[go: up one dir, main page]

EP0024692B1 - Verfahren zur Herstellung nadelförmiger ferromagnetischer Eisenteilchen und deren Verwendung - Google Patents

Verfahren zur Herstellung nadelförmiger ferromagnetischer Eisenteilchen und deren Verwendung Download PDF

Info

Publication number
EP0024692B1
EP0024692B1 EP80104974A EP80104974A EP0024692B1 EP 0024692 B1 EP0024692 B1 EP 0024692B1 EP 80104974 A EP80104974 A EP 80104974A EP 80104974 A EP80104974 A EP 80104974A EP 0024692 B1 EP0024692 B1 EP 0024692B1
Authority
EP
European Patent Office
Prior art keywords
iron
iii
weight
oxide hydroxide
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP80104974A
Other languages
English (en)
French (fr)
Other versions
EP0024692A3 (en
EP0024692A2 (de
Inventor
Werner Dr. Steck
Wilhelm Dr. Sarnecki
Laszlo Dr. Marosi
Manfred Dr. Ohlinger
Horst Dr. Autzen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP0024692A2 publication Critical patent/EP0024692A2/de
Publication of EP0024692A3 publication Critical patent/EP0024692A3/de
Application granted granted Critical
Publication of EP0024692B1 publication Critical patent/EP0024692B1/de
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
    • B22F9/22Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds using gaseous reductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/061Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder with a protective layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/065Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder obtained by a reduction

