[go: up one dir, main page]

EP0027067B1 - Planar bifilar antenna with transversal radiation and its use in radar aerials - Google Patents

Planar bifilar antenna with transversal radiation and its use in radar aerials Download PDF

Info

Publication number
EP0027067B1
EP0027067B1 EP19800401320 EP80401320A EP0027067B1 EP 0027067 B1 EP0027067 B1 EP 0027067B1 EP 19800401320 EP19800401320 EP 19800401320 EP 80401320 A EP80401320 A EP 80401320A EP 0027067 B1 EP0027067 B1 EP 0027067B1
Authority
EP
European Patent Office
Prior art keywords
line
conducting
plane
wire
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP19800401320
Other languages
German (de)
French (fr)
Other versions
EP0027067A1 (en
Inventor
Jean Rannou
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0027067A1 publication Critical patent/EP0027067A1/en
Application granted granted Critical
Publication of EP0027067B1 publication Critical patent/EP0027067B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q11/00Electrically-long antennas having dimensions more than twice the shortest operating wavelength and consisting of conductive active radiating elements
    • H01Q11/02Non-resonant antennas, e.g. travelling-wave antenna
    • H01Q11/04Non-resonant antennas, e.g. travelling-wave antenna with parts bent, folded, shaped, screened or electrically loaded to obtain desired phase relation of radiation from selected sections of the antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/20Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/206Microstrip transmission line antennas

Definitions

  • the invention relates to a flat two-wire antenna with transverse radiation and its application to radars overhead.
  • Antennas which meet these conditions at least partially are known in the prior art, which proposes either antennas of the equiangular spiral type wound on a cone, or of the log-periodic type or else, as in the American patent US-A-3 249 946 in the name of ER Flanagan, an antenna comprising a conductive line having folds inscribed in an envelope made up of two intersecting lines. In this last antenna, the phase center is mobile.
  • the above-mentioned antennas although having some of the conditions required, do not have transverse radiation making it possible to produce an antenna which can be accommodated in thin volumes.
  • planar antennas with double spiral nested have proposed planar antennas with double spiral nested; but this type of antenna, although broadband in frequency, has a fixed phase center relative to the wavelength used.
  • the present invention aims to define a two-wire planar antenna having all the conditions mentioned above and the radiation of which is in a transverse direction.
  • the flat two-wire antenna with transverse radiation comprises two conductive lines arranged on two planes parallel symmetrically with respect to the median plane and each having N folds whose envelope is defined by straight lines forming an angle of value a predetermined constant, these two conductive lines differing only by a variation in the electrical length of the same conductive line at the folds, so that two elements of conductive lines belonging to the two planes and delimited by two folds successive are traversed by a phase current for the wavelength used.
  • a two-wire line whose conductors are sufficiently close to each other has a very weak radiation because the conductors being traversed by a current in phase opposition, their respective radiations cancel each other out.
  • This method is used to create the radiation of the antenna object of the invention.
  • Figures 1 and 2 show a first embodiment of an antenna according to the invention seen in perspective and front view. It comprises a dielectric plate 10 limited by two planes P and P 2 , the thickness of which is small, and on which are fixed on either side, and respectively, two conductive metal lines 1 and 2, for example by etching according to the known technique of printed circuits; these lines have N folds which are arranged so as to be inscribed in an opening angle ⁇ .
  • FIG. 2 shows a possible geometry of the folds which here are such that they only have right angles and thus delimit elements of straight conductive lines, parallel and equidistant from each other.
  • one of the conductive lines 2 is extended by a length 11.1 relative to the other conductive line 1 at each folding.
  • is not critical since, in combination with the distance d between two consecutive elements of the same conductive line, it only determines the interval ⁇ of wavelength between the maximum radiations.
  • a and d are as low as possible, which of course increases the size of the antenna and its difficulty of realization.
  • the value given to d is in any case limited below by the coupling phenomena between the elements of neighboring lines.
  • FIG. 3 shows a second embodiment of an antenna according to the invention for which the distance between two successive elements of the same conductive line varies in proportion to the distance of these line elements at the feed point 0.
  • This variant in the geometry of the folds implies that the variations ⁇ 1 of each fold are proportional to the distance from the feed point 0 of the antenna.
  • An elementary antenna as described above can be used for very wide frequency transmission and / or reception of a rectilinear polarized wave, for example in an electromagnetic detection device.
  • the combination of at least two of these antennas can be used as an aerial deviation meter; the phase difference between the signals received by two neighboring antennas is then measured, these being able to be supplied either in phase or in phase opposition as shown in FIGS. 7 and 8.
  • Arrays of several antennas of this type can be done in many different ways. For a couple of two antennas, it is possible, for example, to arrange them on the same plane and symmetrically with respect to a point or with respect to a straight line of this same plane as shown in the examples corresponding to FIGS. 7 and 8.
  • a plane 11 reflecting the electromagnetic waves such as for example a metal plate, can be placed either parallel to this antenna at a distance close to ⁇ M / 4 where ⁇ M is the length mean wave of the antenna, either passing through the point 0 and making an angle ⁇ so that each conductive line element of order 1 is situated relative to the reflecting plane, at a distance equal to half the length electric Ai / 2 of the element considered ⁇ 'order i, that is to say at a distance ⁇ i / 4 measured parallel to the direction of radiation, where ⁇ i is the wavelength corresponding to the resonance of this line element.
  • a dielectric plate 12 of suitable index and thickness is fixed on one of the two lines 2 and covering it totally or partially so as to obtain an effect similar to the geometric elongation of one of the two conducting lines .
  • the dielectric plate then completely covers one face of the antenna so as to create an electrical elongation ⁇ 1 varying proportionally to the length of the conductive line.
  • the dielectric plate occupies only two angular sectors delimited by angles ⁇ " ⁇ ⁇ of vertex 0 and adjacent to the sides of the angle ⁇ .
  • a two-wire planar antenna with transverse radiation has thus been described, and its application to radar aerials.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Aerials With Secondary Devices (AREA)

