[go: up one dir, main page]

EP0022027B1 - Procédé pour extraire un solvant imprégnant des tissus et dispositif pour sa mise en oeuvre - Google Patents

Procédé pour extraire un solvant imprégnant des tissus et dispositif pour sa mise en oeuvre Download PDF

Info

Publication number
EP0022027B1
EP0022027B1 EP19800400964 EP80400964A EP0022027B1 EP 0022027 B1 EP0022027 B1 EP 0022027B1 EP 19800400964 EP19800400964 EP 19800400964 EP 80400964 A EP80400964 A EP 80400964A EP 0022027 B1 EP0022027 B1 EP 0022027B1
Authority
EP
European Patent Office
Prior art keywords
phase
air
condenser
fluid
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP19800400964
Other languages
German (de)
English (en)
Other versions
EP0022027A1 (fr
Inventor
Jacques Lance
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FRIMAIR SA
Original Assignee
FRIMAIR SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9227412&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0022027(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by FRIMAIR SA filed Critical FRIMAIR SA
Publication of EP0022027A1 publication Critical patent/EP0022027A1/fr
Application granted granted Critical
Publication of EP0022027B1 publication Critical patent/EP0022027B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F43/00Dry-cleaning apparatus or methods using volatile solvents
    • D06F43/08Associated apparatus for handling and recovering the solvents
    • D06F43/086Recovering the solvent from the drying air current
    • D06F43/088Condensing arrangements

