EP0028222B1 - Process for transporting and storing radioactive materials - Google Patents
Process for transporting and storing radioactive materials Download PDFInfo
- Publication number
- EP0028222B1 EP0028222B1 EP80900762A EP80900762A EP0028222B1 EP 0028222 B1 EP0028222 B1 EP 0028222B1 EP 80900762 A EP80900762 A EP 80900762A EP 80900762 A EP80900762 A EP 80900762A EP 0028222 B1 EP0028222 B1 EP 0028222B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- container
- storage container
- storage
- concrete
- arrangement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Images
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F5/00—Transportable or portable shielded containers
- G21F5/06—Details of, or accessories to, the containers
- G21F5/14—Devices for handling containers or shipping-casks, e.g. transporting devices loading and unloading, filling of containers
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F5/00—Transportable or portable shielded containers
- G21F5/005—Containers for solid radioactive wastes, e.g. for ultimate disposal
- G21F5/008—Containers for fuel elements
- G21F5/012—Fuel element racks in the containers
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F7/00—Shielded cells or rooms
- G21F7/005—Shielded passages through walls; Locks; Transferring devices between rooms
Definitions
- the invention relates to a method for the transport and storage of radioactive materials, in which the radioactive materials are enclosed in a hermetically sealable storage container made of chemically resistant material, in which the storage container is in turn inserted into a transport container which ensures mechanical, thermal and radiation protection. in which the latter is transported to a storage location, and in which at the storage location the storage container is removed from the transport container and inserted for storage in a silo which ensures radiation protection.
- This process is used for the final storage of radioactive materials.
- a number of steel tubes are buried in the ground at the disposal site.
- a transport trolley with the transport container is moved over an empty steel tube, the transport container is opened at the bottom and the storage container is lowered hydraulically into the steel tube, which is then filled with gravel and then sealed.
- the method is not suitable for the interim storage of radioactive materials that later have to be reprocessed.
- no specific precautions are taken to remove the material from the steel tubes.
- the tubes would have to be pulled out of the ground using a crane, although the problem of radiation protection has not been solved.
- a method should therefore be found which permits the relatively compact interim storage of the spent fuel assemblies without incurring high costs for monitoring and handling facilities in the storage facility and without having to use a large number of expensive transport containers.
- the process should be designed so that the storage containers can be removed from the silo for the reprocessing of the radioactive material safely and easily.
- the method according to the invention fulfills these requirements. It is characterized by the fact that, in order to remove the storage container from the transport container, the latter is sunk into a concrete shaft, that after lifting the transport container lid, a protective container is placed on the concrete shaft, that the protective container is opened at the bottom and the storage container is lifted into the protective container, that the latter is closed again, that the protective container is then lifted from the concrete shaft and placed on the opening of the concrete silo, and that the storage container is then lowered into the concrete silo, whereupon the protective container is removed and the concrete silo is closed by a lid.
- the device for carrying out the method according to the invention with a transport container and a hermetically closable storage container for the radioactive materials which can be enclosed therein is characterized in that the device has a concrete shaft for receiving the transport container when the storage container is unloaded, a protective container for receiving and transferring the storage container from Concrete shaft to the storage area and a number of concrete silos to accommodate the storage containers for storage.
- the transport container 17 shown in FIG. 1 consists of a solid steel cylinder 31 which ensures adequate shielding against gamma rays.
- the transport container 17 is forged in one piece, so that only a single weld 33 is required between the steel cylinder 31 and the container base 32.
- Cooling fins 34 are arranged outside the steel cylinder 31.
- the transport container 17 is closed with a tamper-proof and tightly closing lid 19.
- trunnions 35 are attached at various points and removable shock absorbers 16 are mounted on both ends of the container 17.
- the transport container described is a version that can normally be loaded with 12 fuel elements. In the present case, however, the transport container is loaded with a storage container.
- This storage container 7 has a stainless steel jacket 36 for seven pressurized water reactor fuel elements. The wall thickness of the jacket is approximately 15 mm.
- the lid 1 of the storage container is fastened to the jacket by means of screws 2.
- the protruding lips 3 between the cover flange 3 and the jacket flange 38 are welded together.
- Ribs 4 are attached over the length of the storage container, which ensure the heat emission to the transport container or to the environment.
- Steel ribs 5 are welded to the bottom 39 and to the lid 1, which have a stiffening effect and also serve to emit heat. All ribs 4, 5 also act as shock absorbers in the event of an accident.
- the cover 1 is not yet screwed onto the jacket 36, so that the screw bolts 2 do not hinder the welding.
- the container 7 is first evacuated through the valve 6. The external pressure presses the cover 1 onto the jacket flange 38. A seal 9 helps to maintain the vacuum.
- the container is pressed out with helium at a pressure of approx. 7 atm and the tightness of the container is checked with helium detectors 40 (FIG. 10).
- the overpressure in the container filled with helium is left and an end cover 8 is welded on via the filling valve 6.
- the pressurized storage container 7 is thus hermetically sealed.
- the operations described are carried out in the reverse order.
- the closure cover 8 is removed after the weld seam has been ground off, the helium pressure is released from the container and the vacuum is established. The screws 2 are then removed and the lip weld 3 is ground off.
- the fuel elements are surrounded by boron steel boxes 11 in the storage container.
- the storage container is normally always dry, but the distance between the boxes 11 and their boron content ensure the sufficient subcriticality even when filling with water.
- the space between the boxes 11 is filled with disc-shaped cast aluminum bodies 10. These cast aluminum bodies give the configuration great stability in the event of an accident, they slow down the fast neutrons somewhat, absorb some of the gamma rays and dissipate the decay heat of the fuel elements to the storage container wall.