Description

L'invention concerne une antenne plane bifilaire à rayonnement transversal et son application aux aériens des radars.The invention relates to a flat two-wire antenna with transverse radiation and its application to radars overhead.

Dans certains équipements de détection ou de transmission par ondes électromagnétiques, il est nécessaire de disposer d'une antenne répondant aux conditions suivantes:

  • - avoir une large bande passante en fréquence,
  • - permettre un déplacement du centre de phase en fonction de la fréquence selon une loi linéaire de manière à pouvoir effectuer des mesures d'écartométrie par l'association d'au moins deux antennes similaires,
  • - posséder un encombrement réduit.
In some detection or transmission equipment by electromagnetic waves, it is necessary to have an antenna meeting the following conditions:
  • - have a large frequency bandwidth,
  • - allow a displacement of the phase center as a function of the frequency according to a linear law so as to be able to carry out deviation measurements by the association of at least two similar antennas,
  • - have a small footprint.

Des antennes répondant au moins partiellement à ces conditions sont connues dans l'art antérieur, qui propose soit des antennes du type spirale équiangulaire bobinée sur un cône, soit du type log-périodique ou bien, comme dans le brevet américain US-A-3 249 946 au nom de E. R. Flanagan, une antenne comprenant une ligne conductrice présentant des repliements inscrits dans une enveloppe constituée de deux droites sécantes. Dans cette dernière antenne, le centre de phase est mobile. Cependant les antennes précitées, bien que présentant certaines des conditions demandées, ne possèdent pas un rayonnement transversal permettant de réaliser une antenne pouvant se loger dans des volumes de faible épaisseur.Antennas which meet these conditions at least partially are known in the prior art, which proposes either antennas of the equiangular spiral type wound on a cone, or of the log-periodic type or else, as in the American patent US-A-3 249 946 in the name of ER Flanagan, an antenna comprising a conductive line having folds inscribed in an envelope made up of two intersecting lines. In this last antenna, the phase center is mobile. However, the above-mentioned antennas, although having some of the conditions required, do not have transverse radiation making it possible to produce an antenna which can be accommodated in thin volumes.