Definitions

  • the present invention relates to a process for extracting an impregnating solvent from fabrics, in particular after dry cleaning of these fabrics in the dyeing industry.
  • thermodynamic machine as a cooling surface.
  • the adaptation of the degree of cooling according to the envisaged phase is carried out by modifying the pressure upstream of the expansion member of said machine, which leads to a relatively complex and delicate mechanical production of this machine.
  • the object of the invention is to provide a method and a device which makes it possible to regulate the cooling phenomenon in a manner strictly necessary and sufficient to prevent this icing.
  • This object is achieved, in accordance with a first aspect of the invention, by injecting into the expanded refrigerant admitted for evaporation a predetermined flow rate of gaseous hot fluid controlled by the temperature of the evaporated fluid.
  • the temperature of the evaporator itself is precisely regulated, which makes it possible to avoid icing under the most rational conditions.
  • the device for extracting a solvent impregnating fabrics after dry cleaning comprises an air circulation corridor mounted in closed circuit on a cleaning drum.
  • a cooling battery and a heating battery are connected in series in this corridor and a condensate recovery point is provided between these two batteries.
  • the cooling coil is the evaporator of a thermodynamic machine and this device is characterized in that the circuit of the thermodynamic machine comprises a bypass connecting the piping of hot gaseous fluid to the piping of expanded fluid upstream of the evaporator, this bypass comprising a servo valve connected to a temperature detector located on the fluid piping leaving the evaporator, to maintain the temperature of said evaporator in a predetermined band.
  • a dry cleaning machine for clothes comprises a drum 1 provided with stirring means not shown, on which is mounted in a closed circuit a corridor 2 for air circulation, com carrying a fan 3 which causes this circulation in the general direction of the arrows.
  • a cold battery 4 constituted by the evaporator of a refrigerating machine and a heating battery 5 providing external thermal energy to the system.
  • this battery operates with steam.
  • a low point 6 from which a pipe 7 provided with a control light 8 to a tank 9 for separating immiscible liquid phases.
  • a buffer 11 controlled by a jack 12 can be lowered to cooperate with a bearing 13 and isolate the heating battery 5.
  • a control device not shown allows, simultaneously, to actuate a jack 14 associated with a pad 15 to open a corridor of bypass 2a and force the air to circulate according to the arrows F1.
  • An air filter 16 is arranged in the corridor 2 to retain solid impurities from the clothes.
  • the tank 9 comprises a vertical partition 17 not going down to the bottom and delimiting two compartments 9a, 9b, the pipe 7 opening at the bottom of the compartment 9a.
  • Two vertical tubes 18a, 18b are housed in the respective compartments 9a, 9b and open out at different heights.
  • the tube 9a is connected to a tank 19 for recovering water and the tube 9b, which opens lower than the tube 9a, is connected to a circuit (not shown) for solvent recovery.
  • the circuit includes a compressor 21 discharging the gaseous refrigerant in a line 22 leading to a condenser 23 cooled by a water circuit 24.
  • This water circuit is provided with a servo-valve 25 connected to a temperature sensor 26 which measures the temperature of the fluid arriving at the condenser 23 to control the flow of cooling water to this temperature in order to obtain substantially constant cooling of the condenser.
  • the condenser opens into a line 27 in which a desiccant filter 28, a solenoid valve 29, and a control lamp 31 are mounted in series.
  • Line 27 finally arrives at the evaporator 4 via a pressure regulator 32 controlled by the pressure prevailing downstream in a line 33 returning to the compressor 21.
  • a pressure regulating valve 34 is mounted on line 33.
  • the refrigeration circuit also comprises a pipe 35 mounted as a bypass and directly connecting the pipe 22 to the pipe 27 between the expansion valve 32 and the evaporator 4.
  • a solenoid valve 36 and a servo-valve 37 connected to a sensor 38 of the temperature of the refrigerant leaving the evaporator, so as to open when this temperature tends to drop.
  • the fan 3 is started, the buffers 11 and 15 being in the position indicated in FIG. 1.
  • the compressor 21 is started, the solenoid valve 36 being open.