- the loading and closing of the storage container must be carried out in protected and controlled rooms, ideally in the immediate vicinity of the reactor.
- the necessary remote-controlled devices must also be available here.
- the dimensions of the storage container for seven pressurized water reactor fuel elements are selected so that they fit straight into the usual transport container, which normally has space for 12 fuel elements.
- the storage container is thus loaded into the transport container and transported to the interim storage facility. During transport, all safety-related regulations and requirements such as mechanical strength, thermal properties and radiation protection conditions are met by the transport container.
- the actual interim storage consists of a Concrete slab 41, in which cylindrical recesses or silos 12 for the storage containers 7 are embedded (FIGS. 6, 7).
- the inner walls of the silos 12 are expediently covered with a steel lining.
- the storage containers are cooled by free convection of the ambient air.
- the supply of fresh air takes place by channels 13 below the laser gerpos i tion.
- the heated air rises through baffles 14, which prevent the gamma rays from escaping, through the concrete cover 15 to the outside.
- FIGS. 3-6 The various stages for unloading the storage container from the transport container to placing it in the interim storage facility are illustrated in FIGS. 3-6.
- the transport container 17 is lowered into a concrete shaft 18 (FIG. 4). Now the lid 19 is lifted off and removed from the silo so that the protective container 20 can be placed on the transport container 17.
- a lifting plate 22, which is arranged in the interior of the protective container, is lowered and is pivoted with the lifting tabs 23 of the storage container 7.
- the storage container 7 is pulled up into the protective container 20 and the closing slide 21 is pushed in again.
- the protective container 20 provides sufficient protection against the radiation from the storage container 7 so that it can be lifted out of the concrete shaft 18.
- the protective container is then transported to the storage location. Once there, it is placed on an intermediate ring 24 via the opening of the silo 12.
- the slide valve 21 is pulled out again and the storage container 7 is lowered into the silo 12 (FIG. 6).
- the lifting plate 22 is decoupled by twisting and the protective container 20 is removed together with the intermediate ring 24. The latter serves to guide the storage container into the silo when it sinks.
- the position of the storage container 7 in the silo 12 is secured by longitudinal ribs 25a of the lining 25, which give off the heat generated in the concrete to the air flow.
- the remaining heat generated in the concrete is given off to the environment by additional freely circulating cooling air in the channels 28.
- the cooling system prevents an inadmissible temperature rise and the associated dehydration of the concrete.
- Environmental pollution from the interim storage facility is possible in three different ways: through direct radiation, through leaks in the fuel casing of the storage containers and through activation of the cooling air by the fast neutrons.
- the thick concrete wall with added boron forms a sufficient barrier against direct radiation (primary gamma radiation, neutron radiation and secondary gamma radiation after neutron capture).
- the tightness of the storage containers is checked by the monitoring system using helium detectors.
- the activation of the air can be kept largely harmless if the cold supply air is free of dust. This means that no dust particles can be deposited on the storage container, activated there and then carried away by the cooling air.
- the interim storage facility including the crane systems, can be covered with an ordinary hall, which should not hinder the free escape of warm air, but should ensure the usual protection against atmospheric conditions (cross wind with dust, rain, snow).
- the massive concrete structure of the interim storage facility offers sufficient protection against all mechanical influences (earthquake, plane crash, etc.).
- a grid 26 of plastic pipes is laid over the concrete cover 15 of the concrete silo 12. One branch each from the pipes in both directions penetrates into the air outlet openings of the concrete cover 15 without, however, impairing the free air outlet.
- a central suction fan 27 ensures constant negative pressure in the tubes.
- a scanning control fryer 43 periodically opens one of the valves 44 against the suction pump 27 of the helium detector 40 one after the other.
- a defective storage container can thus be found within a scanning cycle. Such a container must be removed from the silo and transported back to the loading or unloading location. Leakage from a storage container does not mean that there is no activity, since undamaged fuel elements are stored in the interim storage facility. The helium filling of the storage containers prevents any chemical damage to the fuel elements during the storage period.
- the fuel is thus protected by a double mechanical barrier.
- the second purely mechanical barrier can easily be expanded to a further barrier against mass transfer.
- the air channels in the cover 15 are omitted.
- the cooling air flow of the storage container, together with the cooling air of the concrete from the channels 28, circulates in a closed circuit.
- the recooling takes place in additional vertical shafts 29 with vertical heat pipes 30 with heat exchangers 45 arranged at the top.
- the escape of the circulating air into the workshop located above the warehouse is avoided by the suction blowers 27 of the leakage monitoring system which generate a vacuum.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
- Packages (AREA)
- Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)
Abstract
Description
Die Erfindung betrifft ein Verfahren zum Transport und zur Lagerung von radioaktiven Materialien, bei dem die radioaktiven Materialien in einem hermetisch verschliessbaren, aus chemisch beständigem Material hergestellten Lagerbehälter eingeschlossen werden, bei dem der Lagerbehälter seinerseits in einen mechanischen, thermischen und Strahlungsschutz gewährleistenden Transportbehälter eingesetzt wird, bei dem letzterer zu einer Lagerstelle transportiert wird, und bei dem an der Lagerstelle der Lagerbehälter aus dem Transportbehälter entfernt und zur Lagerung in einem den Strahlungsschutz gewährleistenden Silo eingebracht wird.The invention relates to a method for the transport and storage of radioactive materials, in which the radioactive materials are enclosed in a hermetically sealable storage container made of chemically resistant material, in which the storage container is in turn inserted into a transport container which ensures mechanical, thermal and radiation protection. in which the latter is transported to a storage location, and in which at the storage location the storage container is removed from the transport container and inserted for storage in a silo which ensures radiation protection.