Pour répondre à cette condition d'encombrement réduit, l'art antérieur a proposé des antennes planes à double spirale emboîtées; mais ce type d'antenne bien qu'à large bande en fréquence, possède un centre de phase fixe par rapport à la longueur d'onde utilisée.To meet this condition of reduced bulk, the prior art has proposed planar antennas with double spiral nested; but this type of antenna, although broadband in frequency, has a fixed phase center relative to the wavelength used.

La présente invention vise à définir une antenne plane bifilaire présentant toutes les conditions évoquées précédemment et dont le rayonnement se fait dans une direction transversale.The present invention aims to define a two-wire planar antenna having all the conditions mentioned above and the radiation of which is in a transverse direction.

Selon une caractéristique principale, l'antenne plane bifilaire à rayonnement transversal selon l'invention, comporte deux lignes conductrices disposées sur deux plans parallèles symétriquement par rapport au plan médian et présentant chacune N repliements dont l'enveloppe est définie par déux droites formant un angle de valeur a constante prédéterminée, ces deux lignes conductrices ne différant que par une variation àl, de la longueur électrique d'une même ligne conductrice au niveau des repliements, de sorte que deux éléments de lignes conductrices appartenant aux deux plans et délimités par deux repliements successifs sont parcourus par un courant en phase pour la longueur d'onde utilisée.According to a main characteristic, the flat two-wire antenna with transverse radiation according to the invention, comprises two conductive lines arranged on two planes parallel symmetrically with respect to the median plane and each having N folds whose envelope is defined by straight lines forming an angle of value a predetermined constant, these two conductive lines differing only by a variation in the electrical length of the same conductive line at the folds, so that two elements of conductive lines belonging to the two planes and delimited by two folds successive are traversed by a phase current for the wavelength used.

D'autres avantages et caractéristiques de l'invention ressortiront de la description qui suit de deux exemples non limitatifs de réalisation donnée à l'aide des figures qui représentent:

  • - la figure 1, un premier exemple de réalisation d'une antenne selon l'invention;
  • - la figure 2, l'antenne de la figure 1 vue de race permettant ainsi une meilleure représentation des différents éléments;
  • - la figure 3, un second exemple de réalisation d'une antenne selon l'invention vue de face;
  • - la figure 4, une variante de réalisation de l'antenne des figures 1 et 2;
  • - les figures 5 et 6, les emplacements d'un élément réflecteur adjoint à l'antenne selon l'invention;
  • - les figures 7 et 8, deux exemples non limitatifs de groupement d'antennes selon l'invention.
Other advantages and characteristics of the invention will emerge from the description which follows of two nonlimiting exemplary embodiments given with the aid of the figures which represent:
  • - Figure 1, a first embodiment of an antenna according to the invention;
  • - Figure 2, the antenna of Figure 1 race view thus allowing a better representation of the different elements;
  • - Figure 3, a second embodiment of an antenna according to the invention seen from the front;
  • - Figure 4, an alternative embodiment of the antenna of Figures 1 and 2;
  • - Figures 5 and 6, the locations of a reflective element attached to the antenna according to the invention;
  • - Figures 7 and 8, two non-limiting examples of antenna array according to the invention.

Une ligne bifilaire dont les conducteurs sont suffisamment rapprochés l'un de l'autre a un rayonnement très faible car les conducteurs étant parcourus par un courant en opposition de phase, leurs rayonnements respectifs s'annulent.A two-wire line whose conductors are sufficiently close to each other has a very weak radiation because the conductors being traversed by a current in phase opposition, their respective radiations cancel each other out.

Si, par un moyen quelconque, l'un des conducteurs voit sa longueur électrique augmentée par rapport à l'autre, il se crée les conditions d'un rayonnement qui sera maximal à l'endroit où les conducteurs seront parcourus par des courants en phase.If, by any means, one of the conductors has its electrical length increased relative to the other, the conditions for radiation will be created which will be maximum at the point where the conductors will be traversed by phase currents .