  • the air is circulated in the corridor 2 according to the arrows, passing through the heating battery 5 where it heats up to a temperature between 60 ° and 70 ° C before entering the drum 1 where it evaporates a part of the solvent permeating clothing.
  • the servo valve 37 admits sufficient coolant leaving the compressor 21 at the inlet of the evaporator 4 so that the surface of the latter is not at a temperature below 0 ° C or above 5 ° C , so that water vapor icing is avoided.
  • This evaporation phase is variable depending on the amount of solvent to be evaporated, but, in the usual cleaning machines, it is between 6 and 16 minutes. It is considered complete when about 90% of the solvent which has permeated the clothes has been evaporated after emptying.
  • the buffers 11 and 15 are then operated by the jacks 12 and 14, so as to isolate the heating coil 5, the air passing along the arrows F1.
  • the solenoid valve 36 is closed, so that the refrigerant leaving the expansion valve 32 is no longer heated by mixing and the surface temperature of the evaporator 4 is between -15 ° C and -25 °. C, preferably at -18 ° C.
  • the air passing through the evaporator cools mainly in its boundary layer, but not in its entire mass. Leaving the evaporator 4, it still partially heats up in contact with the hot metallic masses of the machine, and especially in contact with the clothing it cools. Despite its gradual cooling, its evaporative power remains high due to its great dryness obtained by the above-mentioned vigorous cooling.
  • the clothes are suitably cooled, de-crumpled and deodorized, containing practically no more solvent. The operation is therefore finished.
  • the application of the method therefore makes it possible to obtain these excellent performances in a simple manner, while procuring a notable operating economy on the consumption of cooling water, due to the fact that, the condenser being at a temperature clearly. higher than that of the air to be cooled, it is possible, by exchange, to bring the water to a markedly higher temperature and thus reduce its flow rate. For example, water, instead of going out at 25 ° C, can go out at 40 ° C.
  • the cleaning machine is constituted substantially in the same way as in the previous embodiment, except that a bypass 2b is formed in parallel with the evaporator 4 in the corridor 2, this bypass being closable by a buffer 41 actuated by a jack 42.
  • an additional condenser 43 is placed on the air path, incorporated in the refrigeration circuit mounted in parallel with the condenser 23 and switchable with it, by a set of valves 44, 45, the valve 44 supplying the condenser 23, and the valve 45 supplying the condenser 43.
  • a servo valve 46 controlled by the upstream pressure, is mounted at the outlet of the condenser 43.
  • This condenser is provided with a bypass 47 provided with a servo valve 48 which closes when the pressure difference between its inlet and its outlet tends to increase.
  • the valve 45 is open and the valve 44 is closed.
  • the valve 48 is open and the valve 46 is closed. Then, the pressure rising in the condenser 43, the valve 46 opens and the valve 48 closes. It follows that the condenser 43 is in service, serving as a heating battery, and that the condenser 23 is off, allowing the flow of cooling water to stop.
  • the bypass 35 is opened to ensure that the surface temperature of the evaporator 4 does not fall below 0 ° C, as explained above.
  • valve 45 When we pass to the second phase, called deodorization, we close the valve 45, which isolates the condenser 43 while maintaining it under pressure, and we open the valve 44, which activates the condenser 23 in which we restores the cooling water flow. Closure 35 is also closed by valve 36.
  • the deodorization process continues as in the previous embodiment.
  • the bypass 2b is opened by opening the buffer 41 by the jack 42, so that part of the air is bypassed according to arrow F2.
  • the evaporator seeing only about half of the air flow passing, cools more easily, which allows the solvent vapors to condense more efficiently.
  • This bypass necessary for the phase flow, can advantageously be maintained until the end.
  • This embodiment has the advantage over the previous one that the heat recovered by cooling the air is used, in the first phase, for heating. Not only does it save cooling water, but it also saves the supply of external thermal energy for heating.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Treatment Of Fiber Materials (AREA)
  • Control Of Washing Machine And Dryer (AREA)
  • Detergent Compositions (AREA)