Ein Verfahren der eingangs erwähnten Gattung ist aus folgender Veröffentlichung bekannt: Proceedings of the 15th conference on remote systems technology, (Chicago, U.S.) 1967, G.J. Bernstein, «Equipment for disposal of high-level solid wastes from the EBR-II fuel cycle facility», Seiten 85-92.A method of the type mentioned at the outset is known from the following publication: Proceedings of the 15th conference on remote systems technology, (Chicago, U.S.) 1967, G.J. Bernstein, “Equipment for disposal of high-level solid wastes from the EBR-II fuel cycle facility”, pages 85-92.
Dieses Verfahren wird für die Endlagerung der radioaktiven Materialien verwendet. An der Endlagerstelle sind eine Anzahl Stahlröhren im Boden vergraben. Ein Transportwagen mit dem Transportbehälter wird über eine leere Stahlröhre gefahren, der Transportbehälter unten geöffnet und der Lagerbehälter hydraulisch in die Stahlröhre gesenkt, die anschliessend mit Kies aufgefüllt und dann dicht verschweisst wird.This process is used for the final storage of radioactive materials. A number of steel tubes are buried in the ground at the disposal site. A transport trolley with the transport container is moved over an empty steel tube, the transport container is opened at the bottom and the storage container is lowered hydraulically into the steel tube, which is then filled with gravel and then sealed.
Das Verfahren eignet sich nicht für die Zwischenlagerung von radioaktiven Materialien, die später einer Wiederaufbereitung zugeführt werden müssen. Beim bekannten Verfahren sind keine spezifischen Vorkehrungen getroffen, um das Material wieder aus den Stahlröhren zu entfernen. Die Röhren müssten mittels eines Kranes aus dem Boden gezogen werden, wobei das Problem des Strahlenschutzes nicht gelöst ist.The method is not suitable for the interim storage of radioactive materials that later have to be reprocessed. In the known method, no specific precautions are taken to remove the material from the steel tubes. The tubes would have to be pulled out of the ground using a crane, although the problem of radiation protection has not been solved.
Für die Zwischenlagerung bestrahlter Brennelemente sind schon andere Lösungen vorgeschlagen worden. So ist es bekannt, die Brennelemente nass in ein Becken unterzubringen od. direkt in den Transportbehältern zwischenzulagern. Im ersten Fall muss die Brennelementlagerung des Reaktors entweder zu diesem Zweck vergrössert, oder eine gleichwertige Lagereinrichtung an einem geeigneten Ort aufgebaut werden. An solche Lager werden bezüglich Sicherheit, Uberwachung und Handhabung die gleichen strengen Sicherheitsanforderungen gestellt, wie beim Reaktor selber. Im zweiten Fall gewährleisten die Transportbehälter bereits selber eine hinreichende Sicherheit. Sie werden an der Lagerstelle auch nicht .geöffnet, so dass entsprechende separate Sicherheitsvorkehrungen an der Lagerstelle eingespart werden können. Müssen aber eine grössere Anzahl Brennelemente gelagert werden, so fallen die Investitionskosten der teuren Transportbehälter stark ins Gewicht.Other solutions have already been proposed for the interim storage of irradiated fuel elements. It is known, for example, to wetly store the fuel assemblies in a basin or to store them directly in the transport containers. In the first case, the fuel element storage of the reactor must either be enlarged for this purpose, or an equivalent storage facility must be set up at a suitable location. With regard to safety, monitoring and handling, the same strict safety requirements are placed on such bearings as for the reactor itself. In the second case, the transport containers themselves already ensure adequate security. They are also not opened at the depository, so that corresponding separate safety precautions can be saved at the depository. However, if a larger number of fuel elements have to be stored, the investment costs of the expensive transport containers are significant.
Es soll also eine Methode gefunden werden, welche die relativ kompakte Zwischenlagerung der abgebrannten Brennelemente gestattet, ohne dass beim Lager grosse Kosten an Einrichtungen für die Überwachung und Handhabung entstehen würden, und ohne dass eine grosse Zahl teurer Transportbehälter benützt werden müsste. Das Verfahren soll so konzipiert sein, dass auch die Entnahme der Lagerbehälter aus dem Silo für die Wiederaufbereitung des radioaktiven Materials sicher und problemlos erfolgen kann.A method should therefore be found which permits the relatively compact interim storage of the spent fuel assemblies without incurring high costs for monitoring and handling facilities in the storage facility and without having to use a large number of expensive transport containers. The process should be designed so that the storage containers can be removed from the silo for the reprocessing of the radioactive material safely and easily.
Das erfindungsgemässe Verfahren erfüllt diese Anforderungen. Es zeichnet sich dadurch aus, dass zum Entfernen des Lagerbehälters aus dem Transportbehälter letzterer in einen Betonschacht versenkt wird, dass nach Abheben des Transportbehälterdeckels ein Schutzbehälter auf den Betonschacht aufgesetzt wird, dass der Schutzbehälter unten geöffnet wird und der Lagerbehälter in den Schutzbehälter hineingehoben wird, dass der letztere wieder geschlossen wird, dass der Schutzbehälter dann vom Betonschacht abgehoben und auf die Öffnung des Betonsilos aufgesetzt wird, und dass anschliessend der Lagerbehälter in den Betonsilo abgesenkt wird, worauf der Schutzbehälter entfernt und der Betonsilo durch einen Deckel verschlossen wird.The method according to the invention fulfills these requirements. It is characterized by the fact that, in order to remove the storage container from the transport container, the latter is sunk into a concrete shaft, that after lifting the transport container lid, a protective container is placed on the concrete shaft, that the protective container is opened at the bottom and the storage container is lifted into the protective container, that the latter is closed again, that the protective container is then lifted from the concrete shaft and placed on the opening of the concrete silo, and that the storage container is then lowered into the concrete silo, whereupon the protective container is removed and the concrete silo is closed by a lid.