Cette méthode est utilisée pour créer le rayonnement de l'antenne objet de l'invention.This method is used to create the radiation of the antenna object of the invention.

Les figures 1 et 2 montrent un premier exemple de réalisation d'une antenne selon l'invention vu en perspective cavalière et de face. Elle comporte une plaque de diélectrique 10 limitée par deux plans P et P2, dont l'épaisseur est faible, et sur laquelle sont fixées de part et d'autre, et respectivement, deux lignes métalliques conductrices 1 et 2, par exemple par gravure selon la technique connue des circuits imprimés; ces lignes présentent N repliements qui sont disposés de façon à être inscrits dans un angle d'ouverture α.Figures 1 and 2 show a first embodiment of an antenna according to the invention seen in perspective and front view. It comprises a dielectric plate 10 limited by two planes P and P 2 , the thickness of which is small, and on which are fixed on either side, and respectively, two conductive metal lines 1 and 2, for example by etching according to the known technique of printed circuits; these lines have N folds which are arranged so as to be inscribed in an opening angle α.

A titre d'exemple non limitatif, la figure 2 montre une géométrie possible des repliements qui ici sont tels qu'ils ne comportent que des angles droits et délimitent de la sorte des éléments de lignes conductrices rectilignes, parallèles et équidistants les uns des autres. Dans cet exemple, l'une des lignes conductrices 2, est rallongée d'une longueur 11.1 par rapport à l'autre ligne conductrice 1 à chaque repliement.By way of nonlimiting example, FIG. 2 shows a possible geometry of the folds which here are such that they only have right angles and thus delimit elements of straight conductive lines, parallel and equidistant from each other. In this example, one of the conductive lines 2 is extended by a length 11.1 relative to the other conductive line 1 at each folding.

Dans ces conditions, si l'on alimente les deux lignes en opposition de phase au point 0, sommet de l'angle dans lequel les repliements sont inscrits, on obtient à partir de ce point 0 une variation de la phase relative des deux lignes conductrices 1, 2 directement fonction de la distance au point 0 de l'élément de ligne conductrice considéré. Lorsque ce déphasage atteint 180° les deux conducteurs sont parcourus par des courants électriques en phase, donc en condition de rayonnement maximal.Under these conditions, if one feeds the two lines in phase opposition at point 0, vertex of the angle in which the folds are registered, one obtains from this point 0 a variation of the relative phase of the two conducting lines 1, 2 directly function of the distance to point 0 of the conductive line element considered. When this phase shift reaches 180 ° the two conductors are by run by electric currents in phase, therefore in maximum radiation condition.

Afin que la direction de rayonnement maximal soit perpendiculaire au plan de l'antenne, c'est-à-dire que le rayonnement soit transversal, il faut que deux éléments voisins de lignes conductrices, par exemple sur les figures 1 et 2, comportant les points A et B, soient en phase.So that the direction of maximum radiation is perpendicular to the plane of the antenna, that is to say that the radiation is transverse, it is necessary that two neighboring elements of conducting lines, for example in FIGS. 1 and 2, comprising the points A and B, are in phase.

Ceci suppose que les deux conditions suivantes sont remplies simultanément pour une longueur d'onde de rayonnement maximum:

  • - différence de marche de λ/2 entre les lignes conductrices 1 et 2,
  • - longueur moyenne des éléments de lignes conductrices contenant les points A et B égale à λ/2.
This assumes that the following two conditions are met simultaneously for a maximum radiation wavelength:
  • - path difference of λ / 2 between the conducting lines 1 and 2,
  • - average length of the conductive line elements containing the points A and B equal to λ / 2.

La conséquence de ces deux conditions est que, le centre de phase de l'antenne ainsi constituée s'écarte du point d'alimentation 0 de façon proportionnelle à la longueur d'onde. De plus, dans l'exemple décrit sur les figures 1 et 2 les éléments de lignes sont équidistants; de ce fait les accroissement Δ1, à chaque repliement, de la longueur de la seconde ligne conductrice 2 sont égaux.The consequence of these two conditions is that the phase center of the antenna thus formed deviates from the feed point 0 in proportion to the wavelength. In addition, in the example described in FIGS. 1 and 2, the line elements are equidistant; therefore the increases Δ1, at each folding, of the length of the second conductive line 2 are equal.