Description

  • La présente invention concerne un procédé pour extraire un solvant imprégnant des tissus, en particulier après nettoyage à sec de ces tissus dans l'industrie de la teinturerie.
  • Elle concerne également un dispositif pour la mise en oeuvre de ce procédé.
  • Il est connu, notamment par le FR-A-2 325 758, d'effectuer cette extraction en faisant circuler de l'air chaud dans ces tissus pour évaporer le solvant, en refroidissant cet air pour condenser les vapeurs de solvant, et en le réinjectant en circuit fermé dans les tissus après réchauffage. On effectue successivement les opérations suivantes:
    • a. dans une première phase, dite phase d'évaporation, on échauffe l'air par un apport de chaleur à une température comprise entre environ 60°C et 100°C, avant de l'injecter dans les tissus, et on le refroidit à sa sortie en le faisant passer sur une surface dont la température est voisine de 0°C pour récupérer le solvant extrait des tissus par l'air chaud;
    • b. dans une seconde phase, dite phase de désodorisation, on refroidit l'air sortant des tissus en le faisant passer sur cette même surface dont la température est alors maintenue à environ -20°C, en supprimant l'apport de chaleur, de manière à éliminer les dernières traces de solvant présentes dans les tissus.
  • Ce même document prévoit d'utiliser comme surface réfrigérante l'évaporateur d'une machine thermodynamique. L'adaptation du degré de refroidissement suivant la phase envisagée s'effectué en modifiant la pression en amont de l'organe de détente de ladite machine, ce qui conduit à une réalisation mécanique relativement complexe et délicate de cette machine.
  • On connaît d'autre part, par le document US-A-3 791 160, un procédé de conditionnement d'air pour des locaux d'habitation, dans lequel on refroidit de l'air au moyen d'une machine frigorifique, et dans lequel la régulation de la température de l'air s'obtient en injectant dans le fluide frigorifique détendu un certain débit de fluide comprimé chaud qui by- passe le détendeur. Ce débit est réglé par une servo-vanne commandée par un thermostat d'ambiance.
  • L'adaptation d'un tel procédé aux machines à nettoyer à sec ne conduirait qu'à régler la température de l'air soufflé dans les tissus. Or, le problème de l'invention est autre et vise essentiellement à empêcher le givrage de la batterie de refroidissement pendant la première phase de l'opération où l'air est fortement chargé en humidité.
  • Le but de l'invention est de réaliser un procédé et un dispositif qui permette de régler le phénomène de refroidissement d'une manière strictement nécessaire et suffisante pour empêche ce givrage.
  • Ce but est atteint, conformément à un premier aspect de l'invention, en injectant dans le fluide frigorifique détendu admis à l'évaporation un débit prédéterminé de fluide chaud gazeux asservi à la température du fluide évaporé.
  • En procédant ainsi, on règle précisément la température de l'évaporateur lui-même, ce qui permet d'éviter le givrage dans les conditions les plus rationnelles.
  • Suivant un second aspect de l'invention, le dispositif pour extraire un solvant imprégnant des tissus après nettoyage à sec, et notamment pour appliquer le procédé précité, comprend un couloir de circulation d'air monté en circuit fermé sur un tambour de nettoyage. Une batterie de refroidissement et une batterie chauffante sont montées en série dans ce couloir et un point de récupération des condensats est ménagé entre ces deux batteries. La batterie de refroidissement est l'évaporateur d'une machine thermodynamique et ce dispositif est caractérisé en ce que le circuit de la machine thermodynamique comprend une dérivation reliant la tuyauterie de fluide chaud gazeux à la tuyauterie de fluide détendu en amont de l'évaporateur, cette dérivation comprenant une servo-vanne reliée à un détecteur de température situé sur la tuyauterie de fluide sortant de l'évaporateur, pour maintenir la température dudit évaporateur dans une bande prédéterminée.
  • D'autres particularités et avantages de l'invention ressortiront encore de la description détaillée qui va suivre.
  • Aux dessins annexés, donnés à titre d'exemples non limitatifs:
    • - la Figure 1 est une vue schématique d'une machine de nettoyage utilisant un procédé conforme à l'invention dans une première réalisation,
    • - la Figure 2 est un schéma du circuit frigorifique correspondant à cette réalisation,
    • - la Figure 3 est une vue schématique d'une machine de nettoyage utilisant un procédé conforme à l'invention dans une seconde réalisation,
    • - la Figure 4 est une schéma de la machine frigorifique correspondant à cette seconde réalisation.
  • En référence aux Figures 1 et 2, une machine de nettoyage à sec de vêtements comprend un tambour 1 muni de moyens de brassage non représentés, sur lequel est monté en circuit fermé un couloir 2 de circulation d'air, comportant un ventilateur 3 qui provoque cette circulation dans le sens général des flèches.
