (en) * | 1977-08-24 | 1979-11-13 | Guy Indebetouw | Continuous feed holographic correlator for randomly oriented workpieces |
-
1979
- 1979-11-05 FR FR7927218A patent/FR2468947A1/fr not_active Withdrawn
-
1980
- 1980-10-02 EP EP80401397A patent/EP0028548A1/de not_active Ceased
- 1980-11-04 US US06/204,050 patent/US4383734A/en not_active Expired - Lifetime
- 1980-11-05 JP JP15475080A patent/JPS5675618A/ja active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2362466A1 (fr) * | 1976-08-19 | 1978-03-17 | Thomson Csf | Cellule d'enregistrement holographique, memoire et dispositif de calcul optique utilisant une telle cellule |
Non-Patent Citations (3)
Title |
---|
APPLIED OPTICS, Vol. 14, No. 11, novembre 1975, New York, US, NISENSON et SPRAGLIE: "Real-time optical correlation", pages 2602-2606 * |
APPLIED OPTICS, Vol. 9, Juillet 1970, New York, US, WEAVER et al.: "The Optical Convolution of Time Functions", pages 1672-1688 * |
OPTICS LETTERS, Vol. 4, No. 4, avril 1979, New York, US, LEE et al.: Dual-axis joint-Fourier-transform correlator", pages 121-123 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0058592A1 (de) * | 1981-02-06 | 1982-08-25 | Thomson-Csf | Optische Anordnung zur Fouriertransformation und optischer Korrelator zu deren Anwendung |
GB2230125A (en) * | 1989-04-06 | 1990-10-10 | British Aerospace | Pattern recognition apparatus |
WO1997022849A1 (de) * | 1995-12-15 | 1997-06-26 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren und vorrichtung zur hochauflösenden bestimmung von abständen im fokussierten bild eines linsen-pupillen-systems |
Also Published As
Publication number | Publication date |
---|---|
JPS5675618A (en) | 1981-06-22 |
FR2468947A1 (fr) | 1981-05-08 |
US4383734A (en) | 1983-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0028548A1 (de) | Optisches Realzeit-Korrelationssystem | |
EP0644411B1 (de) | Verfahren und Gerät zur absoluten Messung der geometrischen oder optischen Struktur eines optischen Bestandteiles | |
EP0327425B1 (de) | Verfahren zur optischen Abtastmikroskopie in konfokaler Anordnung mit grossem Tiefenschärfenbereich und Vorrichtung zur durchführung des Verfahrens | |
EP0040114A1 (de) | Optische Echtzeitbeobachtungseinrichtung mit Abtastung | |
EP0394137B1 (de) | Gerät für Holographie mit inkohärentem Licht | |
EP0101507A1 (de) | Holographisches optisches verfahren und vorrichtung. | |
EP0058592B1 (de) | Optische Anordnung zur Fouriertransformation und optischer Korrelator zu deren Anwendung | |
EP3602201B1 (de) | Vorrichtungen und verfahren zur optischen bildgebung mittels digitaler holographie ausserhalb der achse | |
EP1061349A1 (de) | Achromatisches optisches Interferometer mit kontinuierlich einstellbarer Empfindlichkeit | |
EP0645645B1 (de) | Lasersonde für Geschwindigkeits- und Neigungsmessung | |
FR2707018A1 (de) | ||
CA2006606C (fr) | Procede et dispositif holographique en lumiere incoherente | |
EP0402191B1 (de) | Verfahren und Vorrichtung zum Messen der Linienbreite mit optischem Abtasten | |
EP0069071B1 (de) | Identifikationsverfahren eines Objekts und Messung seiner Rotation und seiner Orientation und Vorrichtung zur Ausführung dieses Verfahrens | |
FR2564198A1 (fr) | Dispositif d'analyse et de correction de surfaces d'onde en temps reel | |
CA2077754A1 (en) | Phase measuring scanning optical microscope | |
EP0026128B1 (de) | Holografische Speichervorrichtung und optisches Informationsbehandlungssystem mit einer solchen Vorrichtung | |
EP0275982B1 (de) | Vorrichtung zur interferometrischen Analyse von Verformungen eines Körpers | |
FR2684202A1 (fr) | Procede et dispositif holographiques perfectionnes en lumiere incoherente. | |
EP0475991B1 (de) | Optisches rastermikroskop | |
Sprague et al. | The Itek PROM-A Status Report | |
EP0021982A1 (de) | Verfahren und Vorrichtung zum optisch Behandeln von Objekten durch Interkorrelation mit Ringen | |
EP0751400B1 (de) | Verfahren und Vorrichtung für die optische Behandlung von zweidimensionalen Bildern, um das Geschwindigkeitsfeld zu gewinnen | |
FR3132947A1 (fr) | Systèmes et procédés d’analyse de la qualité de surface d’une lame à faces parallèles | |
EP2175260A1 (de) | Testanordnung zur Charakterisierung eines Materials für optische Aufzeichnung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): DE GB NL SE |
|
17P | Request for examination filed |
Effective date: 19810523 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED |
|
18R | Application refused |
Effective date: 19820929 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: HUIGNARD, JEAN-PIERRE Inventor name: HERRIAU, JEAN-PIERRE Inventor name: PICHON, LAURENCE |