Da die Brennelemente nicht einzeln gehandhabt werden müssen, sondern quasi in «vorverpackter» Form, hermetisch eingeschweisst im rostfreien Stahlzylinder zum Lager transportiert und hier aufbewahrt werden, ist die Aktivitätsüberwachung wesentlich einfacher.Since the fuel elements do not have to be handled individually, but rather transported in a «pre-packaged» form, hermetically sealed in a stainless steel cylinder, and stored here, the activity monitoring is much easier.
Diese vereinfachten Lagerbehälter können leicht und preisgünstig hergestellt werden, da sie die sicherheits- und strahlungstechnischen Anforderungen während des Transportes für sich allein nicht erfüllen müssen. Für den Transport werden sie im Transportbehälter verpackt, der die sicherheitstechnischen Anforderungen optimal erfüllt. Die Brennelemente werden also in der Nähe des Reaktors in die Lagerbehälter gefüllt, worauf letztere verschweisst werden und ihrerseits in die Transportbehälter geladen werden. Nach dem Transport ins Zwischenlager werden die Transportbehälter geöffnet, damit die Lagerbehälter ausgeladen und zum eigentlichen Lagerort, z.B. einem Betonsilo, gebracht werden können. Während dieser Manipulation wird der Lagerbehälter mit einem «provisorischen» Strahlenschutzschild versehen, was durch Verwendung des Schutzbehälters gewährleistet wird.These simplified storage containers can be manufactured easily and inexpensively, since they do not have to meet the safety and radiation requirements during transport by themselves. For transport, they are packaged in a transport container that optimally fulfills the safety requirements. The fuel assemblies are therefore filled into the storage containers near the reactor, whereupon the latter are welded and in turn loaded into the transport containers. After transport to the interim storage facility, the transport containers are opened so that the storage containers are unloaded and taken to the actual storage location, e.g. a concrete silo. During this manipulation, the storage container is provided with a “provisional” radiation protection shield, which is guaranteed by using the protection container.
Die Einrichtung zur Durchführung des erfindungsgemässen Verfahrens mit einem Transportbehälter und einem in diesen einschliessbaren, hermetisch verschliessbaren Lagerbehälter für die radioaktiven Materialien ist dadurch gekennzeichnet, dass die Einrichtung einen Betonschacht zur Aufnahme des Transportbehälters beim Entladen des Lagerbehälters, einen Schutzbehälter zur Aufnahme und Überführung des Lagerbehälters vom Betonschacht zur Lagerstelle und eine Anzahl Betonsilos zur Aufnahme der Lagerbehälter für die Lagerung umfasst.The device for carrying out the method according to the invention with a transport container and a hermetically closable storage container for the radioactive materials which can be enclosed therein is characterized in that the device has a concrete shaft for receiving the transport container when the storage container is unloaded, a protective container for receiving and transferring the storage container from Concrete shaft to the storage area and a number of concrete silos to accommodate the storage containers for storage.
Der wichtigste Bestandteil der erfindungsgemässen Einrichtung ist der Lagerbehälter. Er muss, zusammengefasst, die folgenden Bedingungen erfüllen:
- - einfach und billig sein
- - hermetischverschlossenundnichtrostendsein
- - im Transportbehälter Platz haben
- - mit einem temporären Strahlungsschutzschild versehen werden können
- - die Wärmeabgabe an die Umgebung gewährleisten.
- - be simple and cheap
- - hermetically sealed and non-rusting
- - have space in the transport container
- - can be provided with a temporary radiation shield
- - ensure the heat is given off to the surroundings.
Nachfolgend wird anhand der Zeichnungen ein Ausführungsbeispiel der Erfindung näher erläutert. Es zeigen:
- Fig. 1 einen Längsschnitt durch einen Transportbehälter mit darin untergebrachtem Lagerbehälter,
- Fig. 1 das Detail la aus der Fig. 1, in grösserem Massstab,
- Fig. 2 einen Querschnitt nach der Linie 11-11 durch den Transportbehälter und den Lagerbehälter gemäss Fig. 1,
- Fig. 3 schematisch den Transportbehälter der für das Entladen des Lagerbehälters vorbereitet wird,
- Fig. 4 schematisch den in einen Betonschacht hineingesetzten Transportbehälter und den auf letzteren aufgesetzten Schutzbehälter,
- Fig. 5 schematisch das Herausheben des Lagerbehälters aus dem Transportbehälter und das Hineinziehen des Lagerbehälters in den Schutzbehälter,
- Fig. 6 schematisch den auf den zylindrischen Silo des Zwischenlagers aufgesetzten Schutzbehälter und das Absenken des Lagerbehälters,
- Fig. 7 schematisch den im Zwischenlager untergebrachten Lagerbehälter,
- Fig. 8 schematisch eine andere ausführungsvariante eines Zwischenlagers mit darin plazierten Lagerbehälter,
- Fig. 9 einen Querschnitt durch einen Silo mit darin platzierten Lagerbehälter und
- Fig. 10 einen Heliumdetektor zur Kontrolle der Dichtheit der Lagerbehälter.
- 1 shows a longitudinal section through a transport container with a storage container housed therein,
- 1 shows the detail la from FIG. 1, on a larger scale,
- 2 shows a cross section along the line 11-11 through the transport container and the storage container according to FIG. 1,
- 3 schematically shows the transport container which is being prepared for unloading the storage container,
- 4 schematically shows the transport container placed in a concrete shaft and the protective container placed on the latter,
- 5 schematically shows the lifting of the storage container from the transport container and the pulling of the storage container into the protective container,
- 6 schematically shows the protective container placed on the cylindrical silo of the intermediate storage and the lowering of the storage container,
- 7 schematically shows the storage container accommodated in the interim storage facility,
- 8 schematically shows another variant of an intermediate storage with a storage container placed therein,
- Fig. 9 shows a cross section through a silo with storage containers placed therein
- Fig. 10 shows a helium detector for checking the tightness of the storage container.