La valeur de α n'est pas critique car elle ne détermine, en combinaison avec la distance d entre deux éléments consécutifs d'une même ligne conductrice, que l'intervalle Δλ de longueur d'onde entre les rayonnements maximaux. Ainsi, si l'on désire que l'antenne présente un accord quasi continu il faut que a et d soient aussi faibles que possible, ce qui bien sûr augmente la taille de l'antenne et sa difficulté de réalisation. La valeur donnée à d est de toute façon limitée inférieurement par les phénomènes de couplage entre les éléments de lignes voisins.The value of α is not critical since, in combination with the distance d between two consecutive elements of the same conductive line, it only determines the interval Δλ of wavelength between the maximum radiations. Thus, if it is desired that the antenna has an almost continuous tuning, it is necessary that a and d are as low as possible, which of course increases the size of the antenna and its difficulty of realization. The value given to d is in any case limited below by the coupling phenomena between the elements of neighboring lines.

La figure 3 montre un second exemple de réalisation d'une antenne selon l'invention pour laquelle la distance entre deux éléments successifs d'une même ligne conductrice varie proportionnellement à la distance de ces éléments de lignes au point 0 d'alimentation. Cette variante dans la géométrie des repliements, implique que les variations Δ1 de chaque repliement sont proportionnels à la distance par rapport au point 0 d'alimentation de l'antenne.FIG. 3 shows a second embodiment of an antenna according to the invention for which the distance between two successive elements of the same conductive line varies in proportion to the distance of these line elements at the feed point 0. This variant in the geometry of the folds, implies that the variations Δ1 of each fold are proportional to the distance from the feed point 0 of the antenna.

Ces deux exemples de géométrie par les repliements ne sont pas limitatifs. En particulier, il est concevable que les éléments de lignes délimités par les repliements successifs ne soient pas rectilignes, ni mêmes parallèles les uns par rapport aux autres; de plus la distance entre deux éléments de ligne successifs peut varier selon une loi quelconque prédéterminée, autre qu'une loi linéaire. Quelle que soit la géométrie des repliements choisie, ceux-ci doivent cependant conserver comme enveloppe un angle d'ouverture α constante. Une valeur préférentielle de cet angle α est de 90° car elle permet l'association de quatre antennes identiques sur une plaque diélectrique carrée.These two examples of geometry by folding are not limiting. In particular, it is conceivable that the line elements delimited by the successive folds are not straight, or even parallel with respect to each other; moreover the distance between two successive line elements can vary according to any predetermined law, other than a linear law. Whatever the geometry of the folds chosen, they must however keep as an envelope an opening angle α constant. A preferred value of this angle α is 90 ° because it allows the association of four identical antennas on a square dielectric plate.

Une antenne élémentaire telle qu'ainsi décrite, peut être utilisée pour l'émission et/ou la réception à très large bande en fréquence d'une onde polarisée rectiligne par exemple dans un dispositif de détection électromagnétique.An elementary antenna as described above can be used for very wide frequency transmission and / or reception of a rectilinear polarized wave, for example in an electromagnetic detection device.

L'association d'au moins deux de ces antennes peut être utilisée comme aérien d'écartométrie; on mesure alors la différence de phase entre les signaux reçus par deux antennes voisines, celles-ci pouvant être alimentées soit en phase, soit en opposition de phase comme cela est montré sur les figures 7 et 8.The combination of at least two of these antennas can be used as an aerial deviation meter; the phase difference between the signals received by two neighboring antennas is then measured, these being able to be supplied either in phase or in phase opposition as shown in FIGS. 7 and 8.