  • Dans le couloir 2 sont montées en série une batterie froide 4 constituée par l'évaporateur d'une machine frigorifique et une batterie chauffante 5 apportant de l'énergie thermique extérieure au système. Dans l'exemple décrit, cette batterie fonctionne à la vapeur.
  • Entre ces deux batteries est ménagé un point bas 6 d'où part une canalisation 7 munie d'un voyant de contrôle 8 vers un bac 9 de séparation de phases liquides non miscibles.
  • Un tampon 11 commandé par un vérin 12 peut être abaissé pour coopérer avec une portée 13 et isoler la batterie chauffante 5. Un dispositif de commande non représenté permet, simultanément, d'actionner un vérin 14 associé à un tampon 15 pour ouvrir un couloir de by- pass 2a et obliger l'air à circuler suivant les flèches F1.
  • Un filtre à air 16 est disposé dans le couloir 2 pour retenir des impuretés solides en provenance des vêtements.
  • Le bac 9 comprend une cloison de séparation verticale 17 ne descendant pas jusqu'au fond et délimitant deux compartiments 9a, 9b, la canalisation 7 débouchant à la partie inférieure du compartiment 9a. Deux tubes verticaux 18a, 18b sont logés dans les compartiments respectifs 9a, 9b et débouchent à des hauteurs différentes. Le tube 9a est relié à un bac 19 de récupération d'eau et le tube 9b, qui débouche plus bas que le tube 9a, est relié à un circuit (non représenté) de récupération de solvant.
  • On va maintenant décrire en détail, en référence à la Figure 2, le circuit frigorifique auquel appartient l'évaporateur 4.
  • Le circuit comprend un compresseur 21 refoulant le fluide frigorifique gazeux dans une conduite 22 aboutissant à un condenseur 23 refroidi par un circuit d'eau 24. Ce circuit d'eau est muni d'une servo-vanne 25 reliée à un capteur de température 26 qui mesure la température du fluide arrivant au condenseur 23 pour asservir le débit d'eau de refroidissement à cette température dans le but d'obtenir un refroidissement sensiblement constant du condenseur.
  • Le condenseur débouche dans une conduite 27 où sont montés en série un filtre déshydratant 28, une électrovanne 29, et un voyant de contrôle 31.
  • La conduite 27 arrive enfin à l'évaporateur 4 par l'intermédiaire d'un détendeur 32 asservi à la pression régnant en aval dans une conduite 33 retournant au compresseur 21. Une vanne 34 régulatrice de pression est montée sur la conduite 33.
  • Le circuit frigorifique comprend encore une conduite 35 montée en dérivation et reliant directement la conduite 22 à la conduite 27 entre le détendeur 32 et l'évaporateur 4. Sur la conduite 35 sont montées une électrovanne 36 et une servo-vanne 37 reliée à un capteur 38 de la température du fluide frigorifique sortant de l'évaporateur, de manière à s'ouvrir quand cette température tend à baisser.
  • On va maintenant décrire le fonctionnement de cet appareillage, ce qui servira de description du procédé.
  • Les vêtements placés dans le tambour 1 ayant été nettoyés par brassage dans un solvant qui est généralement du perchloréthylène, on vidange le tambour, on essore, mais les vêtements restent imprégnés de solvant.
  • On met en marche le ventilateur 3, les tampons 11 et 15 étant dans la position indiquée sur la Figure 1. En outre, on met en marche le compresseur 21, l'électrovanne 36 étant ouverte.
  • L'air se met en circulation dans le couloir 2 suivant les flèches, en passant par la batterie chauffante 5 où il s'échauffe à une température comprise entre 60° et 70°C avant d'entrer dans le tambour 1 où il évapore une partie du solvant imprégnant les vêtements.
  • Il sort ensuite par le filtre 16 et passe dans l'évaporateur 4 où il se refroidit, ce qui provoque la condensation des vapeurs d'eau et de solvant qu'il contient et qui sont rassemblés sous forme liquide au point bas 6, d'où ils sont amenés par la canalisation 7 jusqu'au bac de séparation 9.
  • Dans ce bac, l'eau plus légère monte jusqu'en surface du compartiment 9a d'où elle s'écoule par effet de trop-plein dans le tube 18a. Le solvant plus lourd passe dans le compartiment 9b d'où il s'écoule de la même manière par le tube 18b.
  • La servo-vanne 37 admet du fluide frigorifique chaud sortant du compresseur 21 en quantité suffisante à l'entrée de l'évaporateur 4 pour que la surface de ce dernier ne soit pas à une température inférieure à 0°C ni supérieure à 5°C, de sorte qu'on évite le givrage de la vapeur d'eau.
  • La durée de cette phase d'évaporation est variable suivant la quantité de solvant à évaporer, mais, dans les machines de nettoyage usuelles, elle est comprise entre 6 et 16 minutes. Elle est considérée comme terminée quand on a fait évaporer environ 90% du solvant qui imprégnait les vêtements après vidange.
  • Les vêtements sont alors chauds et fripés, et il est encore nécessaire d'en extraire une certaine quantité de solvant pour les désodoriser.
  • On manoeuvre alors les tampons 11 et 15 par les vérins 12 et 14, de manière à isoler la batterie chauffante 5, l'air passant suivant les flèches F1. En même temps, on ferme l'électrovanne 36, de sorte que le fluide frigorifique sortant du détendeur 32 ne se trouve plus réchauffé par mélange et que la température de surface de l'évaporateur 4 se situe entre -15°C et -25°C, de préférence à -18°C.