Der in der Fig. 1 dargestellte Transportbehälter 17 besteht aus einem massiven Stahlzylinder 31, der eine hinreichende Abschirmung gegenüber Gamma- strahlen gewährleistet. Der Transportbehälter 17 wird in einem Stück geschmiedet, so dass zwischen dem Stahlzylinder 31 und dem Behälterboden 32 nur eine einzige Schweissnaht 33 erforderlich ist.The
Ausserhalb des Stahlzylinders 31 sind Kühlrippen 34 angeordnet. Der Transportbehälter 17 ist mit einem sabotagesicheren und dicht schliessenden Dekkel 19 verschlossen. Zur Handhabung des Behälters 17 sind an verschiedenen Stellen Tragzapfen 35 angebracht und an beiden Enden des Behälters 17 sind abnehmbare Stossdämpfer 16 montiert.Cooling
Beim beschriebenen Transportbehälter handelt es sich um eine Ausführung, die normalerweise mit 12 Brennelementen beladen werden kann. Im vorliegenden Fall wird jedoch der Transportbehälter mit einem Lagerbehälter beladen. Dieser Lagerbehälter 7 weist einen rostfreien Stahlmantel 36 auf für sieben Druckwasserreaktorbrennelemente. Die Wanddicke des Mantels beträgt etwa 15 mm. Der Deckel 1 des Lagerbehälters ist mittels Schrauben 2 auf dem Mantel befestigt. Die vorstehenden Lippen 3 zwischen dem Deckelflansch 3 und dem Mantelflansch 38 sind miteinander verschweisst. Über die Länge des Lagerbehälters sind Rippen 4 angebracht, die die Wärmeabgabe an die Transportbehälter bzw. an die Umgebung gewährleisten. Am Boden 39 und am Deckel 1 sind Stahlrippen 5 angeschweisst, die versteifend wirken und ebenfalls der Wärmeabgabe dienen. Alle Rippen 4, 5 wirken ausserdem zusätzlich als Stossdämpfer bei einem Unfall.The transport container described is a version that can normally be loaded with 12 fuel elements. In the present case, however, the transport container is loaded with a storage container. This
Während des Verschweissens der Lippen 3 ist der Deckel 1 noch nicht am Mantel 36 angeschraubt, damit die Schraubenbolzen 2 die Schweissung nicht behindern. Nach Aufsetzen des Deckels 1 wird der Behälter 7 zuerst durch das Ventil 6 evakuiert. Der Aussendruck presst den Deckel 1 auf den Mantelflansch 38. Eine Dichtung 9 hilft das Vakuum aufrechtzuerhalten.During the welding of the
Nach dem Verschweissen der Lippen 3 werden die Schrauben 2 angebracht und angezogen. Der Behälter wird mit Helium bei einem Druck von ca. 7 atü abgepresst und die Dichheit des Behälters wird mit Helium-detektoren 40 (Fig. 10) kontrolliert. Der Überdruck im mit Helium gefüllten Behälter wird belassen und über das Füllventil 6 wird ein Abschlussdeckel 8 aufgeschweisst. Der unter Druck stehende Lagerbehälter 7 ist damit hermetisch verschlossen.After welding the
Sollte der Lagerbehälter wieder geöffnet werden, sei es weil er undicht geworden ist, oder weil die Brennelemente der Wiederaufbereitung zugeführt werden sollen, so werden die beschriebenen Operationen in der umgekehrten Reihenfolge ausgeführt. Der Verschlussdeckel 8 wird nach dem Abschleifen der Schweissnaht entfernt, der Heliumdruck aus dem Behälter abgelassen und das Vakuum hergestellt. Anschliessend werden die Schrauben 2 entfernt und die Lippenschweissung 3 wird abgeschliffen.If the storage container is opened again, either because it has leaked or because the fuel elements are to be reprocessed, the operations described are carried out in the reverse order. The
Da der Lagerbehälter selber keinen hinreichenden Schutz gegen die Gamma-Strahlen gewährleistet, müssen alle Operationen beim Verschluss und beim Öffnen fernbedient erfolgen können.Since the storage container itself does not guarantee adequate protection against the gamma rays, all operations when closing and opening must be carried out remotely.
Im Lagerbehälter sind die Brennelemente mit Borstahlkästen 11 umgeben. Normalerweise ist der Lagerbehälter immer trocken, aber der Abstand zwischen den Kästen 11 und ihr Borgehalt gewährleisten die hinreichende Unterkritikalität auch beim Füllen mit Wasser. Der Raum zwischen den Kästen 11 ist mit scheibenförmigen Aluminium-Gusskörpern 10 aufgefüllt. Diese Aluminium-Gusskörper geben der Konfiguration beim Unfall eine grosse Stabilität, sie bremsen etwas die schnellen Neutronen, absorbieren etwas von den Gammastrahlen und leiten die Nachzerfallswärme der Brennelemente an die Lagerbehälterwandung ab.The fuel elements are surrounded by
Das Beladen und das Verschliessen des Lagerbehälters muss in geschützten und kontrollierten Räumen vorgenommen werden, am besten unmittelbar in der Nähe des Reaktors. Hier müssen auch die notwendigen fernbedienbaren Geräte vorhanden sein.The loading and closing of the storage container must be carried out in protected and controlled rooms, ideally in the immediate vicinity of the reactor. The necessary remote-controlled devices must also be available here.
