EP0013871A1 - Process and apparatus for cooling burnt material such as sinters or pellets - Google Patents
Process and apparatus for cooling burnt material such as sinters or pellets Download PDFInfo
- Publication number
- EP0013871A1 EP0013871A1 EP79890059A EP79890059A EP0013871A1 EP 0013871 A1 EP0013871 A1 EP 0013871A1 EP 79890059 A EP79890059 A EP 79890059A EP 79890059 A EP79890059 A EP 79890059A EP 0013871 A1 EP0013871 A1 EP 0013871A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cooler
- shaft
- furnace system
- cooling
- air
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 title claims abstract description 81
- 238000001816 cooling Methods 0.000 title claims abstract description 59
- 238000000034 method Methods 0.000 title claims abstract description 17
- 239000008188 pellet Substances 0.000 title claims abstract description 8
- 230000008569 process Effects 0.000 title abstract description 7
- 238000010438 heat treatment Methods 0.000 claims abstract description 16
- 238000012216 screening Methods 0.000 claims description 6
- 239000007787 solid Substances 0.000 claims description 5
- 238000002485 combustion reaction Methods 0.000 abstract description 5
- 238000005245 sintering Methods 0.000 description 9
- 238000000926 separation method Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000005453 pelletization Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 229910001341 Crude steel Inorganic materials 0.000 description 1
- 229910000805 Pig iron Inorganic materials 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D15/00—Handling or treating discharged material; Supports or receiving chambers therefor
- F27D15/02—Cooling
- F27D15/0286—Cooling in a vertical, e.g. annular, shaft
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B1/00—Preliminary treatment of ores or scrap
- C22B1/26—Cooling of roasted, sintered, or agglomerated ores
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28C—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
- F28C3/00—Other direct-contact heat-exchange apparatus
- F28C3/10—Other direct-contact heat-exchange apparatus one heat-exchange medium at least being a fluent solid, e.g. a particulate material
- F28C3/12—Other direct-contact heat-exchange apparatus one heat-exchange medium at least being a fluent solid, e.g. a particulate material the heat-exchange medium being a particulate material and a gas, vapour, or liquid
- F28C3/14—Other direct-contact heat-exchange apparatus one heat-exchange medium at least being a fluent solid, e.g. a particulate material the heat-exchange medium being a particulate material and a gas, vapour, or liquid the particulate material moving by gravity, e.g. down a tube
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D3/00—Charging; Discharging; Manipulation of charge
- F27D2003/0034—Means for moving, conveying, transporting the charge in the furnace or in the charging facilities
- F27D2003/0071—Use of a comminuting device, e.g. grinding mill
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D15/00—Handling or treating discharged material; Supports or receiving chambers therefor
- F27D15/02—Cooling
- F27D15/0286—Cooling in a vertical, e.g. annular, shaft
- F27D2015/0293—Cooling in a vertical, e.g. annular, shaft including rotating parts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D99/00—Subject matter not provided for in other groups of this subclass
- F27D2099/0085—Accessories
- F27D2099/0088—Apparatus to cut metal, e.g. logs, in billets
Definitions
- the invention relates to a method for cooling fired material, such as sinter or pellets, which is broken after leaving a continuously operating furnace system and cooled in a separate cooler with blown air, and to an apparatus for performing this method.
- the material leaves the furnace system after passing through an ignition zone and a heat treatment zone as a hot sinter cake or as a fired pellet layer and must subsequently be cooled in its own, also continuously working coolers, for which purpose it is broken and subjected to cooling air.
- a hot sinter cake or as a fired pellet layer The material leaves the furnace system after passing through an ignition zone and a heat treatment zone as a hot sinter cake or as a fired pellet layer and must subsequently be cooled in its own, also continuously working coolers, for which purpose it is broken and subjected to cooling air.
- coolers pressure ring coolers, cell coolers or stripping coolers
- the invention is therefore based on the object of specifying a cooling method of the type described at the outset, which allows the heat from the cooling to be virtually completely returned to the combustion process in an economical manner without any particular effort.
- a simple, practical device for performing this method is to be created.
- the cooling air is pressed in countercurrent through the material passing through the cooler and then the entire amount of air is fed to the heat treatment zone in the furnace system.