Definitions

  • the invention relates to a process for the production of acicular ferromagnetic iron particles by reduction of iron (III) oxide provided with a shape-stabilizing surface coating, which is obtained by annealing acicular iron (III) oxide hydroxide, with hydrogen at 275 to 425 ° C. and the use thereof Iron particles for the production of magnetic recording media.
  • ferromagnetic metal powders and metal thin layers are of particular interest for the production of magnetic recording media, since in this way the energy product and the information density can be increased considerably and such recording media result in narrower signal widths and better signal amplitudes compared to the current standard .
  • the mechanical properties of such information media can be influenced within a wide range by a suitable selection of the polymeric organic binder systems, but the magnetic properties are then excluded to make further demands regarding the shape, size and dispersibility of the metal particles.
  • the corresponding metal particles must show magnetic single-range behavior.
  • the anisotropy that is present or that can additionally be achieved by the magnetic alignment in the strip should be caused by external influences, such as, B. temperature or mechanical stress, to be little affected, ie the small particles should be shape-anisotropic, in the preferred case needle-shaped, and they should generally be between 10 -2 and 1 ⁇ m in size.
  • iron particles of the type described by reducing finely divided acicular iron compounds such as. B. the oxides with hydrogen or another gaseous reducing agent.
  • the reduction In order for the reduction to take place at a speed that is suitable for practice, it must be carried out at temperatures above 300 ° C. However, this brings with it the difficulty that the metal particles formed sinter. As a result, however, the particle shape no longer corresponds to that required for the magnetic properties.
  • the catalytic acceleration of the reduction of preferably needle-shaped starting compounds generally results in needles which are much smaller than the starting product with an additionally small length / thickness ratio.
  • the end product has a fairly large particle size spectrum.
  • the particle size dependency of coercive force and remanence in magnetic substances is very strong in the order of magnitude of the single-range particles.
  • such magnetic materials are unsuitable for use in the production of magnetic recording media.
  • the magnetic field strength which is necessary to remagnetize the particles, is very different, and the distribution of the remanent magnetization as a function of the applied external field also results in a less steep remanence curve.
  • the object of the invention was therefore to provide a method for producing acicular ferromagnetic iron particles, with which pronounced shape-anisotropic particles with high values for coercive field strength, remanence and relative remanence can be obtained in a simple manner.
  • acicular ferromagnetic iron particles can be produced from acicular iron (III) oxide with a shape-stabilizing surface coating by reduction with hydrogen at 275 to 425 ° C with the required properties if the acicular iron (III) oxide used is out Lepidocrokit (y-FeOOH) or a mixture of goethite (a-FeOOH) and lepidocrokit with a minimum content of lepidocrokit of 20 percent by weight, and consists of a water vapor containing atmosphere with a water vapor partial pressure between 30 to 1013 mbar at 250 to 390 ° C for 10 minutes to 10 hours.
  • y-FeOOH Lepidocrokit
  • a-FeOOH goethite
  • lepidocrokit with a minimum content of lepidocrokit of 20 percent by weight
  • the iron (III) oxide hydroxides mentioned have a BET specific surface area of 20 to 75 m 2 / g, an average particle length of between 0.2 and 1.5 and preferably between 0.3 and 1.2 pm and a length of -Thickness ratio of at least 10, suitably 10 to 40 characterized. They can be prepared from iron (II) salt solutions with alkalis with simultaneous oxidation, as described, for example, in DE-B-1 061760. For this purpose, iron (III) oxide hydrate nuclei up to an amount of 25-60 mol are formed from an aqueous iron (II) chloride solution using alkalis, such as alkali hydroxide or ammonia, at temperatures between 10 and 36 ° C.
  • alkalis such as alkali hydroxide or ammonia
  • the solids content of iron (III) oxide hydroxide in the aqueous suspension should be between 10 and 70 g / l, preferably 15-65 g / l. After filtering off and washing out the precipitate, the iron (III) oxide hydrates thus obtained are dried at 60 to 200 ° C.
  • iron (III) oxide hydroxides required for the process according to the invention are now provided in a known manner with a shape-stabilizing surface coating which helps to maintain the outer shape during the further reworking steps. Suitable for this is e.g. the treatment of ferric oxide hydroxides with an alkaline earth metalation and a carboxylic acid or another organic compound which has at least two groups capable of chelating with the alkaline earth metalation. These processes are described in DE-A-2434058 and 2 434 096.
  • Also known and described in DE-A-2 646 348 is the shape-stabilizing treatment of the ferric oxide hydroxides on their surface with hydrolysis-resistant oxygen acids of phosphorus, their salts or esters and aliphatic mono- or polybasic carboxylic acids.
  • Possible hydrolysis-resistant substances are phosphoric acid, soluble mono-, di- or triphosphates such as potassium, ammonium dihydrogen phosphate, disodium or dilithium orthophosphate, trisodium phosphate, sodium pyrophosphate and metaphosphates such as sodium metaphosphate.
  • the compounds can be used alone or as a mixture with one another.
  • the esters of phosphoric acid with aliphatic monoalcohols with 1 to 6 carbon atoms such as. B.
  • Carboxylic acids in the process are saturated or unsaturated aliphatic carboxylic acids with up to 6 carbon atoms and up to 3 acid groups, it being possible for one or more hydrogen atoms in the aliphatic chain to be substituted by hydroxyl or amino radicals.
  • Oxidic and oxitricarboxylic acids such as oxalic acid, tartaric acid and citric acid are particularly suitable.
  • the iron (III) oxide hydroxides which are designed to stabilize the shape in the manner described, are then annealed for 10 minutes to 10 hours at temperatures between 250 to 390 ° C. in a water vapor-containing atmosphere with a water vapor partial pressure between 30 and 1013 mbar according to the inventive method.
  • the end product is an acicular iron (III) oxide provided with the surface coating formed according to the previous equipment.
  • This tempering can be carried out discontinuously or continuously.
  • Reactors such as muffle furnaces, rotary tube furnaces or vortex furnaces are suitable for batch drainage.
  • air, inert gases or air-inert gas mixtures can be passed over or through the resting or moving iron oxide, these gases being loaded beforehand with the appropriate amount of water vapor.
  • the gases or gas mixtures are expediently saturated with water vapor at temperatures between 40 ° C. and the boiling point of the water, in particular between 50 ° C. and the boiling point of the water, and introduced into the reactors in this state.
  • the water can of course also be introduced directly in the form of steam or added to the other gases.
  • Annealing can be carried out particularly advantageously in continuous reactors, e.g.
  • the iron (III) oxide hydroxide of the specified composition is subjected directly to this tempering and only then - as described - provided with a surface finish.
  • the iron (III) oxide provided with a shape-stabilizing surface coating is reduced in a manner known per se with hydrogen at 275 to 425, preferably at 300 to 400 ° C. It is advisable to passivate the finely divided iron powders obtained in this way by passing an air or oxygen-inert gas mixture over them, since this changes the pyrophoric character of the needle-shaped iron particles with a length between 0.1 to 0.8 ⁇ m and a length-to-length ratio. Thickness ratio of 5 to 25: 1 can be mastered.