Die Abmessungen des Lagerbehälters für sieben Druckwasserreaktorbrennelemente sind so gewählt, dass er im üblichen Transportbehälter, der normalerweise für 12 Brennelemente Platz hat, gerade hineinpasst. Der Lagerbehälter wird also in den Transportbehälter geladen und zum Zwischenlager transportiert. Während des Transportes werden alle sicherheitstechnischen Vorschriften und Anforderungen, wie mechanische Festigkeit, thermische Eigenschaften und Strahlungsschutzbedingungen vom Transportbehälter erfüllt.The dimensions of the storage container for seven pressurized water reactor fuel elements are selected so that they fit straight into the usual transport container, which normally has space for 12 fuel elements. The storage container is thus loaded into the transport container and transported to the interim storage facility. During transport, all safety-related regulations and requirements such as mechanical strength, thermal properties and radiation protection conditions are met by the transport container.
Das eigentliche Zwischenlager besteht aus einer Betonplatte 41, in welche zylindrische Vertiefungen oder Silos 12 für die Lagerbehälter 7 eingelassen sind (Fig. 6, 7). Die Innenwände der Silos 12 sind zweckmässig mit einer Stahlauskleidung umhüllt.The actual interim storage consists of a
Die Kühlung der Lagerbehälter erfolgt durch freie Konvektion der Umgebungsluft. Die Zufuhr der Frischluft erfolgt durch Kanäle 13 unterhalb der La- gerposition. Die erwärmte Luft steigt durch Schikanen 14, welche das Austreten der Gammastrahlen verhindern, durch den Betondeckel 15 ins Freie.The storage containers are cooled by free convection of the ambient air. The supply of fresh air takes place by
Die verschiedenen Stufen für das Entladen des Lagerbehälters aus dem Transportbehälter bis zum Plazieren im Zwischenlager sind in den Figuren 3 - 6 veranschaulicht. Nach der Entfernung der Stossdämpfer 16 und der Deckelbefestigung wird der Transportbehälter 17 in einen Betonschacht 18 hinuntergelassen (Fig. 4). Jetzt wird der Deckel 19 abgehoben und aus demSilo entfernt, so dass der Schutzbehälter 20 auf den Transportbehälter 17 gestellt werden kann. Nach seitlichem Herausziehen des Verschlussschiebers 21 aus dem Schutzbehälter 20, wird eine Hebeplatte 22, die im Innern des Schutzbehälters angeordnet ist, hinuntergelassen und durch Drehen mit den Hebelaschen 23 des Lagerbehälters 7 verhenkt. Der Lagerbehälter 7 wird in den Schutzbehälter 20 hochgezogen und der Verschlussschieber 21 wieder hineingestossen. Der Schutzbehälter 20 schützt hinreichend gegen die Strahlung aus dem Lagerbehälter 7, so dass er aus dem Betonschacht 18 gehoben werden kann. Der Schutzbehälter wird dann zur Lagerstelle transportiert. Dort angelangt, wird er über die Öffnung des Silos 12 auf einen Zwischenring 24 abgesetzt. Der Verschlussschieber 21 wird wieder herausgezogen und der Lagerbehälter 7 in den Silo 12 hinuntergelassen (Fig. 6). Die Hebeplatte 22 wird durch Verdrehen entkoppelt und der Schutzbehälter 20 wird zusammen mit dem Zwischenring 24 entfernt. Letzterer dient dazu, den Lagerbehälter beim Absinken in den Silo zu führen.The various stages for unloading the storage container from the transport container to placing it in the interim storage facility are illustrated in FIGS. 3-6. After the
Die Position des Lagerbehälters 7 im Silo 12 wird durch Längsrippen 25a der Auskleidung 25 gesichert, welche die im Beton entstehende Wärme an die Luftströmung abgeben. Die restliche im Beton entstehende Wärme wird durch zusätzliche frei zirkulierende Kühlluft in den Kanälen 28 an die Umgebung abgegeben. Das Kühlsystem verhindert einen unzulässigen Temperaturanstieg und die damit verbundene Dehydration des Betons.The position of the
Eine Umweltbelastung durch das Zwischenlager ist auf drei verschiedene Arten möglich: durch direkte Strahlung, durch Undichtheit der Brennstoffumhüllung der Lagerbehälter und durch Aktivierung der Kühlluft durch die schnellen Neutronen. Gegen die direkte Strahlung (primäre Gammastrahlung, Neutronenstrahlung und sekundäre Gammastrahlung nach Neutroneneinfang) bildet die dicke Betonwand mit Borzusatz eine hinreichende Barriere. Die Dichtheit der Lagerbehälter wird durch das Überwachungssyatem mit Heliumdetektoren kontrolliert. Die Aktivierung der Luft kann weitgehend ungefährlich gehalten werden, wenn die Staubfreiheit der kalten Zuluft gewährleistet ist. Somit können keine Staubpartikel am Lagerbehälter abgelagert, dort aktiviert und wieder von der Kühlluft mitgerissen werden.Environmental pollution from the interim storage facility is possible in three different ways: through direct radiation, through leaks in the fuel casing of the storage containers and through activation of the cooling air by the fast neutrons. The thick concrete wall with added boron forms a sufficient barrier against direct radiation (primary gamma radiation, neutron radiation and secondary gamma radiation after neutron capture). The tightness of the storage containers is checked by the monitoring system using helium detectors. The activation of the air can be kept largely harmless if the cold supply air is free of dust. This means that no dust particles can be deposited on the storage container, activated there and then carried away by the cooling air.