- Counter-current cooling allows the required amount of cooling air to be kept small in comparison to cross-flow cooling, and the cooling air is warmed up as it passes through the material to be cooled, practically up to the entry temperature of this material into the cooler, ie approximately to 500 to 600 ° C. Because of this high temperature, economic and complete utilization of the cooling air is possible and the entire cooling heat can be returned to the combustion process. This results in a saving of additional fuels for the heat treatment zone of the furnace system, which not only improves the efficiency of the entire system, but also simplifies environmental protection measures, since pollutants mainly come from the fuel.
- the fired material layer emerging from the furnace system is separated in height into a lower, hotter and an upper, cooler part, and only the hotter parts are passed on to the cooler.
- the fired material layer coming out of the furnace has a temperature of approx. 1100 ° C in its lower third, while its upper part, about two thirds of the layer height, has cooled almost to room temperature.
- the temperature transition does not occur continuously, but in narrow thickness ranges.
- the material layer can therefore be split into a hot and a cold part, whereby only the hot material part of approx. 900 ° C needs to be fed to the cooler and the cold part of approx. 30 ° C can be conveyed directly to cold screening.
- the cooling air is also heated to a higher temperature and is more economical to use.
- the amount of material to be cooled remains less.
- the air stream coming from the cooler is passed through a solids separator before the heat treatment zone.
- a device with a standing shaft cooler is used, which according to a further development of the invention is characterized in that the shaft cooler receives a known, transversely movable, ring-shaped sliding table, which cooperates with a pyramid or conical material slide, which is arranged coaxially to the shaft cooler at a distance above the drawer and with its tip below the mouth area of a filling shaft connected via a crusher or the like to the material outlet of the furnace system, and that Inlet opening for the cooling air is provided in the area of the sliding table and the cooler connects with a tapering upper part to a pipeline leading to the heat treatment zone of the furnace system.
- the material that is constantly introduced into the cooler via the filling shaft is divided into a ring by the interaction of the material slide and the sliding table and is continuously discharged.
- the cooling air flowing from the bottom up finds a large contact surface and can penetrate the material well. This results in a very even cooling of the material, because on the one hand the discharge speed for the material on the outer circumference of the push table is greater than on the inner circumference and on the other hand because of the cone of bulk the mass flow density of the cooling air on the outside is greater than in the center of the shaft cooler, so that the greater Throughput speed of the material with the greater cooling speed conforms due to the greater mass flow density of the air.
- the drawer which is driven eccentrically and oscillating, does not require any special design effort and is extremely wear-resistant. It allows the material to be discharged over a very large area, so that a high throughput can be achieved even with a low overall height of the cooler.
- the shaft cooler according to the invention has guide plates or the like which run around the sides in the area of the material chute and which, together with the material chute, form a material guide directed towards the drawer. This not only ensures trouble-free throughput of the material through the cooler, but also forces the cooling air blown between the hot and the already cooled material to flow entirely through the migrating material and provide the full cooling effect.
- Acceleration of the cooling can also be achieved in that, according to the invention, air passage openings are provided in the material chute, through which cooling air can also penetrate into the material sliding on the chute.
- a solid separator can advantageously be installed in the pipeline between the cooler and the heat treatment zone, with which this hot return material is separated from the cooling air .
- the cooler is preceded by a separating device for dividing the fired material into a hotter and a cooler part, the separating device being a conveyor leading to the cooler fill shaft shaft for the hotter and a leading shaft for cold screening or the like for the cooler parts. Since the material layer coming from the kiln has very different temperatures in height, such a separating device makes it possible to split off the cooler material, which no longer has to be fed to the cooler and can immediately be cold-screened. The remaining hotter part of the material is supplied to the filler shaft of the cooler and cooled in the cooler, whereby on the one hand hotter air gets from the cooler into the heat treatment zone and on the other hand only a smaller amount of material has to pass through the cooler.
- the separating device In order to achieve a simple separation of the material layer into a hotter and a cooler part, the separating device according to the invention consists of a wedge-shaped hammer tool, for example a pneumatic hammer, which strikes from the bottom up and a guide grate which brings the fired material from the furnace system into the effective range of the tool od. The like.
- the hot material coming from the furnace system is gripped by the guide grate, deflected accordingly in its path and fed to the tool from above, whereby it is split up.
- the wedge-shaped tool not only separates the material pieces, but also forms sliding surfaces for the separated material parts.
- the guide grate has end sections that are adjustable relative to the tool center plane. This adjustment of the grate relative to the direction of action of the tool makes it possible to vary the ratio of the split material parts and the temperature or amount of the portion to be supplied to the cooler or the cold sieve to influence.