  • the method according to the invention it is possible to produce acicular ferromagnetic iron particles which are distinguished by a pronounced shape anisotropy. This is achieved in that the starting products are both largely dendrite-free and treated to maintain the outer form and, in addition, result in a well-crystallized iron (III) oxide for the subsequent reduction reaction due to the inventive tempering.
  • the resulting iron particles are characterized by markedly improved values for coercive field strength, specific remanence and relative remanence. If the iron particles obtained according to the invention are used in the usual way for the production of magnetogram carriers, the needle-shaped particles can be oriented magnetically particularly easily, and important electroacoustic values such as depth and height modulation are improved.
  • the nitrogen surface S N2 determined according to BET was primarily used to characterize the acicular iron (III) oxide hydroxides such as lepidocrocite and goethite-lepidocrocite mixture used. Electron microscope images provide information about the appearance and dimensions (LID ratio) of the iron oxide hydroxide particles. The goethite-lepidocrocite ratio was determined by X-ray analysis.
  • the magnetic values of the iron powder were measured with a vibration magnetometer at a magnetic field of 160 or 800 kA / m.
  • Specific remanence (M r / P ) and saturation (M m / P ) are given in nTm 3 / g.
  • remanent coercive field strength H R is an important assessment variable.
  • H R In the case of constant field demagnetization, half of the particles are remagnetized at the field strength H R in terms of volume. It thus represents a variable characteristic of recording processes, which in particular determines the working point in magnetic recording.
  • h s for the total width of the remanence curve and h 25 for the steepness of the remanence curve is determined from the constant field demagnetization curve. The values are determined according to
  • the number index at the letter H indicates how many of the particles are magnetized in percent.
  • an iron (III) oxide hydroxide (sample A) with a specific surface area S N2 of 37.6 m 2 / g, which consists of a mixture of 95% y-FeOOH and 5% a -FeOOH is made.
  • sample A 70 parts were annealed in a tube furnace at 350 ° C. at a pressure of 25 mbar. The test lasted one hour. In order to keep the pressure constant, air is metered in via a vacuum valve, which has previously been dried over silica gel.
  • the resulting iron (III) oxide (sample B) has a surface area of 51.3 m z / g.
  • sample A Another 70 parts of sample A are annealed in the same tube furnace at 350 ° C. The test lasted one hour. In this case, however, a mixture of 100 NI / h air and water vapor ( PH20 845 mbar) is passed over the pigment. The resulting iron (III) oxide (sample C) has a surface area of 34.9 m 2 / g.
  • Sample D produced from sample B has a surface area of 42.1 m 2 / g, a phosphate content of 1.1% by weight and a carbon content of 0.06% by weight.
  • sample E produced from sample C are: surface area 36.3 m 2 / g, phosphate content 1.2% by weight and carbon content 0.04% by weight.
  • Samples D and E are reduced to iron pigments 4 and 5a as described in comparative experiment 1. Part of the sample 5a is passivated in an air-nitrogen mixture at a temperature below 50 ° C (sample 5b). The measurement results are shown in Table 1.
  • sample A from comparative experiment 1 50 parts of sample A from comparative experiment 1 are stirred into 400 parts by volume of water. After a dispersion time of 10 minutes, a solution of 4.5 parts by volume of water, 0.35 parts by volume of H 3 PO 4 (85% strength) and 0.5 part of H 2 C 2 O 4 .2H 2 0 is added. After the dispersion has ended the water is filtered off and the filter cake is dried in air at 170 ° C. (sample F). Sample F has a surface area of 37 m 2 / g, a phosphate content of 1.4% by weight and a carbon content of 0.14% by weight.
  • sample F 70 parts of sample F are, as described in comparative experiment 1, annealed at 25 mbar pressure to give iron (III) oxide sample G with a surface area of 53.9 m 2 / g and then reduced in the manner described there (iron pigment No. 6) .
  • the measurement results are shown in Table 1.
  • sample F Another 70 parts of sample F were, as described in comparative experiment 1, annealed to iron (III) oxide sample H with a surface area of 47.9 m 2 / g in a water vapor-containing air stream. The reduction of sample H to iron pigment 7 also takes place as described in comparative experiment 1. The measurement results are shown in Table 1.
  • An iron (III) oxide hydroxide prepared according to DE-B-1 061 760 consists of 97% y-FeOOH and 3% a-FeOOH and has a surface area of 32.7 m 2 / g (sample J).
  • 70 parts of sample J are, as described in comparative experiment 1, annealed in a vacuum to pigment K1 with a surface area of 44.8 m 2 / h within one hour and a further 70 parts in the same way to sample K2 with a surface area of 40 within 3 hours. 8 m 2 / g.
  • 70 parts of sample J are annealed to samples L1 and L2 in 1 or 3 hours, as also described in comparative test 1, in an atmosphere containing water vapor.
  • L1 has a surface area of 33.0 m 2 / g and L2 a surface area of 30.4 m2 / g.
  • Example 2 50 parts of this sample M are, as described in Example 1, equipped with 1% H 3 PO 4 and 1% H 2 C 2 O 4 .2 H 2 O (data in% by weight, based on ⁇ -FeOOH), filtered and dried.
  • the resulting product M1 has a phosphate content of 1.4% by weight, a carbon content of 0.06% by weight and a surface area of 36.8 m 2 / g.
  • sample M 50 parts are annealed in a continuous rotary tube at 350 ° C. and a mean residence time of 45 minutes in a steam stream containing nitrogen.
  • the resulting iron (III) oxide is finished as described in Example 1, the phosphate content is 1.2% by weight, the carbon content is 0.06% by weight and the surface is 23.4 m 2 / g (sample M2) .
  • This sample M2 is reduced in the same way as sample M1 from comparative experiment 5. This produces iron pigment No. 17, the magnetic properties of which are given in Table 4.
  • the starting materials used are the iron (III) oxide hydroxides sample N (y-FeOOH with an a-FeOOH content of 30% and a surface area of 26.1 m 2 / g) and sample O ( ⁇ -FeOOH with an a-FeOOH content of 68% and a surface area of 39.0 m 2 / g).
  • a ferric oxide hydroxide prepared in a conventional manner with a proportion of 6% a-FeOOH and 94% y-FeOOH and a surface area of 29.4 m 2 / g are, as described in Example 4, in a rotary tube at 350 ° C and a pH 2 0 of 88 mbar with an average residence time of 30 minutes and then equipped as described in comparative experiment 2.
  • the resulting sample R1 has a surface area of 32.8 m 2 / g, a phosphate content of 1.0% by weight and a carbon content of 0.03% by weight.
  • the resulting iron pigment 23 shows the measurement results given in Table 7.
  • the material is then passivated by passing an air-nitrogen mixture at temperatures below 50 ° C.
  • the sample R given in example 6 is provided with a surface coating without tempering, as also described, reduced (iron pigment 24) and passivated.
  • the measurement results are shown in Table 7.
  • the magnetic properties of the magnetic layer are listed in Table 8.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hard Magnetic Materials (AREA)
  • Compounds Of Iron (AREA)
  • Paints Or Removers (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Magnetic Record Carriers (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung von nadelförmigen ferromagnetischen Eisenteilchen durch Reduktion von mit einem formstabilisierenden Oberflächenüberzug versehenem Eisen(III)oxid, das durch Tempern von nadelförmigem Eisen(III)oxidhydroxid erhalten wird, mit Wasserstoff bei 275 bis 425°C und die Verwendung dieser Eisenteilchen zur Herstellung von magnetischen Aufzeichnungsträgern.