  • Ce refroidissement énergique provoque une condensation plus efficace des vapeurs de solvant devenues plus rares, sans provoquer pour autant de givrage, car à cet instant, toute l'eau a disparu par condensation au cours de la phase précédente.
  • L'air passant dans l'évaporateur se refroidit surtout dans sa couche limite, mais non dans la totalité de sa masse. En sortant de l'évaporateur 4, il se réchauffe encore partiellement au contact des masses métalliques chaudes de la machine, et surtout au contact des vêtements qu'il refroidit. Malgré son refroidissement progressif, son pouvoir évaporatoire reste élevé du fait de sa grande siccité obtenue par le refroidissement énergique précité.
  • Après 8 à 12 minutes, les vêtements sont convenablement refroidis, défripés et désodorisés, ne contenant pratiquement plus de solvant. L'opération est donc terminée.
  • L'application du procédé permet donc d'obtenir de façon simple ces excellentes performances, tout en procurant une économie de fonctionnement notable sur la consommation d'eau de refroidissement, due au fait que, le condenseur se trouvant à une température net- .tement supérieure à celle de l'air à refroidir, on peut, par l'échange, porter l'eau à une température nettement plus élevée et ainsi diminuer son débit. Par exemple, l'eau, au lieu de sortir à 25°C, peut sortir à 40°C.
  • On va maintenant décrire, en référence aux Figures 3 et 4, un autre mode de réalisation du procédé, assortie d'une variante de réalisation du dispositif.
  • Dans cette description, les éléments identiques ou équivalents à ceux de la réalisation précédemment décrite porteront les mêmes numéros de référence et ne donneront pas lieu à description. On pourra, si nécessaire, se reporter à ce qui a été dit plus haut.
  • En référence aux Figures 3 et 4, la machine de nettoyage est constituée sensiblement de la même façon que dans la réalisation précédente, sauf qu'une dérivation 2b est ménagée en parallèle avec l'évaporateur 4 dans le couloir 2, cette dérivation étant obturable par un tampon 41 actionné par un vérin 42.
  • En outre, aux lieu et place de la batterie chauffante 5, est disposé sur le trajet de l'air un condenseur 43 supplémentaire, incorporé au circuit frigorifique monté en parallèle avec le condenseur 23 et commutable avec lui, par un jeu de vannes 44, 45, la vanne 44 alimentant le condenseur 23, et la vanne 45 alimentant le condenseur 43.
  • Une servo-vanne 46, asservie à la pression amont, est montée en sortie du condenseur 43. Ce condenseur est assorti d'une dérivation 47 munie d'une servo-vanne 48 se fermant quand la différence de pression entre son entrée et sa sortie tend à augmenter.
  • A cours de la première phase, dite phase d'évaporation, la vanne 45 est ouverte et la vanne 44 est fermée. Au début de la phase, la vanne 48 est ouverte et la vanne 46 est fermée. Puis, la pression s'élevant dans le condenseur 43, la vanne 46 s'ouvre et la vanne 48 se ferme. Il s'ensuit que le condenseur 43 est en service, servant de batterie chauffante, et que le condenseur 23 est hors circuit, permettant l'arrêt du débit d'eau de refroidissement.
  • Bien entendu, pendant cette phase d'évaporation, la dérivation 35 est ouverte pour assurer que la température de surface de l'évaporateur 4 ne tombe pas au-dessous de 0°C, comme expliqué plus haut.
  • Quand on passe à la seconde phase, dite de désodorisation, on ferme la vanne 45, ce qui isole le condenseur 43 en le maintenant en pression, et l'on ouvre la vanne 44, ce qui met en service le condenseur 23 dans lequel on rétablit le débit d'eau de refroidissement. On ferme également la dérivation 35 par la vanne 36.
  • La batterie chauffante étant hors service, le processus de désodorisation se poursuit comme dans la réalisation précédente. Toutefois, afin de faciliter le refroidissement de la surface de l'évaporateur 4 jusque vers -18°C, on ouvre la dérivation 2b en ouvrant le tampon 41 par le vérin 42, de manière qu'une partie de l'air soit dérivée suivant la flèche F2. L'évaporateur, ne voyant plus passer qu'environ la moitié du débit d'air, se refroidit plus facilement, ce qui permet de condenser plus efficacement les vapeurs de solvant. Cette dérivation, nécessaire au débit de la phase, peut avantageusement être maintenue jusqu'à la fin.
  • Cette réalisation présente sur la précédente l'avantage que la chaleur récupérée par le refroidissement de l'air est utilisée, dans la première phase, pour le réchauffement. Non seulement on fait une économie d'eau de refroidissement, mais on fait encore l'économie de l'apport d'énergie thermique extérieure de réchauffage.
  • Bien entendu, l'invention n'est pas limitée aux exemples décrits mais couvre encore, dans le cadre des revendications, toute variante mineure dans le procédé comme dans le dispositif, qui peuvent d'autre part être utilisés pour des applications différentes.