- the material to be sintered is applied via a feed device 2 to a traveling grate 3, which leads it through an ignition zone 4 and a heat treatment zone 5.
- An induced draft fan 6 directs the cooler exhaust gases resulting from the sintering process to the outside, while the hotter exhaust gases are conveyed back into the ignition zone 4 via a fan 7.
- the finished sintered sinter cake 8 falls off from the traveling grate 3 in larger pieces after leaving the furnace system and comes into a sting crusher 9, where it is broken up into small pieces.
- the broken sinter cake then passes through a filling shaft 10 into a shaft cooler 11, which it leaves cooled by an emptying shaft 12 and a discharge chute 13 (arrows 8 ').
- cooling air is blown into the cooler 11 via a fan 14, where it penetrates the feed in counterflow.
- the heated cooling air is drawn off via a pipeline 15, fed to a solids separator 16, which frees it from the hot return material, and then fed entirely through line 17 to the heat treatment zone 5, so that practically all of the cooling heat can be reused in the sintering process.
- the shaft cooler 11 which can have a round or angular cross section, has an upwardly tapering upper part 11a, which is connected to the pipe line 15 connects, and a funnel-shaped lower part 11b, which merges into the drainage shaft 12.
- the shaft cooler 11 receives an annular push table 18, which is mounted so as to be movable transversely on a cross support 19 and can be set into eccentric or oscillating movement by means of a drive 20.
- a conical or pyramid-shaped material slide 21 which interacts with the sliding table 18, is fixedly mounted on the cross support 19.
- the tip of the material slide 21 lies below the mouth region 22 of the filling shaft 10, so that the broken sintered material 8a to be cooled is applied to the slide table 18 evenly distributed through the material slide 21 and evenly on the outside of the slide table and through the gap between the slide table movement
- Drawer and material slide is carried out on the inside of the drawer.
- Baffles 23 rotating on the side of the shaft cooler serve to regulate the material flow and to direct the cooling air through the material flow.
- the cooling air is then blown into the shaft cooler 11 by the blower 14 in the area of the push table 18, that is to say between the already cooled material and the still hot material, through inlet openings 14 ′ and penetrates the material to be cooled in counterflow, as indicated by the arrows 24.
- the filling shaft 10 is now long enough so that the sintered material 8a introduced is self-sealing and only minimal amounts of cooling air can escape through the cooling shaft.
- additional air passage openings 25 can be provided in the material chute 21, which is indicated in the exemplary embodiment according to FIG. 3.
- the cooler 11 can now be preceded by a separating device 26 which divides the sinter cake 8 into two parts in terms of height.
- the sinter cake is namely much hotter on its side resting on the traveling grate 3 than on its free surface, so that only the hotter portion needs to be fed to the cooler 11 through this separating device 26 and the cooler portion is immediately subjected to cold screening, for example can be.
- the separating device 26 now consists of a wedge-shaped pneumatic hammer 27 which strikes from below and which interacts with a guide grate 28.
- the sinter cake pieces 8b falling off the traveling grate are gripped by the guide grate 28 on both sides and brought into the effective area of the hammer 27, which divides them into a cooler portion 8b 'and a hotter portion 8b ", which portions are discharged via separate conveyor shafts 29a; 29b to be able to vary the ratio between the two parts, the guide grate 28 has adjustable end sections 30, as a result of which the action level of the hammer 27 can be adjusted relative to the height of the sinter cake pieces 8b and the part 8b "supplied to the cooler can be selected in terms of quantity and temperature.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Geochemistry & Mineralogy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Geology (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
Zum Abkühlen von gebranntem Material (8), wie Sinter oder Pellets, wird dieses nach dem Verlassen einer kontinuierlich arbeitenden Ofenanlage (1) gebrochen und in einem eigenen Kühler (11) mit eingeblasener Luft gekühlt. Zur Rückführung der Kühlwärme in den Brennprozeß wird dabei die Kühlluft im Gegenstrom durch das den Kühler (11) durchwandernde Material (8) gedrückt und anschließend die gesamte Luftmenge der Wärmebehandlungszone (5) in der Ofenanlage (1) zugeführt. Eine Vorrichtung zum Durchführen dieses Abkühlverfahrens weist einen stehenden Schachtkühler (11) auf, der einen querbewegbaren, ringförmigen Schubtisch (18) enthält. Der Schubtisch (18) wirkt mit einer pyramiden- oder kegelförmigen Materialrutsche (21) zusammen, die koaxial zum Schachtkühler (11) mit Abstand über dem Schubtisch (18) angeordnet ist und mit ihrer Spitze unterhalb des Mündungsbereiches (22) eines über einen Brecher (9) od. dgl. mit dem Materialausgang der Ofenanlage (1) in Verbindung stehenden Füllschachtes (10) liegt. Im Bereich des Schubtisches (18) ist die Eintrittsöffnung (14') für die Kühlluft vorgesehen und der Schachtkühler (11) schließt mit einem sich