  • Ferromagnetische Metallpulver und Metalldünnschichten sind wegen ihrer hohen Sättigungsmagnetisierung und der erreichten hohen Koerzitivfeldstärke von besonderem Interesse für die Herstellung von magnetischen Aufzeichnungsträgern, da sich auf diese Weise das Energieprodukt und die Informationsdichte erheblich steigern lassen und solche Aufzeichnungsträger gegenüber dem jetzigen Standard schmälere Signalbreiten und bessere Signalamplituden ergeben.
  • Bei der Verwendung von nadelförmigen ferromagnetischen Metallpulvern als magnetisierbare Materialien bei der Herstellung von magnetischen Aufzeichnungsträgern lassen sich im Gegensatz zu homogenen Metalldünnschichten zwar die mechanischen Eigenschaften solcher Informationsträger durch eine geeignete Auswahl der polymeren organischen Bindemittelsysteme in weiten Grenzen beeinflussen, jedoch sind dann ausser an die magnetischen Eigenschaften noch weitere Anforderungen hinsichtlich Form, Grösse und Dispergierbarkeit der Metallteilchen zu stellen.
  • Hohe Koerzitivfeldstärke und hohe Remanenz sind bei Materialien für magnetische Speicherschichten Voraussetzung. Deshalb müssen die entsprechenden Metallteilchen magnetisches Einbereichsverhalten zeigen, ausserdem sollte die vorhandene bzw. durch die magnetische Ausrichtung im Band zusätzlich erzielbare Anisotropie durch äussere Einwirkungen, wie z. B. Temperatur oder mechanische Belastung, nur wenig zu beeinträchtigen sein, d.h. die kleinen Teilchen sollten formanisotrop, im bevorzugten Fall nadelförmig sein, und sie sollten im allgemeinen in der Grösse zwischen 10-2 und 1 µm liegen.
  • Es ist bekannt, Eisenteilchen der beschriebenen Art durch Reduktion feinverteilter nadelförmiger Eisenverbindungen, wie z. B. der Oxide, mit Wasserstoff oder einem anderen gasförmigen Reduktionsmittel herzustellen. Damit die Reduktion mit einer für die Praxis geeigneten Geschwindigkeit stattfindet, muss man sie bei Temperaturen von über 300°C durchführen. Dies bringt jedoch die Schwierigkeit mit sich, dass die gebildeten Metallteilchen sintern. Dadurch entspricht jedoch die Teilchenform nicht mehr derjenigen, wie sie für die magnetischen Eigenschaften erforderlich ist.
  • Zur Verminderung der Reduktionstemperatur wurde bereits vorgeschlagen, durch Aufbringen von Silber oder Silberverbindungen auf die Oberfläche von feinverteiltem Eisenoxid die Reduktion zu katalysieren (DE-A-2 014 500). Ebenso ist die Behandlung des Eisenoxids mit Zinn(II)-chlorid beschrieben worden (DE-A-1 907 691).
  • Die katalytische Beschleunigung der Reduktion von bevorzugt nadelförmigen Ausgangsverbindungen ergibt jedoch im allgemeinen weit kleinere Nadeln als das Ausgangsprodukt mit einem ausserdem geringen Längen-/Dickenverhältnis. Das hat zur Folge, dass das Endprodukt ein ziemlich grosses Teilchengrössenspektrum aufweist. So ist aber bekannt, dass die Teilchengrössenabhängigkeit von Koerzitivkraft und Remanenz bei magnetischen Stoffen in der Grössenordnung der Einbereichteilchen sehr stark ist. Kommen hierzu noch die Einflüsse, welche durch einen Anteil superparamagnetischer Teilchen auftreten, die als Bruchstücke bei der oben genannten Verfahrensweise entstehen können, dann sind solche magnetischen Materialien ungeeignetfür den Einsatz bei der Herstellung magnetischer Aufzeichnungsträger. Bei solchen heterogenen Mischungen ist die magnetische Feldstärke, welche zum Ummagnetisieren der Teilchen nötig ist, sehr unterschiedlich, und auch die Verteilung der remanenten Magnetisierung als Funktion des angelegten äusseren Feldes ergibt eine wenig steile Remanenzkurve.
  • Auch konnten Versuche, die zu reduzierenden Eisenoxide mit einer Oberflächenüberzugsschicht zu versehen, um die durch die erforderliche Reduktionstemperatur eintretende Sinterung der einzelnen Teilchen zu verhindern, wie z.B. in DE-A-2 434 058, 2 434 096, 2 646 348 und 2 714 588 beschrieben, nicht voll befriedigen.
  • Ein andersartiger Weg zur Herstellung ausgeprägt feindisperser Metallteilchen wird in der CH-A-528 320 vorgeschlagen. Danach wird ein feinteiliger inerter Trägerstoff mit oxidischen Metallniederschlägen versehen und diese dann mit Wasserstoff, gegebenenfalls zur Vergrösserung der Teilchen in Gegenwart von Wasserdampf, zum Metall reduziert. Nachteilig an diesem Verfahren ist, dass wegen des unmagnetischen Trägerstoffs pro Volumeneinheit nur wenig magnetisches Material zur Verfügung steht.
  • Aufgabe der Erfindung war es daher, ein Verfahren zur Herstellung nadelförmiger ferromagnetischer Eisenteilchen bereitzustellen, mit welchem sich auf einfache Weise ausgeprägt formanisotrope Teilchen mit hohen Werten für Koerzitivfeldstärke, Remanenz und relative Remanenz.
  • Es wurde nun gefunden, dass sich nadelförmige ferromagnetische Eisenteilchen aus nadelförmigem, mit einem formstabilisierenden Oberflächenüberzug versehenen Eisen(lll)oxid durch Reduktion mit Wasserstoff bei 275 bis 425°C mit den geforderten Eigenschaften herstellen lassen, wenn das eingesetzte nadelförmige Eisen(III)oxid aus Lepidokrokit (y-FeOOH) oder einem Gemenge aus Goethit (a-FeOOH) und Lepidokrokit mit einem Mindestgehalt an Lepidokrokit von 20 Gewichtsprozent, besteht und in einer wasserdampfhaltigen Atmosphäre mit einem Wasserdampfpartialdruck zwischen 30 bis 1013 mbar bei 250 bis 390°C 10 Minuten bis 10 Stunden lang getempert wird.
  • Die genannten Eisen(III)oxidhydroxide sind durch eine spezifische Oberfläche nach BET von 20 bis 75 m2/g, eine mittlere Teilchenlänge zwischen 0,2 und 1,5 und bevorzugt zwischen 0,3 und 1,2 pm und ein Längen-zu-Dicken-Verhältnis von mindestens 10, zweckmässigerweise 10 bis 40 charakterisiert. Sie lassen sich aus Eisen(II)salzlösungen mit Alkalien unter gleichzeitiger Oxidation, wie z.B. in der DE-B-1 061760, herstellen. Dazu werden aus einer wässrigen Eisen(II)-chloridlösung mittels Alkalien, wie Alkalihydroxid oder Ammoniak, bei Temperaturen zwischen 10 und 36°C unter kräftigem Rühren zur Erzeugung feiner Luftblasen Eisen(III)oxidhydrat-Keime bis zu einer Menge von 25-60 Mol-% des eingesetzten Eisens gefällt, aus welchen dann anschliessend bei einer Temperatur zwischen 20 und 70 °C und bei einem durch Zusatz weiterer Alkalimengen eingestellten pH-Wert von 4,0 bis 5,8 unter intensiver Luftverteilung durch Zuwachs das Endprodukt entsteht. Nach beendetem Wachstum soll der Feststoffgehalt an Eisen(III)oxidhydroxid in der wässrigen Suspension zwischen 10 und 70 g/ I, bevorzugt bei 15-65 g/I, liegen. Nach dem Abfiltrieren und Auswaschen des Niederschlags werden die so erhaltenen Eisen(III)oxidhydrate bei 60 bis 200 °C getrocknet.
  • Diese für das erfindungsgemässe Verfahren erforderlichen Eisen(III)oxidhydroxide werden nun in bekannter Weise mit einem formstabilisierenden Oberflächenüberzug versehen, welcher am Erhalt der äusseren Form während der weiteren Umarbeitungsschritte mitwirkt. Hierzu geeignet ist z.B. die Behandlung der Eisen(III)oxidhydroxide mit einem Erdalkalikation und einer Carbonsäure bzw. einer anderen organischen Verbindung, welche mindestens zwei zur Chelatbildung mit dem Erdalkalikation befähigte Gruppierungen besitzt. Diese Verfahren sind in DE-A-2434058 und 2 434 096 beschrieben.
  • Ebenso bekannt und in der DE-A-2 646 348 ausgeführt ist die formstabilisierende Ausrüstung der Eisen(III)oxidhydroxide an ihrer Oberfläche mit hydrolysebeständigen Sauerstoffsäuren des Phosphors, deren Salze oder Ester und aliphatischen ein- oder mehrbasischen Carbonsäuren. Als hydrolysebeständige Substanzen kommen Phosphorsäure, lösliche Mono-, Di- oder Triphosphate wie Kalium-, Ammoniumdihydrogenphosphat, Dinatrium- oder Dilithium-ortho-phosphat, Trinatriumphosphat, Natriumpyrophosphat und Metaphosphate, wie Natriummetaphosphat, in Frage. Die Verbindungen können allein oder in Mischung untereinander angewandt werden. In vorteilhafter Weise lassen sich die Ester der Phosphorsäure mit aliphatischen Monoalkoholen mit 1 bis 6 Kohlenstoffatomen, wie z. B. tert.-Butylester der Phosphorsäure, einsetzen. Carbonsäuren im Rahmen des Verfahrens sind gesättigte oder auch ungesättigte aliphatische Carbonsäuren mit bis zu 6 C-Atomen und bis zu 3 Säuregruppen, wobei ein oder mehrere Wasserstoffatome der aliphatischen Kette durch Hydroxy- oder Aminoreste substituiert sein können. Besonders geeignet sind Oxidi- und Oxitricarbonsäuren, wie Oxalsäure, Weinsäure und Zitronensäure.