Des groupements de plusieurs antennes de ce type peuvent se faire de nombreuses façons différentes. Pour un couple de deux antennes on peut, par exemple, les disposer sur un même plan et symétriquement par rapport à un point ou par rapport à une droite de ce même plan comme cela est montré sur les exemples correspondants aux figures 7 et 8.Arrays of several antennas of this type can be done in many different ways. For a couple of two antennas, it is possible, for example, to arrange them on the same plane and symmetrically with respect to a point or with respect to a straight line of this same plane as shown in the examples corresponding to FIGS. 7 and 8.

De façon à obtenir le rayonnement transversal dans un seul sens, un plan 11 réfléchissant les ondes électromagnétiques, comme par exemple une plaque métallique, peut être disposée soit parallèlement à cette antenne à une distance voisine de λM/4 où λM est la longueur d'onde moyenne de l'antenne, soit passant par le point 0 et faisant un angle β de façon que chaque élément de ligne conductrice d'ordre 1 soit situé par rapport au plan réfléchissant, à une distance égale a la moitié de la longueur électrique Ai/2 de l'élément considéré α'ordre i, soit à une distance λi/4 mesurée parallèlement à la direction de rayonnement, où λi est la longueur d'onde correspondant à la résonance de cet élément de ligne. Ces deux variantes de réalisation sont illustrées par les figures 5 et 6.In order to obtain the transverse radiation in one direction, a plane 11 reflecting the electromagnetic waves, such as for example a metal plate, can be placed either parallel to this antenna at a distance close to λ M / 4 where λ M is the length mean wave of the antenna, either passing through the point 0 and making an angle β so that each conductive line element of order 1 is situated relative to the reflecting plane, at a distance equal to half the length electric Ai / 2 of the element considered α'order i, that is to say at a distance λi / 4 measured parallel to the direction of radiation, where λ i is the wavelength corresponding to the resonance of this line element. These two variant embodiments are illustrated in FIGS. 5 and 6.

Il est possible, comme cela est montré à la figure 4, dans une variante de réalisation, de supprimer la variation Δ1 de la ligne conductrice 2. Les deux lignes conductrices 1 et 2 étant alors parfaitement symétriques par rapport au plan médian des plans P et PZ, on fixe sur l'une des deux lignes 2 une plaque diélectrique 12 d'indice et d'épaisseur convenables et la recouvrant totalement ou partiellement de manière à obtenir un effet similaire à l'allongement géométrique d'une des deux lignes conductrices. Dans le cas de l'exemple choisi à la figure 3, la plaque diélectrique recouvre alors entièrement une face de l'antenne de façon à créer un allongement électrique Δ1 variant proportionnellement à la longueur de la ligne conductrice. Dans le cas de l'exemple donné à la figure 2 et illustré par la figure 4, où l'accroissement Δl est proportionnel à la distance du point 0, la plaque diélectrique n'occupe que deux secteurs angulaires délimités par des angles α"<α de sommet 0 et adjacents aux côtés de l'angle α.It is possible, as shown in FIG. 4, in an alternative embodiment, to suppress the variation Δ1 of the conductive line 2. The two conductive lines 1 and 2 then being perfectly symmetrical with respect to the median plane of the planes P and P Z , a dielectric plate 12 of suitable index and thickness is fixed on one of the two lines 2 and covering it totally or partially so as to obtain an effect similar to the geometric elongation of one of the two conducting lines . In the case of the example chosen in FIG. 3, the dielectric plate then completely covers one face of the antenna so as to create an electrical elongation Δ1 varying proportionally to the length of the conductive line. In the case of the example given in FIG. 2 and illustrated by FIG. 4, where the increase Δl is proportional to the distance from point 0, the dielectric plate occupies only two angular sectors delimited by angles α "< α of vertex 0 and adjacent to the sides of the angle α.

On a ainsi décrit une antenne plane bifilaire à rayonnement transversal, et son application aux aériens radars.A two-wire planar antenna with transverse radiation has thus been described, and its application to radar aerials.