verjüngenden Oberteil (11a) an eine zur Wärmebehandlungszone (5) der Ofenanlage (1) führende Rohrleitung (15, 17) an.To cool fired material (8), such as sinter or pellets, it is broken after leaving a continuously operating furnace system (1) and cooled in a separate cooler (11) with blown air. To return the cooling heat to the combustion process, the cooling air is pressed in countercurrent through the material (8) passing through the cooler (11) and then the entire air quantity is fed to the heat treatment zone (5) in the furnace system (1). A device for carrying out this cooling process has a standing shaft cooler (11) which contains an annularly movable, annular push table (18). The push table (18) interacts with a pyramid or conical material slide (21) which is arranged coaxially to the shaft cooler (11) at a distance above the push table (18) and with its tip below the mouth area (22) one via a crusher ( 9) or the like. Filling shaft (10) connected to the material outlet of the furnace system (1). The inlet opening (14 ') for the cooling air is provided in the area of the push table (18) and the shaft cooler (11) connects with a tapered upper part (11a) to a pipe (15,) leading to the heat treatment zone (5) of the furnace system (1). 17).
Description
Die Erfindung bezieht sich auf ein Verfahren zum Abkühlen von gebranntem Material, wie Sinter oder Pellets, das nach dem Verlassen einer kontinuierlich arbeitenden Ofenanlage gebrochen und in einem eigenen Kühler mit eingeblasener Luft gekühlt wird, sowie auf eine Vorrichtung zum Durchführen dieses Verfahrens.The invention relates to a method for cooling fired material, such as sinter or pellets, which is broken after leaving a continuously operating furnace system and cooled in a separate cooler with blown air, and to an apparatus for performing this method.
Der zunehmende Bedarf an Rohstahl und Roheisen muß überwiegend durch den Bezug aufbereiteter, also feinkörnig anfallender Eisenerze gedeckt werden. Dabei hat sich für die Agglomeration dieser feinkörnigen Erze und Konzentrate einerseits das Sinterverfahren und anderseits das Pelletieren durchgesetzt und sowohl das Sintern, insbesondere das Sintern von Feinerzen, als auch das Brennen von Pellets wird heute fast ausschließlich in kontinuierlich arbeitenden Ofenanlagen, also Wanderrostanlagen, durchgeführt, da nur so die erforderliche hohe Durchsatzmenge zu erreichen ist. Das Material verläßt die Ofenanlage nach Durchgang einer Zündzone und einer Wärmebehandlungszone als heißer Sinterkuchen oder als gebrannte Pelletsschicht und muß nachfolgend in eigenen, ebenfalls kontinuierlich arbeitenden Kühlern gekühlt werden, wozu es gebrochen und mit Kühlluft beaufschlagt wird. Zur Kühlung dieses heißen, stückigen Materials werden nun bisher gerade Kühler, Druck-Ringkühler, Zellenkühler oder Abstreifkühler verwendet, die sich zwar in der Konstruktion unterscheiden, aber nach dem gleichen Verfahren arbeiten, und zwar wird das heiße Material in einer dünnen Schicht großflächig verteilt und im Querstrom gekühlt. Dadurch sind sehr große Kühlluftmengen notwendig, was zur Folge hat, daß die Temperatur der Luft nach der Kühlung nur etwa 200° C beträgt, wodurch eine Rückführung dieser Kühlwärme zur Wärmebehandlung des Materials in der Ofenanlage unwirtschaftlich ist und die Abluft meistens ohne weitere Nutzung in die Atmosphäre abgegeben wird. Ein weiterer Nachteil dieser Querstromkühlung liegt darin, daß das Material vor dem Eintritt in den Kühler gesiebt werden muß. Diese Warmabsiebung der feinen Teilchen ist erforderlich, um den Durchgang der Kühlluft durch das stückige Material nicht zu behindern.The increasing demand for crude steel and pig iron has to be met predominantly by procuring processed, ie fine-grained iron ores. For the agglomeration of these fine-grained ores and concentrates, on the one hand the sintering process and on the other hand the pelletizing has prevailed, and both the sintering, in particular the sintering of fine ores, and the firing of pellets is carried out almost exclusively in continuously operating furnace systems, i.e. traveling grate systems, because this is the only way to achieve the required high throughput. The material leaves the furnace system after passing through an ignition zone and a heat treatment zone as a hot sinter cake or as a fired pellet layer and must subsequently be cooled in its own, also continuously working coolers, for which purpose it is broken and subjected to cooling air. To cool this hot, lumpy Up to now, materials such as coolers, pressure ring coolers, cell coolers or stripping coolers have been used, which differ in their design, but work according to the same process, namely the hot material is distributed over a large area in a thin layer and cooled in cross flow. As a result, very large amounts of cooling air are necessary, which means that the temperature of the air after cooling is only about 200 ° C, which means that it is uneconomical to return this cooling heat for heat treatment of the material in the furnace system and the exhaust air is usually used without further use Atmosphere is released. Another disadvantage of this cross-flow cooling is that the material has to be screened before entering the cooler. This heat screening of the fine particles is necessary in order not to hinder the passage of the cooling air through the lumpy material.