  • Die in der beschriebenen Weise formstabilisierend ausgerüsteten Eisen(III)oxidhydroxide werden nun gemäss dem erfindungsgemässen Verfahren bei Temperaturen zwischen 250 bis 390°C in einer wasserdampfhaltigen Atmosphäre mit einem Wasserdampfpartialdruck zwischen 30 und 1013 mbar 10 Minuten bis 10 Stunden lang getempert. Das Endprodukt ist ein mit dem entsprechend der vorangegangenen Ausrüstung ausgebildeten Oberflächenüberzug versehenes nadelförmiges Eisen(III)oxid.
  • Diese Temperung lässt sich diskontinuierlich oder kontinuierlich vornehmen. So sind für eine chargenweise Entwässerung Reaktoren wie Muffelöfen, Drehrohröfen oder Wirbelöfen geeignet. Zur besseren Durchmischung lassen sich hier Luft, Inertgase oder Luft-Inertgas-Gemische über oder durch das ruhende oder bewegte Eisenoxid leiten, wobei diese Gase zuvor mit der entsprechenden Menge an Wasserdampf beladen werden. Zweckmässigerweise werden die Gase oder Gasgemische bei Temperaturen zwischen 40°C und dem Siedepunkt des Wassers, insbesondere zwischen 50°C und dem Siedepunkt des Wassers, mit Wasserdampf gesättigt und in diesem Zustand in die Reaktoren eingeleitet. Das Wasser kann natürlich auch in Form vom Dampf direkt eingeleitet bzw. den übrigen Gasen zugemischt werden. Die Temperung lässt sich besonders günstig in kontinuierlichen Reaktoren, z.B. in einem kontinuierlichen Drehrohrofen, durchführen, da hier ausser dem Wasserdampf im durchgeleiteten Gas zusätzlich Wasserdampf aus der Entwässerungsreaktion des Eisen(III)oxidhydroxids ständig in gleicher Menge nachgeliefert wird. Hierbei kann daher auch ohne oder mit geringen Gasströmen gearbeitet werden. Nach kurzer Einstellzeit ist der entsprechende geforderte Wasserdampfpartialdruck von vorzugsweise 70 bis 1013 mbar im Reaktionsraum erreicht.
  • In einer anderen vorteilhaften Ausgestaltung des erfindungsgemässen Verfahrens wird das Eisen(III)oxidhydroxid der angegebenen Zusammensetzung unmittelbar dieser Temperung unterzogen und erst anschliessend - wie beschrieben - oberflächlich ausgerüstet.
  • Zur Herstellung der nadelförmigen ferromagnetischen Eisenteilchen wird das mit einem formstabilisierenden Oberflächenüberzug versehene Eisen(III)oxid in an sich bekannter Weise mit Wasserstoff bei 275 bis 425, vorzugsweise bei 300 bis 400 °C, reduziert. Es empfiehlt sich, die so erhaltenen feinteiligen Eisenpulver durch Überleiten eines Luft- oder Sauerstoff-Inertgas-Gemisches zu passivieren, da sich damit der pyrophore Charakter der nadelförmigen Eisenteilchen mit einer Länge zwischen 0,1 bis 0,8 µm und einem Längen-zu-Dicken-Verhältnis von 5 bis 25 : 1 beherrschen lässt.
  • Mit Hilfe des erfindungsgemässen Verfahrens ist es möglich, nadelförmige ferromagnetische Eisenteilchen herzustellen, die sich durch eine ausgeprägte Formanisotropie auszeichnen. Dies wird dadurch erreicht, dass die Ausgangsprodukte sowohl weitgehend dendritenfrei als auch zum Erhalt der äusseren Form behandelt sind und zudem durch die erfinderisch ausgestaltete Temperung ein gut kristallisiertes Eisen(III)oxid für die nachfolgende Reduktionsreaktion ergeben. Dadurch zeichnen sich die resultierenden Eisenteilchen durch ausgeprägt verbesserte Werte für Koerzitivfeldstärke, spezifische Remanenz und relative Remanenz aus. Werden die erfindungsgemäss erhaltenen Eisenteilchen in üblicher Weise zur Herstellung von Magnetogrammträgern verwendet, so lassen sich die nadelförmigen Teilchen besonders leicht magnetisch orientieren, ausserdem sind wichtige elektroakustische Werte, wie Tiefen-und Höhenaussteuerbarkeit, verbessert.
  • Anhand folgender Beispiele sei das erfindungsgemässe Verfahren dargestellt und durch Vergleichsversuche der erreichbare technische Fortschritt aufgezeigt.
  • Zur Charakterisierung der eingesetzten nadelförmigen Eisen(III)oxidhydroxide wie Lepidokrokit und Goethit-Lepidokrokit-Gemenge diente in erster Linie die nach BET bestimmte Stickstoff-Oberfläche SN2. Über das Aussehen und die Abmessungen (LID-Verhältnis) der Eisenoxid-hydroxid-Teilchen geben elektronenmikroskopische Aufnahmen Auskunft. Das Goethit-Lepidokrokit-Verhältnis wurde röntgenographisch ermittelt.
  • Die magnetischen Werte des Eisenpulvers wurden mit einem Schwingmagnetometer bei einem magnetischen Feld von 160 bzw. 800 kA/m gemessen. Die Werte der Koerzitivfeldstärke, He, gemessen in kA/m, wurden bei den Pulvermessungen auf eine Stopfdichte von p = 1,6 g/cm3 bezogen. Spezifische Remanenz (Mr/P) und Sättigung (Mm/P) sind jeweils in nTm3/g angegeben.
  • Neben hoher Koerzitivfeldstärke Hc und hoher Remanenz ist die sogenannte Remanenzkoerzitivfeldstärke HR eine wichtige Beurteilungsgrösse. Bei der Gleichfeldentmagnetisierung sind bei der Feldstärke HR bezüglich des Volumens die Hälfte der Teilchen ummagnetisiert. Damit stellt sie eine für Aufzeichnungsvorgänge charakteristische Grösse dar, welche insbesondere den Arbeitspunkt bei der magnetischen Aufzeichnung bestimmt. Je uneinheitlicher die Remanenzkoerzitivfeldstärke der jeweils einzelnen magnetischen Teilchen in der Aufzeichnungsschicht ist, desto breiter ist die Verteilung der magnetischen Felder, welche ein begrenztes Volumen der Aufzeichnungsschicht ummagnetisieren können. Dies wirkt sich besonders dann aus, wenn wegen hoher Aufzeichnungsdichten bzw. geringen Wellenlängen der Grenzbereich zwischen entgegengesetzt magnetisierten Bereichen möglichst schmal sein sollte. Für die Charakterisierung der Verteilung der Schaltfeldstärken der einzelnen Teilchen bestimmt man aus der Gleichfeldentmagnetisierungskurve einen Wert hs für die Gesamtbreite der Remanenzkurve und h25 für die Steilheit der Remanenzkurve. Die Werte werden bestimmt nach
    Figure imgb0001
  • Der Zahlenindex beim Buchstaben H besagt, wieviel der Teilchen in Prozenten jeweils ummagnetisiert sind.
  • Vergleichsversuch 1
  • Gemäss DE-B-1 061 760 wird ein Eisen(III)oxid- hydroxid (Probe A) mit einer spezifischen Oberfläche SN2 von 37,6 m2/g, welches aus einem Gemenge von 95% y-FeOOH und 5% a-FeOOH besteht, hergestellt.
  • 70 Teile der Probe A wurden in einem Rohrofen bei 350°C bei einem Druck von 25 mbar getempert. Die Versuchsdauer betrug eine Stunde. Um den Druck konstant zu halten, wird über ein Vakuum-Ventil bedarfsweise Luft zudosiert, welche zuvor über Kieselgel getrocknet wurde. Das resultierende Eisen(III)oxid (Probe B) hat eine Oberfläche von 51,3 mz/g.
  • Weitere 70 Teile der Probe A werden im gleichen Rohrofen bei 350°C getempert. Die Versuchsdauer betrug eine Stunde. In diesem Fall wird jedoch ein Gemisch aus 100 NI/h Luft und Wasserdampf (PH20 845 mbar) über das Pigment geleitet. Das resultierende Eisen(III)oxid (Probe C) hat eine Oberfläche von 34,9 m2/g.
  • Jeweils 5 Teile der Proben A, B und C werden in einem Drehrohr bei 350°C im Wasserstoffstrom von 30 NI/h innerhalb von 8 Stunden zu den Eisenpigmenten 1 bis 3 reduziert. Die Messergebnisse sind in der Tabelle 1 aufgeführt.
  • Beispiel 1
  • Jeweils 45 Teile der Proben B und C aus Vergleichsversuch 1 werden unter intensivem Rühren in 450 Volumenteile H2O suspendiert. Dann werden 0,35 Volumenteile einer 85%igen Phosphorsäure (H3PO4) und 0,5 Teile H2C2O4 · 2H2O (Oxalsäure) in 20 Volumenteilen Wasser gelöst und der Dispersion zugesetzt. Nach weiterem Rühren von 20 Minuten wird der Feststoff abfiltriert und der Filterkuchen bei 170 °C an Luft getrocknet. Die aus der Probe B hergestellte Probe D hat eine Oberfläche von 42,1 m2/g, einen Phosphatgehalt von 1,1 Gew.-% und einen Kohlenstoffgehalt von 0,06 Gew.-%. Die entsprechenden Werte der aus der Probe C hergestellten Probe E sind: Oberfläche 36,3 m2/g, Phosphatgehalt 1,2 Gew.-% und Kohlenstoffgehalt 0,04 Gew.-%. Die Proben D und E werden, wie in Vergleichsversuch 1 beschrieben, zu den Eisenpigmenten 4 und 5a reduziert. Ein Teil der Probe 5a wird in einem Luft-StickstoffGemisch bei einer Temperatur kleiner als 50°C passiviert (Probe 5b). Die Messergebnisse sind in der Tabelle 1 aufgeführt.
  • Vergleichsversuch 2