Das Zwischenlager inklusive die Krananlagen können mit einer gewöhnlichen Halle überdeckt werden, welche den freien Austritt der Warmluft nicht behindern aber den gewöhnlich Schutz gegen atmosphärische Bedingungen (Seitenwind mit Staubzufuhr, Regen, Schnee) gewährleisten soll. Die massive Betonkonstruktion des Zwischenlagers bietet gegen alle mechanischen Einwirkungen (Erdbeben, Flugzeugabsturz usw.) hinreichend Schutz.The interim storage facility, including the crane systems, can be covered with an ordinary hall, which should not hinder the free escape of warm air, but should ensure the usual protection against atmospheric conditions (cross wind with dust, rain, snow). The massive concrete structure of the interim storage facility offers sufficient protection against all mechanical influences (earthquake, plane crash, etc.).
Wie bereits erwähnt worden ist, wird die Dichtheit der Lagerbehälter mit einem Heliumdetektor kontrolliert. Ein Gitter 26 von Plastic-Rohren ist über die Betondeckel 15 der Betonsilo 12 verlegt. Je eine Abzweigung aus den Rohren in beiden Richtungen dringt in die Luftaustrittsöffnungen der Betondeckel 15 hinein, ohne aber den freien Luftaustritt zu beeinträchtigen. Ein zentrales Sauggebläse 27 sorgt für ständigen Unterdruck in den Rohren.As has already been mentioned, the tightness of the storage containers is checked with a helium detector. A
Ein Abtastkontrollgbrät 43 öffnet periodisch der Reihe nach je eines der Ventile 44 gegen die Saugpumpe 27 des Heliumdetektors 40 hin. Innerhalb eines Abtastzyklus kann somit ein defekter Lagerbehälter festgestellt werden. Ein solcher Behälter muss aus dem Silo entfernt werden und zum Be- bzw. Entladeort zurücktransportiert werden. Leckage aus einem Lagerbehälter bedeutet noch keinen Aktivitätsaustritt, da im Zwischenlager unbeschädigte Brennelemente gelagert sind. Die Heliumfüllung der Lagerbehälter schliesst jede chemische Beschädigung der Brennelemente während der Lagerzeit aus.A
Der Brennstoff ist somit durch eine doppelte mechanische Barriere geschützt. Die zweite rein mechanische Barriere kann jedoch leicht zu einer weiteren Barriere gegen Stoffaustausch ausgebaut werden. Bei dieser Variante gemäss Fig. 8 sind die Luftkanäle im Deckel 15 weggelassen. Der Kühlluftstrom des Lagerbehälters, zusammen mit der Kühlluft des Betons aus den Kanälen 28 zirkuliert in einem geschlossenen Kreislauf. Die Rückkühlung erfolgt in zusätzlichen vertikalen Schächten 29 mit vertikalen Wärmerohren 30 mit oben angeordneten Wärmeaustauschern 45. Der Austritt der zirkulierenden Luft in die über dem Lager befindliche Werkhalle wird durch die einen Unterdruck erzeugenden Absauggebläse 27 des Leckageüberwachungssystems vermieden.The fuel is thus protected by a double mechanical barrier. However, the second purely mechanical barrier can easily be expanded to a further barrier against mass transfer. In this variant according to FIG. 8, the air channels in the
Claims (16)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT80900762T ATE4755T1 (en) | 1979-05-07 | 1980-05-06 | METHODS OF TRANSPORTATION AND STORAGE OF RADIOACTIVE MATERIALS. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH428179A CH637499A5 (en) | 1979-05-07 | 1979-05-07 | Method for transport and storage of radioactive materials. |
CH4281/79 | 1979-05-07 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0028222A1 EP0028222A1 (en) | 1981-05-13 |
EP0028222B1 true EP0028222B1 (en) | 1983-09-21 |
Family
ID=4273185
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP80900762A Expired EP0028222B1 (en) | 1979-05-07 | 1980-11-17 | Process for transporting and storing radioactive materials |
Country Status (10)
Country | Link |
---|---|
EP (1) | EP0028222B1 (en) |
JP (1) | JPS56500584A (en) |
AT (1) | ATE4755T1 (en) |
BR (1) | BR8008674A (en) |
CH (1) | CH637499A5 (en) |
DD (1) | DD151527A5 (en) |
DE (1) | DE3064891D1 (en) |
FI (1) | FI801374A (en) |
HU (1) | HU182080B (en) |
WO (1) | WO1980002469A1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE8018595U1 (en) * | 1980-07-11 | 1980-11-27 | Transnuklear Gmbh, 6450 Hanau | CONNECTING ELEMENT FOR FASTENING THE INTERNAL LINING IN A BASE BODY FOR TRANSPORT AND / OR STORING RADIOACTIVE MATERIAL |
US4711758A (en) * | 1984-12-24 | 1987-12-08 | Westinghouse Electric Corp. | Spent fuel storage cask having basket with grid assemblies |
ES8705990A1 (en) * | 1984-12-24 | 1987-05-16 | Westinghouse Electric Corp | Spent fuel storage cask having basked with grid assemblies. |
GB9609304D0 (en) | 1996-05-03 | 1996-07-10 | British Nuclear Fuels Plc | Improvements in and relating to fuel transportation |
US20010011711A1 (en) | 1996-05-03 | 2001-08-09 | Graham Nicholson | Container for nuclear fuel transportation |
DE10228387B4 (en) * | 2002-06-25 | 2014-10-16 | Polygro Trading Ag | Container system for the transport and storage of highly radioactive materials |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3997078A (en) * | 1974-12-13 | 1976-12-14 | Programmed & Remote Systems Corporation | Sealing cover for containers for hazardous materials |
GB1496846A (en) * | 1975-12-01 | 1978-01-05 | Atomic Energy Authority Uk | Transport containers for radioactive material |
US4040480A (en) * | 1976-04-15 | 1977-08-09 | Atlantic Richfield Company | Storage of radioactive material |