Es wurde auch schon versucht, wenigstens einen Teil der Kühlwärme beim Brennprozeß wieder zu verwerten, in dem der Kühlluftstrom nach der Kühlung geteilt und nur der wärmere Teil, der etwa eine Temperatur von etwa 3400C erreicht, dem Brennprozeß zugeführt wird. Der Wärmeinhalt der restlichen Kühlluft geht hier jedoch verloren.Attempts have also already been made to recycle at least part of the cooling heat during the combustion process by dividing the cooling air flow after cooling and only the warmer part, which reaches a temperature of approximately 340 ° C., being fed to the combustion process. However, the heat content of the remaining cooling air is lost here.
Zum Brennen von Pellets ist es auch bereits bekannt, eine Wanderrostanlage mit einem Schachtofen zu kombinieren, wobei die Pellets im Schachtofen fertiggebrannt und gekühlt werden und die Kühlluft aus der Kühlzone direkt in die Brennzone des Schadtofens eindringt. Dies bringt einen ziemlichen Bauaufwand für den Schachtofen , mit sich, der noch dazu nur eine geringe Durchsatzleistung aufweist, so daß einer Bandanlage mindestens zwei, vorzugsweise aber drei bis sechs Schachtöfen zugeordnet werden müssen.To burn pellets, it is also already known to combine a traveling grate system with a shaft furnace, the pellets being burned and cooled in the shaft furnace and the cooling air penetrating directly from the cooling zone into the burning zone of the harmful furnace. This entails a considerable amount of construction work for the shaft furnace, which also only has a low throughput, so that a belt system must be assigned at least two, but preferably three to six, shaft furnaces.
Aus der Klinker-Industrie ist an sich auch schon ein reines Gegenstromkühlen bekannt, wozu ein unmittelbar an einen Drehofen anschließender Schachtkühler Verwendung findet. Dieser "chachtkühler ist allerdings mit einem Walzenrost ausgerüstet und daher für Sinter-oder Pelletieranlagen unbrauchbar. Eine Auslegung eines solchen Kühlers für höhere Leistungen, wie sie beispielsweise eben bei Sinteranlagen notwendig sind, würde zu einem nicht akzeptablen Verschleiß des Walzenrostes führen. Außerdem wird hiebei die Kühlluft im Kreislauf geführt und nicht für einen Brennprozeß weiterverwendet.From the clinker industry itself is already a pure countercurrent cooling is known, for which a shaft cooler directly adjoining a rotary kiln is used. However, this "shaft cooler is equipped with a roller grate and is therefore unusable for sintering or pelletizing plants. A design of such a cooler for higher capacities, as is required, for example, in sintering plants, would lead to unacceptable wear on the roller grate Cooling air circulated and not used for a burning process.
Der Erfindung liegt daher die Aufgabe zugrunde, ein Kühlverfahren der eingangs geschilderten Art anzugeben, das ohne besonderen Aufwand in wirtschaftlicher Weise eine praktisch vollständige Rückführung der Kühlwärme in den Brennprozeß ermöglicht. Außerdem soll eine einfache, zweckmäßige Vorrichtung zur Durchführung dieses Verfahrens geschaffen werden.The invention is therefore based on the object of specifying a cooling method of the type described at the outset, which allows the heat from the cooling to be virtually completely returned to the combustion process in an economical manner without any particular effort. In addition, a simple, practical device for performing this method is to be created.