Claims (11)

1. Plane two-wire aerial with transversal radiation comprising a first and second conducting line 1, 2 disposed facing each other on a first and a second parallel plane P and P2 respectively, characterized in that the first, respectively second, conducting line 1, 2 presents a plurality of N folds, delimiting the conducting elements that are each disposed opposite a conducting element of the other line, form respectively a pair with the opposite facing conducting elements and which are contained in a sector of the first, respectively second, plane limited respectively by two secant straight lines constituting the enclosure of the first, respectively second, conducting line 1, 2 and in that each conducting element of the second line 2 has an electric length that is longer than that of the conducting element of the first line 1 situated facing opposite and which is such that at least two conducting elements situated facing opposite and forming a pair are through-crossed by currents in phase and that the average length of the conducting elements of the said pair and an adjacent pair at least is equal to λ/2, in which λ is the wave length of maximal radiation.
2. Plane two-wire aerial according to claim 1, characterized in that the increment of the electric length of each conducting element of the second line 2 with respect to the conducting element of the first line 1 situated facing opposite is realized, at each fold, by an increase (Δ1) of the length of the second conducting line 2 with respect to the first 4.
3. Plane two-wire aerial according to claim 1, characterized in that the increment of the electric length of each conducting element of the second line 2 with respect to the corresponding conducting element of the first line 1 situated facing opposite is realized by the presence of a plate made of dielectric material 12 covering completely or partially one face of the two-wire aerial.
4. Plane two-wire aerial according to any one of claims 1 to 3, characterized in that the conducting line elements, determined by N folds, are parallel.
5. Plane two-wire aerial according to any one of claims 1 to 4, characterized in that the conducting line elements, determined by N folds, are rectilinear.
6. Plane two-wire aerial according to claim 5, characterized in that the conducting elements of each line 1,2 are equidistant from one another and in that the increment of the electric length is constant for each conducting element of the second line 2.
7. Plane two-wire aerial according to claim 4, characterized in that, for each conducting line 1, 2 the distance between the two consecutive parallel conducting elements varying with the removal of the first of these line elements with respect to the output point 0 of the conducting line 1, 2 according to a predetermined function, the increment of the electric length of one of the conducting lines 2 varies according to this same function.
8. Plane two-wire aerial according to any of claims 1 to 7, characterized in that the first and second conducting lines 1, 2 are fixed on either side of a single dielectric plate 10.
9. Plane two-wire aerial according to any one of claims 1 to 7, characterized in that it comprises a plane reflecting surface 11 parallel to the first and second planes of the two-wire line and located at a distance close to a quarter of the average wave length of the aerial.
10. Plane two-wire aerial according to any one of claims 1 to 8, characterized in that it comprises a reflecting surface 11 passing through the point 0 and forming with the first or second plane P1 or P2 of the two-wire aerial an angle beta so that each conducting element of the line of the said plane P, and P2 is distant from the said reflecting surface by a length substantially equal to half the electric length of said conducting element.
11. Utilization in a radar scanner of at least two two-wire plane aerials according to any one of claims 1 to 10, characterized in that the two-wire aerials are connected in parallel or in series or supplied separately in phase or in phase opposition.
EP19800401320 1979-10-05 1980-09-16 Planar bifilar antenna with transversal radiation and its use in radar aerials Expired EP0027067B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR7924897A FR2466879A1 (en) 1979-10-05 1979-10-05 BIFILAR FLAT ANTENNA WITH TRANSVERSAL RADIATION AND ITS APPLICATION TO RADAR AIRS
FR7924897 1979-10-05

Publications (2)

Publication Number Publication Date
EP0027067A1 EP0027067A1 (en) 1981-04-15
EP0027067B1 true EP0027067B1 (en) 1984-07-18

Family

ID=9230390

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19800401320 Expired EP0027067B1 (en) 1979-10-05 1980-09-16 Planar bifilar antenna with transversal radiation and its use in radar aerials

Country Status (3)

Country Link
EP (1) EP0027067B1 (en)
DE (1) DE3068607D1 (en)
FR (1) FR2466879A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988004836A1 (en) * 1986-12-18 1988-06-30 John Chun Sing Yip Indoor antenna
WO1993000721A1 (en) * 1991-06-27 1993-01-07 Siemens Aktiengesellschaft Planar zig-zag antenna

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2710458B1 (en) * 1984-11-27 1996-01-26 Thomson Csf Two-wire planar antenna.