Claims (14)

1. Procédé pour extraire un solvant imprégnant des tissus, en particulier de vêtements après nettoyage à sec, consistant à faire circuler de l'air chaud dans ces tissus pour évaporer le solvant, à refroidir cet air pour condenser les vapeurs de solvant, et à le réin- jecter en circuit fermé dans les tissus après réchauffage, dans lequel on effectue successivement les opérations suivantes:
a. dans une première phase, dite phase d'évaporation, on échauffe l'air par un apport de chaleur à une température comprise entre 60°C et 70°C, avant de l'injecter dans les tissus, et on le refroidit à sa sortie en le faisant passer sur une surface (4) dont la. température est comprise entre 0°C et +5°C;
b. dans une seconde phase, dite phase de désodorisation, on refroidit l'air sortant des tissus en le faisant passer sur la surface précitée (4) dont la température est alors maintenue entre -15°C et -24°C, et l'on supprime l'apport de chaleur;

et dans lequel la surface de refroidissement (4) de l'air est elle-même refroidie par l'évaporation d'un fluide frigorifique dans une machine thermodynamique, caractérisé en ce que, dans la première phase, on obtient le refroidissement en injectant dans le fluide frigorifique détendu admis à l'évaporation un débit prédéterminé de fluide frigorifique chaud gazeux asservi à la température du fluide évaporé.
2. Procédé conforme à la revendication 1, caractérisé en ce que la durée de la phase d'évaporation est comprise entre 6 et 16 minutes.
3. Procédé conforme à l'une des revendications 1 ou 2, caractérisé en ce que la durée de la phase de désodorisation est comprise entre 8 et 12 minutes.
4. Procédé conforme à l'une des revendications 1 à 3, caractérisé en ce que, au moins dans la deuxième phase, on évacue la chaleur produite par la machine au moyen d'un courant d'eau.
5. Procédé conforme à la revendication 4, caractérisé en ce qu'on asservit le débit d'eau à la température du fluide chaud.
6. Procédé conforme à l'une des revendications 1 à 5, caractérisé en ce que, dans la première phase, on échauffe l'air par la chaleur de condensation du fluide frigorifique.
7. Procédé conforme à la revendication 6, caractérisé en ce que, dans la seconde phase, on ne refroidit qu'une partie du débit d'air, l'autre partie étant dérivée puis réinjectée dans le débit refroidi.
8. Dispositif pour extraire un solvant imprégnant des tissus après nettoyage à sec, et notamment pour appliquer un procédé conforme à la revendication 1, comprenant un couloir (2) de circulation d'air monté en circuit fermé sur un tambour de nettoyage (1 ), une batterie de refroidissement (4) et une batterie chauffant (5, 43) étant montés en série dans ce couloir et un point de récupération des condensats (7) étant ménagé entre ces deux batteries, dans lequel la batterie de refroidissement (4) est l'évaporateur d'une machine thermodynamique, caractérisé en ce que le circuit de la machine thermodynamique comprend une dérivation (35) reliant la tuyauterie (22) de fluide chaud gazeux à la tuyauterie de fluide détendu en amont de l'évaporateur (4), cette dérivation comprenant une servo-vanne (37) reliée à un détecteur de température (38) situé sur la tuyauterie (33) de fluide sortant de l'évaporateur, pour maintenir la température dudit évaporateur dans une bande prédéterminée.
9. Dispositif conforme à la revendication 8, caractérisé en ce que la dérivation (35) comprend une vanne d'arrêt (36) pour la mettre hors service.
10. Dispositif conforme à l'une des revendications 8 ou 9, caractérisé en ce que la machine thermodynamique comprend au moins un condenseur (23) placé dans un circuit (24) de fluide de refroidissement.
11. Dispositif conforme à la revendication 10, caractérisé en ce que le circuit de fluide de refroidissement comprend une servo-vanne (25) reliée à un détecteur (26) placé sur le circuit de fluide frigorifique dans le condenseur (23).
12. Dispositif conforme à l'une des revendications 10 ou 11, caractérisé en ce que la machine thermodynamique comprend un second condenseur (43) monté en parallèle avec le premier et commutable avec lui par un jeu de vannes (44, 45), ce second condenseur étant situé dans le couloir (2) de circulation d'air pour constituer la batterie chauffante.
13. Dispositif conforme à la revendication 12, caractérisé en ce que la machine thermodynamique comprend une servo-vanne (46) en aval du second condenseur (43), asservie à la pression dans ledit condenseur.
14. Dispositif conforme à la revendication 13, caractérisé en ce qu'il comprend une dérivation (47) en parallèle sur le second condenseur (43) munie d'une servo-vanne (48) tendant à se fermer quand la différence de pression entre son entrée et sa sortie tend à augmenter.
EP19800400964 1979-07-03 1980-06-27 Procédé pour extraire un solvant imprégnant des tissus et dispositif pour sa mise en oeuvre Expired EP0022027B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR7917187 1979-07-03
FR7917187A FR2460363A1 (fr) 1979-07-03 1979-07-03 Procede pour extraire un solvant impregnant des tissus et dispositif pour sa mise en oeuvre

Publications (2)

Publication Number Publication Date
EP0022027A1 EP0022027A1 (fr) 1981-01-07
EP0022027B1 true EP0022027B1 (fr) 1983-09-21

Family

ID=9227412

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19800400964 Expired EP0022027B1 (fr) 1979-07-03 1980-06-27 Procédé pour extraire un solvant imprégnant des tissus et dispositif pour sa mise en oeuvre

Country Status (3)

Country Link
EP (1) EP0022027B1 (fr)
DE (1) DE3064914D1 (fr)
FR (1) FR2460363A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2484678A (en) * 2010-10-19 2012-04-25 John Ward Washing machine with built-in evaporator and condenser unit