Zur Lösung dieser Aufgabe wird erfindungsgemäß die Kühlluft im Gegenstrom durch das den Kühler durchwandernde Material gedrückt und anschließend die gesamte Luftmenge der Wärmebehandlungszone in der Ofenanlage zugeführt. Durch die Gegenstromkühlung kann die erforderliche Kühlluftmenge im Vergleich zur Querstromkühlung klein gehalten werden und die Kühlluft wird beim Durchgang durch das zu kühlende Material praktisch bis auf die Eintrittstemperatur dieses Materials in den Kühler, d. h. ca.auf 500 bis 600° C, aufgewärmt. Auf Grund dieser hohen Temperatur ist daher eine wirtschaftliche und vollständige Verwertung der Kühlluft möglich und die gesamte Kühlwärme kann dem Brennprozeß rückgeführt werden. Dadurch ergibt sich eine Einsparung von zusätzlichen Brennstoffen für die Wärmebehandlungszone der Ofenanlage, was nicht nur eine Verbesserung der Wirtschaftlichkeit der gesamten Anlage, sondern auch eine Erleichterung der Umweltschutzmaßnahmen mit sich bringt, da Schadstoffe ja hauptsächlich aus dem Brennstoff stammen. Da außerdem der gesamte Kühlluftstrom der Ofenanlage zugeführt wird, ist auch keine Entstaubung von aus dem Kühler ins Freie abzuführender Kühlluft erforderlich. Wird darüber hinaus die Strömungsgeschwindigkeit der im Gegenstrom geführten Kühlluft richtig ausgelegt, kann auf einfachste Weise gleichzeitig eine Windsichtung und damit die Abtrennung des heißen Feinanteiles am zu kühlenden Material vor der Kühlung durchgeführt werden, so daß sich eine separate Warmabsiebung nach dem Brechen des Materials und vor dem Kühler erübrigt.To achieve this object, the cooling air is pressed in countercurrent through the material passing through the cooler and then the entire amount of air is fed to the heat treatment zone in the furnace system. Counter-current cooling allows the required amount of cooling air to be kept small in comparison to cross-flow cooling, and the cooling air is warmed up as it passes through the material to be cooled, practically up to the entry temperature of this material into the cooler, ie approximately to 500 to 600 ° C. Because of this high temperature, economic and complete utilization of the cooling air is possible and the entire cooling heat can be returned to the combustion process. This results in a saving of additional fuels for the heat treatment zone of the furnace system, which not only improves the efficiency of the entire system, but also simplifies environmental protection measures, since pollutants mainly come from the fuel. In addition, since the entire cooling air flow is fed to the furnace system, no dedusting of cooling air to be discharged from the cooler into the open is required. In addition, if the flow rate of the countercurrent cooling air is correctly designed, a wind separation and thus the separation of the hot fines in the material to be cooled can be carried out before cooling in the simplest way, so that there is a separate hot screening after breaking the material and before the radiator is unnecessary.
In einer besonders günstigen Weiterentwicklung des erfindungsgemäßen Verfahrens wird die aus der Ofenanlage austretende gebrannte Materialschicht der Höhe nach in einen unteren heißeren und einen oberen kühleren Teil getrennt und nur die heißeren Teile werden zum Kühler weitergeleitet. Wie Messungen gezeigt haben, weist die aus dem Ofen kommende gebrannte Materialschicht in ihrem unteren Drittel eine Temperatur von ca.1100°C auf, während ihr oberer Teil, etwa zwei Drittel der Schichthöhe, fast bis auf Raumtemperatur abgekühlt ist. Dabei erfolgt der Temperaturübergang nicht stetig, sondern in engen Dickenbereichen. Die Materialschicht kann daher in einen heißen und einen kalten Teil aufgespalten werden, wobei nur der heiße Materialanteil von ca.900° C dem Kühler zugeführt zu werden braucht und der kalte Anteil von ca.30° C direkt zur Kaltsiebung weitergefördert werden kann. Da somit gleichmäßig höher temperiertes Material in den Kühler gelangt, wird auch die Kühlluft auf eine höhere Temperatur erwärmt und ist wirtschaftlicher verwertbar. Dazu kommt noch, daß die zu kühlende Materialmenge geringer bleibt.In a particularly favorable further development of the method according to the invention, the fired material layer emerging from the furnace system is separated in height into a lower, hotter and an upper, cooler part, and only the hotter parts are passed on to the cooler. As measurements have shown, the fired material layer coming out of the furnace has a temperature of approx. 1100 ° C in its lower third, while its upper part, about two thirds of the layer height, has cooled almost to room temperature. The temperature transition does not occur continuously, but in narrow thickness ranges. The material layer can therefore be split into a hot and a cold part, whereby only the hot material part of approx. 900 ° C needs to be fed to the cooler and the cold part of approx. 30 ° C can be conveyed directly to cold screening. As material with a higher temperature reaches the cooler, the cooling air is also heated to a higher temperature and is more economical to use. In addition, the amount of material to be cooled remains less.