  • 50 Teile der Probe A aus Vergleichsversuch 1 werden in 400 Volumenteile Wasser eingerührt. Nach 10 Minuten Eindispergierzeit erfolgt die Zugabe einer Lösung von 4,5 Volumenteile Wasser, 0,35 Volumenteile H3PO4, (85%ig) und 0,5 Teile H2C2O4 · 2H20. Nach beendeter Dispergierung wird das Wasser abfiltriert und der Filterkuchen bei 170 °C an Luft getrocknet (Probe F). Die Probe F hat eine Oberfläche von 37 m2/g, einen Phosphatgehalt von 1,4 Gew.-% und einen Kohlenstoffgehalt von 0,14 Gew.-%.
  • 70 Teile der Probe F werden, wie in Vergleichsversuch 1 beschrieben, bei 25 mbar Druck zur Eisen(III)oxidprobe G mit einer Oberfläche von 53,9 m2/g getempert und anschliessend in der dort beschriebenen Weise reduziert (Eisenpigment Nr. 6). Die Messergebnisse sind in Tabelle 1 aufgeführt.
  • Beispiel 2
  • Weitere 70 Teile der Probe F wurden, wie in Vergleichsversuch 1 beschrieben, zur Eisen(III)-oxidprobe H mit einer Oberfläche von 47,9 m2/g im wasserdampfhaltigen Luftstrom getempert. Die Reduktion der Probe H zum Eisenpigment 7 erfolgt ebenfalls wie in Vergleichsversuch 1 beschrieben. Die Messergebnisse sind in der Tabelle 1 aufgeführt.
    Figure imgb0002
  • Vergleichsversuch 3
  • Ein nach den Angaben der DE-B-1 061 760 hergestelltes Eisen(III)oxidhydroxid besteht aus 97% y-FeOOH und 3% a-FeOOH und hat eine Oberfläche von 32,7 m2/g (Probe J).
  • 70 Teile der Probe J werden wie in Vergleichsversuch 1 beschrieben im Vakuum innerhalb einer Stunde zum Pigment K1 mit einer Oberfläche von 44,8 m2/h getempert und weitere 70 Teile auf gleiche Weise innerhalb 3 Stunden zur Probe K2 mit einer Oberfläche von 40,8 m2/g. Daneben werden je 70 Teile der Probe J in 1 bzw. 3 Stunden wie ebenfalls in Vergleichsversuch 1 beschrieben in einer wasserdampfhaltigen Atmosphäre zu den Proben L1 und L2 getempert. L1 besitzt eine Oberfläche von 33,0 m2/g und L2 eine solche von 30,4 m2/g.
  • Entsprechend Vergleichsversuch 1 werden dann die Proben K1, K2, L1 und L2 bei 350°C zu den Eisenpigmenten 8 bis 11 reduziert. Die Messergebnisse sind in der Tabelle 2 aufgeführt.
  • Vergleichsversuch 4 und Beispiel 3
  • Jeweils 45 Teile der Temperungsprodukte K1, K2, L1 und L2 werden wie in Beispiel 1 beschrieben zu den Proben K3, K4, L3 und L4 ausgerüstet:
    Figure imgb0003
    und dann wie in Vergleichsversuch 1 beschrieben bei 350°C zu den Eisenpigmenten 12a bis 15a reduziert sowie Teile der Proben 12a bis 15a wie in Beispiel 1 beschrieben zu den Eisenpigmenten 12b bis 15b passiviert. Die Messergebnisse sind in den Tabellen 2 und 3 aufgeführt.
    Figure imgb0004
    Figure imgb0005
  • Vergleichsversuch 5
  • Als Ausgangsmaterial wird ein in an sich bekannter Weise hergestelltes röntgenreines γ-FeOOH mit einer Oberfläche von 33,4 m2/g eingesetzt (Probe M).
  • 50 Teile dieser Probe M werden wie in Beispiel 1 beschrieben mit 1% H3PO4 und 1% H2C2O4 · 2 H2O (Angaben in Gew.-%, bezogen auf γ-FeOOH) ausgerüstet, filtriert und getrocknet. Das resultierende Produkte M1 hat einen Phosphatgehalt von 1,4 Gew.-%, einen Kohlenstoffgehalt von 0,06 Gew.-% und eine Oberfläche von 36,8 m2/g.
  • Die Reduktion wird wie in Vergleichsversuch 1 beschrieben durchgeführt. Die Messergebnisse am resultierenden Eisenpigment Nr. 16 sind in Tabelle 4 angegeben.
  • Beispiel 4
  • 50 Teile der Probe M werden in einem kontinuierlichen Drehrohr bei 350°C und einer mittleren Verweilzeit von 45 Minuten im wasserdampfhaltigen Stickstoffstrom getempert. Um einen Wasserdampfpartialdruck pH20 = 88 mbar einzustellen, wird nur ein geringer Inertgasstrom von 400 NI Stickstoff/h im Gleichstrom durch den Reaktor geleitet. Das resultierende Eisen(III)oxid wird wie in Beispiel 1 beschrieben ausgerüstet, der Phosphatgehalt beträgt 1,2 Gew.-%, der Kohlenstoffgehalt 0,06 Gew.-% und die Oberfläche ist 23,4 m2/g (Probe M2). Diese Probe M2 wird in gleicher Weise wie die Probe M1 aus Vergleichsversuch 5 reduziert. Dadurch entsteht Eisenpigment Nr. 17, dessen magnetische Eigenschaften in Tabelle 4 angegeben sind.
    Figure imgb0006
  • Beispiel 5
  • Verwendet werden als Ausgangsprodukte die in an sich bekannter Weise hergestellten Eisen(III)-oxidhydroxide Probe N (y-FeOOH mit einem a-FeOOH-Anteil von 30% und einer Oberfläche von 26,1 m2/g) und Probe O (γ-FeOOH mit einem a-FeOOH-Anteil von 68% und einer Oberfläche von 39,0 m2/g).
  • Jeweils 50 Teile der FeOOH-Proben N und O werden in 500 Volumenteile Wasser suspendiert und dann 0,70 Volumenteile einer 85%igen Phosphorsäure (H3PO4) und ein Teil H2C2O4 · 2 H20 (Oxalsäure) in 30 Volumenteile Wasser gelöst zugesetzt. Nach weiterem Rühren von 10 Minuten wird der Feststoff abfiltriert und der Filterkuchen bei 170°C an Luft getrocknet (Proben N1 und 01). Die Verfahrensbedingungen für die jeweilige Temperung und gegebenenfalls anschliessende Oberflächenausrüstung sowie die Oberflächenwerte und Kohlenstoff/Phosphor-Analysenwerte sind in Tabelle 5 aufgeführt. Die magnetischen Eigenschaften der aus den Proben N5, 06 und 07 durch Reduktion mit Wasserstoff bei 350°C erhaltenen Eisenpigmente 18a, 21 und 22a sowie der durch Überleiten eines Stickstoff-Luft-Gemisches bei einer Temperatur unterhalb 50°C sich ergebenden passivierten Eisenpigmente 18b, 21b und 22b sind in Tabelle 6 aufgeführt.
  • Vergleichsversuch 6
  • Die Verfahrensbedingungen der aus den Proben N und O abgeleiteten Eisenpigmente 17, 19, 20 und 21 sind in den Tabellen 5 und 6 wiedergegeben, ebenso die entsprechenden Messergebnisse.
    Figure imgb0007
    Figure imgb0008
    Figure imgb0009
  • Beispiel 6
  • 50 Teile eines in üblicher Weise hergestellten Eisen(III)oxidhydroxids mit einem Anteil von 6% a-FeOOH und 94% y-FeOOH und einer Oberfläche von 29,4 m2/g werden wie in Beispiel 4 beschrieben in einem Drehrohr bei 350 °C und einem pH20 von 88 mbar bei einer mittleren Verweilzeit von 30 Minuten getempert und anschliessend wie in Vergleichsversuch 2 beschrieben ausgerüstet. Die dabei entstehende Probe R1 hat eine Oberfläche von 32,8 m2/g, einen Phosphatgehalt von 1,0 Gew.-% und einen Kohlenstoffgehalt von 0,03 Gew.-%. Nach der Reduktion mit Wasserstoff während 8 Stunden bei 335°C zeigt das resultierende Eisenpigment 23 die in der Tabelle 7 angegebenen Messergebnisse. Anschliessend wird das Material durch Überleiten eines Luft-Stickstoff-Gemisches bei Temperaturen unter 50°C passiviert.
  • Vergleichsversuch 7
  • Die in Beispiel 6 angegebene Probe R wird ohne Temperung, wie ebenfalls beschrieben, mit einem Oberflächenüberzug versehen, reduziert (Eisenpigment 24) und passiviert. Die Messergebnisse sind in Tabelle 7 aufgeführt.
    Figure imgb0010
  • Beispiele 7 und 8
  • Jeweils 800 Teile der nach Beispiel 6 und Vergleichsversuch 7 hergestellten passivierten Eisenteilchen Nr. 23 und 24 werden in einer 600 Volumenteile fassenden Stahlzylindermühle, welche 9000 Teile Stahlkugeln mit einem Durchmesser zwischen 4 und 6 mm enthält, mit 456 Teilen einer 13prozentigen Lösung eines thermoplastischen Polyesterurethans aus Adipinsäure, 1,4-Butandiol und 4,4'-Diisocyanatodiphenylmethan in einem Lösungsmittelgemisch aus gleichen Teilen Tetrahydrofuran und Dioxan, 296 Teile einer 10prozentigen Lösung eines Polyvinylformalbindemittels, enthaltend 82 Prozent Vinylformal-, 12 Prozent Vinylacetat- und 6 Prozent Vinylalkoholeinheiten, im genannten Lösungsmittelgemisch, 20 Teile Butyloktoat und weitere 492 Teile des genannten Lösungsmittelgemisches gemischt und 4Tage dispergiert. Sodann werden nochmals 456 Teile der angegebenen Polyesterurethan-Lösung, 296 Teile der eingesetzten Polyvinylformallösung, 271 Teile des Lösungsmittelgemisches sowie noch 2 Teile eines handelsüblichen Siliconöls zugegeben und weitere 24 Stunden dispergiert und durch eine Zellulose/Asbestfaserschicht filtriert. Auf einer üblichen Beschichtungsmaschine wird die so hergestellte Magnetdispersion auf eine Polyäthylenterephthalat-Trägerfolie von 11,5 um Stärke aufgetragen und nach Durchlaufen eines magnetischen Richtfeldes innerhalb 2 Minuten bei 80 bis 100°C getrocknet. Die Magnetschicht wird durch Ziehen über beheizte und polierte Walzen bei Temperaturen von 60 bis 80°C geglättet und verdichtet. Die fertige Magnetschicht ist 3,9 um dick.
  • Die magnetischen Eigenschaften der Magnetschicht sind in Tabelle 8 aufgeführt.
    Figure imgb0011