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR747508A (fr) * 1932-12-14 1933-06-19 Neu Sa Procédé de déshumidification d'air avec réglage automatique de l'état hygrométrique et de la température
FR801580A (fr) * 1935-02-13 1936-08-07 Const Mecaniques Escher Wyss A Installation de séchage
US3739487A (en) * 1971-01-28 1973-06-19 R Clark Drying apparatus
GB1379742A (en) * 1971-03-25 1975-01-08 Neil & Spencer Ltd Dry cleaning
US3791160A (en) * 1971-09-16 1974-02-12 Nat Union Electric Corp Air conditioning system with temperature responsive controls
FR2293513A1 (fr) * 1974-12-04 1976-07-02 Centre Tech Teinture Nettoyage Dispositif pour le nettoyage a sec d'articles textiles et procede pour la mise en oeuvre de ce dispositif
GB1552111A (en) * 1975-09-26 1979-09-05 Neil & Spencer Ltd Dry cleaning
GB1488720A (en) * 1976-02-13 1977-10-12 Neil & Spencer Ltd Dry cleaning

Also Published As

Publication number Publication date
DE3064914D1 (en) 1983-10-27
FR2460363A1 (fr) 1981-01-23
EP0022027A1 (fr) 1981-01-07
FR2460363B1 (fr) 1983-08-12

Similar Documents

Publication Publication Date Title
CA2435795C (fr) Procede et systeme d'extraction du dioxyde de carbone par anti-sublimation en vue de son stockage
FR2461213A1 (fr) Appareil a vide, notamment pour la conservation des produits alimentaires
FR2481137A1 (fr) Installation d'evaporation a plusieurs etages comportant un compresseur de vapeur chaude combine a un transformateur de chaleur destine a recuperer l'energie thermique contenue dans cette vapeur
EP0885323A1 (fr) Procede et installation de sechage d'une masse de matiere fibreuse humide, notamment d'une masse de linge
FR2493724A1 (fr) Procede et installation pour la recuperation de solvants
FR2851936A1 (fr) Procede d'extraction du dioxyde de carbone et du dioxyde de soufre par anti-sublimation en vue de leur stockage
EP3510257B1 (fr) Système mécanique de production d'énergie mécanique à partir d'azote liquide, et procédé correspondant
EP0022027B1 (fr) Procédé pour extraire un solvant imprégnant des tissus et dispositif pour sa mise en oeuvre
FR2723970A1 (fr) Procede de nettoyage en milieu liquide de pieces d'etoffes ou de vetements et l'application de sa mise en oeuvre
EP0091382B1 (fr) Procédé et dispositif de réfrigération par adsorption
LU86156A1 (fr) Procede et dispositif pour extraire des liquides d'agregate et de melanges gaz-vapeur
WO2000026595A1 (fr) Procede et installation de sechage d'une masse de matiere fibreuse
EP1459024B1 (fr) Procede et installation de sechage d'une masse de linge par compression mecanique d'air tres humide
FR3032127A1 (fr) Systeme de concentration d'une solution par cycle a humidification-deshumidification et procede associe
WO1995030469A1 (fr) Procede et dispositif pour extraire par adsorption selective un compose hydrocarbone volatil d'un melange gazeux, et applications
FR2469679A1 (fr) Appareil de climatisation, en particulier pompe a chaleur
EP0133095A1 (fr) Procédé pour relever le niveau thermique des calories contenues dans un fluide caloporteur et utilisation des calories résultantes pour le chauffage d'un fluide
FR2780491A1 (fr) Procede de sechage par traitement de l'air en circuit ferme et dispositif de mise en oeuvre
FR2467009A1 (fr) Procede et machine de traitement en milieu solvant
CA1195493A (fr) Procede pour le sechage d'une matiere humide contenant de sels solubles, notamment du sel de potasse, ainsi que dispositif pour la mise en oeuvre de ce procede
EP1530697A2 (fr) Procede et dispositif pour regenerer un adsorbant
FR2696480A1 (fr) Procédé de nettoyage à sec à séchage sous vide et installation pour sa mise en Óoeuvre.
BE450999A (fr)
FR2557470A1 (fr) Procede pour rechauffer un fluide par mise en oeuvre de calories a bas niveau thermique contenues dans un guide caloporteur
BE346195A (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19800702

AK Designated contracting states

Designated state(s): DE GB IT

ITCL It: translation for ep claims filed

Representative=s name: BARZANO' E ZANARDO ROMA S.P.A.

DET De: translation of patent claims
ITF It: translation for a ep patent filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19830430

Year of fee payment: 4

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE GB IT

REF Corresponds to:

Ref document number: 3064914

Country of ref document: DE

Date of ref document: 19831027

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: BOEWE MASCHINENFABRIK GMBH

Effective date: 19840411

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19840809

Year of fee payment: 5

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 19850602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19870303

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881118