Da beim Kühlen auch eine Windsichtung erfolgt, kann zur Abtrennung des von der Kühlluft mitgerissenen und heißen Rückgutes, das ist der heiße Feinanteil des zu kühlenden Materials, erfindungsgemäß der aus dem Kühler kommende Luftstrom vor der Wärmebehandlungszone durch einen Feststoffabscheider geführt werden.Since there is also a wind sifting during cooling, can for separating the hot and entrained goods, which are entrained by the cooling air, that is the hot fine fraction of the material to be cooled, according to the invention the air stream coming from the cooler is passed through a solids separator before the heat treatment zone.
Um auf einfache, allen Anforderungen gerecht werdende Weise das erfindungsgemäße Verfahren durchführen zu können, wird eine Vorrichtung mit einem stehenden Schachtkühler verwendet, die nach einer Weiterbildung der Erfindung dadurch gekennzeichnet ist, daß der Schachtkühler einen an sich bekannten, quer bewegbaren, ringförmigen Schubtisch aufnimmt, der mit einer pyramiden- oder kegelförmigen Materialrutsche zusammenwirkt, die koaxial zum Schachtkühler mit Abstand über dem Schubtisch angeordnet ist und mit ihrer Spitze unterhalb des Mündungsbereiches eines über einen Brecher od. dgl. mit dem Materialausgang der Ofenanlage in Verbindung stehenden Füllschachtes liegt, und daß die Eintrittsöffnung für die Kühlluft im Bereich des Schubtisches vorgesehen ist und der Kühler mit einem sich verjüngenden Oberteil an eine zur Wärmebehandlungszone der Ofenanlage führende Rohrleitung anschließt. Das ständig in den Kühler über den Füllschacht eingebrachte Material wird durch das Zusammenwirken von Materialrutsche und Schubtisch ringförmig aufgeteilt und stetig ausgetragen. Die von unten nach oben strömende Kühlluft findet eine große Angriffsfläche und kann das Material gut durchsetzen. Dabei ergibt sich eine sehr gleichmäßige Kühlung des Materials, da einerseits die Austragsgeschwindigkeit für das Material am Außenumfang des Schubtisches größer als am Innenumfang und anderseits wegen des Schüttkegels auch die Massenstromdichte der Kühlluft an der Außenseite größer als im Zentrum des Schachtkühlers ist, so daß die größere Durchsatzgeschwindigkeit des Materials mit der größeren Kühlgeschwindigkeit infolge größerer Massenstromdichte der Luft konform geht. Der Schubtisch, der exzentrisch und oszillierend angetrieben wird, bedarf keines besonderen Konstruktionsaufwandes und ist überaus verschleißfest. Er erlaubt eine sehr großflächige Austragung des Materials, so daß selbst bei niedriger Bauhöhe des Kühlers eine hohe Durchsatzleistung erreicht werden kann.In order to be able to carry out the method according to the invention in a simple manner that meets all requirements, a device with a standing shaft cooler is used, which according to a further development of the invention is characterized in that the shaft cooler receives a known, transversely movable, ring-shaped sliding table, which cooperates with a pyramid or conical material slide, which is arranged coaxially to the shaft cooler at a distance above the drawer and with its tip below the mouth area of a filling shaft connected via a crusher or the like to the material outlet of the furnace system, and that Inlet opening for the cooling air is provided in the area of the sliding table and the cooler connects with a tapering upper part to a pipeline leading to the heat treatment zone of the furnace system. The material that is constantly introduced into the cooler via the filling shaft is divided into a ring by the interaction of the material slide and the sliding table and is continuously discharged. The cooling air flowing from the bottom up finds a large contact surface and can penetrate the material well. This results in a very even cooling of the material, because on the one hand the discharge speed for the material on the outer circumference of the push table is greater than on the inner circumference and on the other hand because of the cone of bulk the mass flow density of the cooling air on the outside is greater than in the center of the shaft cooler, so that the greater Throughput speed of the material with the greater cooling speed conforms due to the greater mass flow density of the air. The drawer, which is driven eccentrically and oscillating, does not require any special design effort and is extremely wear-resistant. It allows the material to be discharged over a very large area, so that a high throughput can be achieved even with a low overall height of the cooler.