Claims (4)

1. Verfahren zur Herstellung nadelförmiger ferromagnetischer Eisenteilchen aus nadelförmigem, mit einem formstabilisierenden Oberflächenüberzug versehenen Eisen(III)oxid durch Reduktion mit Wasserstoff bei 275 bis 425 °C, dadurch gekennzeichnet, dass das eingesetzte nadelförmige Eisen(III)oxidhydroxid aus Lepidokrokit (y-FeOOH) oder einem Gemenge aus Goethit (a-FeOOH) und Lepidokrokit mit einem Mindestgehalt von 20 Gewichtsprozent Lepidokrokit besteht und in einer wasserdampfhaltigen Atmosphäre mit einem Wasserdampfpartialdruck zwischen 30 und 1013 mbar bei 250 bis 390°C 10 Minuten bis 10 Stunden lang getempert wird.
2. Verfahren gemäss Anspruch 1, dadurch gekennzeichnet, dass vor dem Tempern auf die Oberfläche des nadelförmigen Eisen(III)oxidhy- droxids hydrolysebeständige Sauerstoffsäuren des Phosphors, deren Salze oder Ester in einer Menge von 0,2 bis 2 Gewichtsprozent Phosphor, bezogen auf das Eisenoxidhydroxid, und aliphatische ein- oder mehrbasische Carbonsäuren mit 1 bis 6 Kohlenstoffatomen in einer Menge von 0,02 bis 1,2 Gewichtsprozent Kohlenstoff, bezogen auf das Eisenoxidhydroxid, aufgebracht werden.
3. Verfahren gemäss Anspruch 1, dadurch gekennzeichnet, dass auf die Oberfläche des beim Tempern entstandenen Eisen(III)oxids hydrolysebeständige Sauerstoffsäuren des Phosphors, deren Salze oder Ester in einer Menge von 0,2 bis 2 Gewichtsprozent Phosphor, bezogen auf das Eisenoxidhydroxid, und aliphatische ein- oder mehrbasische Carbonsäuren mit 1 bis 6 Kohlenstoffatomen in einer Menge von 0,02 bis 1,2 Gewichtsprozent Kohlenstoff, bezogen auf das Eisenoxidhydroxid, aufgebracht werden.
4. Verwendung der gemäss einem der Ansprüche 1 bis 3 hergestellten nadelförmigen ferromagnetischen Eisenteilchen zur Herstellung von magnetischen Aufzeichnungsträgern.
EP80104974A 1979-09-01 1980-08-21 Verfahren zur Herstellung nadelförmiger ferromagnetischer Eisenteilchen und deren Verwendung Expired EP0024692B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19792935357 DE2935357A1 (de) 1979-09-01 1979-09-01 Verfahren zur herstellung nadelfoermiger ferromagnetischer eisenteilchen und deren verwendung
DE2935357 1979-09-01