US4209420A (en) * | 1976-12-21 | 1980-06-24 | Asea Aktiebolag | Method of containing spent nuclear fuel or high-level nuclear fuel waste |
US4115700A (en) * | 1977-04-04 | 1978-09-19 | Combustion Engineering, Inc. | High density fuel storage racks |
DE7737499U1 (en) * | 1977-12-09 | 1978-05-24 | Steag Kernenergie Gmbh, 4300 Essen | SHIELD TRANSPORT AND / OR SHIELD STORAGE CONTAINER FOR RADIOACTIVE WASTE |
DE2821780A1 (en) * | 1978-05-18 | 1979-11-22 | Lovincic Miroslav | Transport coffin for radioactive cpd., esp. irradiated fuel elements - has ventilation openings at opposite ends and internal sealed capsules |
-
1979
- 1979-05-07 CH CH428179A patent/CH637499A5/en not_active IP Right Cessation
-
1980
- 1980-04-28 FI FI801374A patent/FI801374A/en not_active Application Discontinuation
- 1980-05-06 HU HU801105A patent/HU182080B/en unknown
- 1980-05-06 DE DE8080900762T patent/DE3064891D1/en not_active Expired
- 1980-05-06 JP JP50093380A patent/JPS56500584A/ja active Pending
- 1980-05-06 BR BR8008674A patent/BR8008674A/en unknown
- 1980-05-06 WO PCT/CH1980/000053 patent/WO1980002469A1/en active IP Right Grant
- 1980-05-06 AT AT80900762T patent/ATE4755T1/en not_active IP Right Cessation
- 1980-05-07 DD DD80220934A patent/DD151527A5/en unknown
- 1980-11-17 EP EP80900762A patent/EP0028222B1/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
DD151527A5 (en) | 1981-10-21 |
WO1980002469A1 (en) | 1980-11-13 |
EP0028222A1 (en) | 1981-05-13 |
FI801374A (en) | 1980-11-08 |
DE3064891D1 (en) | 1983-10-27 |
CH637499A5 (en) | 1983-07-29 |
BR8008674A (en) | 1981-04-14 |
HU182080B (en) | 1983-12-28 |
JPS56500584A (en) | 1981-04-30 |
ATE4755T1 (en) | 1983-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0125374B1 (en) | Temporary storage space for highly radioactive waste material | |
US5920602A (en) | Underground storage facility, and associated method of storing waste | |
US5862195A (en) | Canister, transport, storage, monitoring, and retrieval system | |
US4055508A (en) | Cask handling method and apparatus | |
DE2821780A1 (en) | Transport coffin for radioactive cpd., esp. irradiated fuel elements - has ventilation openings at opposite ends and internal sealed capsules | |
DE2220491A1 (en) | NUCLEAR POWER PLANT WITH A SAFETY SHELL | |
US10020084B2 (en) | System and method for processing spent nuclear fuel | |
DD153265A5 (en) | METHOD AND DEVICE FOR TRANSPORTING AND STORING RADIOACTIVE SUBSTANCES | |
DE2730729A1 (en) | Spent fuel element storage esp. for thorium high temp. reactor - is sealed vessels inside air-cooled chamber | |
DE2740185A1 (en) | RADIATION SHIELD FOR NUCLEAR REACTORS | |
CH650354A5 (en) | CONTAINER CONTAINER FOR TRANSPORTATION AND STORAGE OF IRRADIATED NUCLEAR REACTOR FUEL ELEMENTS. | |
DE2929467C2 (en) | Storage building for spent nuclear reactor fuel elements | |
DE2418518A1 (en) | STORAGE DEVICE FOR RADIOACTIVE WASTE | |
EP0028222B1 (en) | Process for transporting and storing radioactive materials | |
US4876593A (en) | Temporary hot cell and related method for handling high radiation level sources | |
DE2753034A1 (en) | STORAGE OF RADIATED FUEL ELEMENTS | |
DE19632678A1 (en) | Underwater dry intermediate storage process for spent nuclear fuel | |
DE1514702C3 (en) | Nuclear reactor plant with light water cooling and a fuel pool inside a pressure-resistant reactor building | |
DE3244727A1 (en) | Method and flask system for transferring or transporting fuel elements from a nuclear power station to a storage site | |
JPH1090464A (en) | Radioactive material storage facility | |
DE2911185A1 (en) | Spent nuclear fuel element storage basin - with stainless steel granules filling voids between fuel rods | |
Moyer et al. | Baseline descriptions for LWR spent fuel storage, handling, and transportation | |
CA2016923A1 (en) | Radioactive material storage structure | |
Forrester et al. | Interim Storage of RH-TRU 72B Canisters at the DOE Oak Ridge Reservation | |
Graff Jr et al. | Alternative concepts for dry storage of spent fuel at Morris Operation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19801212 |
|
AK | Designated contracting states |
Designated state(s): AT CH DE FR GB SE |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): AT CH DE FR GB LI SE |
|
REF | Corresponds to: |
Ref document number: 4755 Country of ref document: AT Date of ref document: 19831015 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 3064891 Country of ref document: DE Date of ref document: 19831027 |
|
ET | Fr: translation filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19840421 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19840425 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19840428 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19840630 Year of fee payment: 5 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19850405 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Effective date: 19860506 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19860507 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Effective date: 19860531 Ref country code: CH Effective date: 19860531 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19870130 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19870203 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19881118 |
|
EUG | Se: european patent has lapsed |
Ref document number: 80900762.8 Effective date: 19870225 |