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3013268A (en) * 1959-04-23 1961-12-12 Collins Radio Co Elliptical-polarized logarithmically periodic antenna
US3231894A (en) * 1960-06-23 1966-01-25 Sony Corp Zigzag antenna
FR1331664A (en) * 1961-07-03 1963-07-05 Marconi Wireless Telegraph Co Improvements to directive antennas
GB965802A (en) * 1961-11-03 1964-08-06 Marconi Co Ltd Improvements in or relating to aerials
US3249946A (en) * 1963-03-25 1966-05-03 Martin Marietta Corp Frequency independent antenna array with constant phase center spacing
US3530486A (en) * 1968-11-22 1970-09-22 Hughes Aircraft Co Offset-wound spiral antenna
DE2243493A1 (en) * 1972-09-05 1974-03-28 Hans Heinrich Prof Dr Meinke DIRECTIONAL ANTENNA FROM SEVERAL SINGLE BEAMS

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988004836A1 (en) * 1986-12-18 1988-06-30 John Chun Sing Yip Indoor antenna
WO1993000721A1 (en) * 1991-06-27 1993-01-07 Siemens Aktiengesellschaft Planar zig-zag antenna

Also Published As

Publication number Publication date
DE3068607D1 (en) 1984-08-23
EP0027067A1 (en) 1981-04-15
FR2466879A1 (en) 1981-04-10
FR2466879B1 (en) 1983-09-16

Similar Documents

Publication Publication Date Title
EP0213646B1 (en) Modular microwave antenna units and antenna comprising such units
EP0145597B1 (en) Plane periodic antenna
EP0954055B1 (en) Dual-frequency radiocommunication antenna realised according to microstrip technique
EP0575211B1 (en) Radiating element of an antenna with wide bandwidth and antenna array comprising such elements
EP0109867B1 (en) Sensitive broad band alternating magnetic field detector, and its use as a measuring apparatus
FR2904148A1 (en) ISOTROPIC ANTENNA AND MEASURING SENSOR
EP0012055A1 (en) Microstrip monopulse primary feed and antenna using same
FR2751471A1 (en) WIDE-BAND RADIATION DEVICE WHICH MAY BE MULTIPLE POLARIZATION
EP0082751A1 (en) Microwave radiator and its use in an electronically scanned antenna
EP0251901B1 (en) Continuous piezoelectric pressure wave receiver and method for its manufacture
EP0027067B1 (en) Planar bifilar antenna with transversal radiation and its use in radar aerials
EP0454582A1 (en) Radio direction finder antenna system with omnidirectional coverage
EP0012645A1 (en) Sheet antenna composed of two circular rings
US6266027B1 (en) Asymmetric antenna incorporating loads so as to extend bandwidth without increasing antenna size
EP3335267B1 (en) Surface-wave antenna, antenna array and use of an antenna or an antenna array
EP3175509B1 (en) Log-periodic antenna with wide frequency band
EP0477102B1 (en) Directional network with adjacent radiator elements for radio communication system and unit with such a directional network
EP2432072B1 (en) Wideband balun on a multilayer circuit for a network antenna
EP3900113B1 (en) Elementary microstrip antenna and array antenna
CA2392696C (en) Broad-band scissor-type antenna
EP0762534B1 (en) Method for enlarging the radiation diagram of an antenna array with elements distributed in a volume
EP0326498B1 (en) Resonant circuit and filter using it
FR2653632A1 (en) UNIDIRECTIONAL SURFACE WAVE TRANSDUCER.
FR2690019A1 (en) Harmonic circuit and mixer.
FR2747842A1 (en) Microwave lens with panel of stacked phase shifting channels

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE GB IT NL

17P Request for examination filed

Effective date: 19810511

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE GB IT NL

REF Corresponds to:

Ref document number: 3068607

Country of ref document: DE

Date of ref document: 19840823

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19900930

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19910802

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19910807

Year of fee payment: 12

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19920401

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19920916

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19920916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930602