Publications (3)

Publication Number Publication Date
EP0024692A2 EP0024692A2 (de) 1981-03-11
EP0024692A3 EP0024692A3 (en) 1981-08-26
EP0024692B1 true EP0024692B1 (de) 1984-03-28

Family

ID=6079796

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80104974A Expired EP0024692B1 (de) 1979-09-01 1980-08-21 Verfahren zur Herstellung nadelförmiger ferromagnetischer Eisenteilchen und deren Verwendung

Country Status (4)

Country Link
US (1) US4295879A (de)
EP (1) EP0024692B1 (de)
JP (1) JPS5641835A (de)
DE (2) DE2935357A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56145525A (en) * 1980-04-11 1981-11-12 Tdk Corp Magnetic recording medium
DE3231192A1 (de) * 1982-08-21 1984-02-23 Basf Ag, 6700 Ludwigshafen Geformte eisenkatalysatormasse, deren herstellung und verwendung
JPS59157204A (ja) * 1983-02-23 1984-09-06 Chisso Corp 強磁性金属微粒子の製造方法
JP2582764B2 (ja) * 1986-02-05 1997-02-19 バスフ アクチェン ゲゼルシャフト 本質的に鉄から成る針状強磁性金属粉末の製造方法
JP2931182B2 (ja) * 1992-07-17 1999-08-09 石原産業株式会社 針状γ−FeOOHの製造方法
SE9401392D0 (sv) * 1994-04-25 1994-04-25 Hoeganaes Ab Heat-treating of iron powders
US5796018A (en) * 1997-01-29 1998-08-18 Procedyne Corp. Process for coating iron particles with phosphorus and forming compacted articles
ITMI20020567A1 (it) * 2002-03-18 2003-09-18 Sud Chemie S R L Processo per la preparazione di ossidi di ferro
US8911663B2 (en) * 2009-03-05 2014-12-16 Quebec Metal Powders, Ltd. Insulated iron-base powder for soft magnetic applications

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3082067A (en) * 1959-04-28 1963-03-19 Bayer Ag Process for the production of isometric ferromagnetic gamma-ferric oxide
NL162233C (nl) * 1968-03-05 1980-04-15 Philips Nv Werkwijze ter bereiding van een in hoofdzaak uit ijzer bestaand magnetisch stabiel poeder, voor magnetische registratie.
NL163355C (nl) * 1969-04-08 1980-08-15 Philips Nv Werkwijze ter bereiding van een in hoofdzaak uit ijzer bestaand magnetisch stabiel metaalpoeder, voor magnetische registratie.
CH528320A (de) * 1969-04-17 1972-09-30 Stamicarbon Verfahren zur Herstellung von dauermagnetisierbare Teilchen enthaltenden Formkörpern zur magnetischen Speicherung von Informationen und Anwendung des Verfahrens zur Herstellung von flächenartigen Gebilden
JPS4922630B1 (de) * 1970-06-23 1974-06-10
DE2434096C2 (de) * 1974-07-16 1985-10-17 Basf Ag, 6700 Ludwigshafen Nadelförmige, vorwiegend aus Eisen bestehende ferromagnetische Metallteilchen und Verfahren zu ihrer Herstellung
DE2434058C2 (de) * 1974-07-16 1985-12-19 Basf Ag, 6700 Ludwigshafen Nadelförmige, vorwiegend aus Eisen bestehende ferromagnetische Metallteilchen und Verfahren zu ihrer Herstellung
DE2646348C2 (de) * 1976-10-14 1986-08-28 Basf Ag, 6700 Ludwigshafen Verfahren zur Herstellung von nadelförmigen, ferromagnetischen, im wesentlichen aus Eisen bestehenden Metallteilchen und deren Verwendung zur Herstellung von magnetischen Aufzeichnungsträgern
DE2714588C2 (de) * 1977-04-01 1986-06-05 Basf Ag, 6700 Ludwigshafen Verfahren zur Herstellung nadelförmiger ferromagnetischer Eisenteilchen

Also Published As

Publication number Publication date
DE3067268D1 (en) 1984-05-03
US4295879A (en) 1981-10-20
DE2935357A1 (de) 1981-09-10
JPS5641835A (en) 1981-04-18
EP0024692A3 (en) 1981-08-26
EP0024692A2 (de) 1981-03-11

Similar Documents

Publication Publication Date Title
EP0072436B1 (de) Verfahren zur Herstellung feinteiliger Ferritpulver
DE2646348C2 (de) Verfahren zur Herstellung von nadelförmigen, ferromagnetischen, im wesentlichen aus Eisen bestehenden Metallteilchen und deren Verwendung zur Herstellung von magnetischen Aufzeichnungsträgern
DE3017525C3 (de) Magnetisches Eisenoxidpulver und Verfahren zu seiner Herstellung
DE2434096A1 (de) Verfahren zur herstellung nadelfoermiger, eisenhaltiger ferromagnetischer metallpigmente
EP0014902B1 (de) Verfahren zur Herstellung von nadelförmigem kobalthaltigem magnetischem Eisenoxid
EP0176919A2 (de) Verfahren zur Herstellung von feinteiligem isotropen Ferritpulver mit Spinellstruktur
EP0014903B1 (de) Verfahren zur Herstellung von nadelförmigem kobalthaltigem magnetischem Eisenoxid
EP0024692B1 (de) Verfahren zur Herstellung nadelförmiger ferromagnetischer Eisenteilchen und deren Verwendung
EP0024694B1 (de) Verfahren zur Herstellung nadelförmiger ferromagnetischer Eisenteilchen und deren Verwendung
DE2743298A1 (de) Ferromagnetische, im wesentlichen aus eisen bestehende metallteilchen und verfahren zu deren herstellung
DE2705967A1 (de) Verfahren zur herstellung von nadelfoermigem kobalthaltigem magnetischem eisenoxid
DE2639250C2 (de) Verfahren zur Herstellung von nadelförmigem, kobaltdotiertem magnetischem Eisenoxid
DE2805405C2 (de)
EP0105110B1 (de) Verfahren zur Herstellung nadelförmiger, im wesentlichen aus Eisen bestehender ferromagnetischer Metallteilchen
EP0063730A2 (de) Verfahren zur Stabilisierung pyrophorer, im wesentlichen aus Eisen bestehender ferromagnetischer nadelförmiger Metallteilchen
DE3344299C2 (de)
EP0014889B1 (de) Verfahren zur Herstellung nadelförmiger ferromagnetischer Eisenteilchen
DE3224325A1 (de) Verfahren zur herstellung von nadelfoermigen, ferrimagnetischen eisenoxiden
DE3021111A1 (de) Verfahren zur herstellung von nadelfoermigen, im wesentlichen aus eisen bestehenden, ferromagnetischen metallteilchen
DE2447386C2 (de) Verfahren zur Herstellung von γ-Eisen(III)oxid
DE3325613A1 (de) Verfahren zur herstellung von kobalt und zweiwertiges eisen enthaltendem, ferromagnetischem eisenoxid
EP0237943B1 (de) Verfahren zur Herstellung von nadelförmigem alpha-Eisen-III-Oxid
DE2045561B2 (de) Verfahren zur herstellung feiner goethitkristalle
EP0158240A2 (de) Verfahren zur Herstellung isotroper magnetischer, kobalthaltiger Eisenoxide
EP0200985B1 (de) Verfahren zur Herstellung von nadelförmigen, ferrimagnetischen Gamma-Eisen(III)-Oxiden

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): DE FR GB NL

17P Request for examination filed

Effective date: 19810819

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB NL

REF Corresponds to:

Ref document number: 3067268

Country of ref document: DE

Date of ref document: 19840503

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
NLXE Nl: other communications concerning ep-patents (part 3 heading xe)

Free format text: NEW PAGES 3,9,10,11,12 AND 15 HAVE BEEN RECEIVED ON 851007

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19930714

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930816

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19930831

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950301

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950428

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19981023

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000601