Günstig ist es weiters, wenn der Schachtkühler erfindungsgemäß im Bereich der Materialrutsche seitlich umlaufende Leitbleche od. dgl. aufweist, die zusammen mit der Materialrutsche eine auf den Schubtisch gerichtete Materialführung bilden. Dadurch wird nicht nur ein störungsfreier Durchsatz des Materials durch den Kühler gesichert, sondern auch die zwischen dem heißen und dem bereits gekühlten Material eingeblasene Kühlluft gezwungen, zur Gänze durch das abwandernde Material zu strömen und die volle Kühlwirkung zu erbringen.It is also advantageous if the shaft cooler according to the invention has guide plates or the like which run around the sides in the area of the material chute and which, together with the material chute, form a material guide directed towards the drawer. This not only ensures trouble-free throughput of the material through the cooler, but also forces the cooling air blown between the hot and the already cooled material to flow entirely through the migrating material and provide the full cooling effect.
Eine Beschleunigung der Abkühlung kann auch dadurch erreicht werden, daß erfindungsgemäß in der Materialrutsche Luftdurchtrittsöffnungen vorgesehen sind, durch die auch hier Kühlluft in das an der Rutsche abgleitende Material eindringen kann.Acceleration of the cooling can also be achieved in that, according to the invention, air passage openings are provided in the material chute, through which cooling air can also penetrate into the material sliding on the chute.
Da das in den Kühler eingebrachte Material an seiner Oberfläche durch die entweichende Kühlluft gleichzeitig luftgesichtet wird und somit im Kühlluftstrom heißes Rückgut enthalten ist, kann vorteilhafterweise in die Rohrleitung zwischen Kühler und Wärmebehandlungszone ein Feststoffabscheider eingebaut sein, mit dem dieses heiße Rückgut von der Kühlluft getrennt wird.Since the material introduced into the cooler is air-sifted on the surface by the escaping cooling air and thus hot return material is contained in the cooling air flow, a solid separator can advantageously be installed in the pipeline between the cooler and the heat treatment zone, with which this hot return material is separated from the cooling air .
In einer besonders vorteilhaften Ausgestaltung der Erfindung ist dem Kühler eine Trenneinrichtung zum Teilen des gebrannten Materials in einen heißeren und einen kühleren Teil vorgeordnet, wobei die Trenneinrichtung einen zum Füllschacht des Kühlers führenden Förderschacht für die heißeren und einen zur Kaltabsiebung od. dgl. führenden Förderschacht für die kühleren Teile aufweist. Da die aus dem Brennofen kommende Materialschicht der Höhe nach sehr unterschiedliche Temperaturen aufweist, ist durch eine solche Trenneinrichtung eine Abspaltung des kühleren Materials möglich, das nicht mehr dem Kühler zugeführt werden muß und gleich zur Kaltsiebung kommen kann. Der verbleibende heißere Anteil des Materials wird dem Füllschacht des Kühlers zugeliefert und im Kühler gekühlt, wodurch einerseits heißere Luft aus dem Kühler in die Wärmebehandlungszone gelangt und anderseits nur eine geringere Materialmenge durch den Kühler wandern muß.In a particularly advantageous embodiment of the invention, the cooler is preceded by a separating device for dividing the fired material into a hotter and a cooler part, the separating device being a conveyor leading to the cooler fill shaft shaft for the hotter and a leading shaft for cold screening or the like for the cooler parts. Since the material layer coming from the kiln has very different temperatures in height, such a separating device makes it possible to split off the cooler material, which no longer has to be fed to the cooler and can immediately be cold-screened. The remaining hotter part of the material is supplied to the filler shaft of the cooler and cooled in the cooler, whereby on the one hand hotter air gets from the cooler into the heat treatment zone and on the other hand only a smaller amount of material has to pass through the cooler.
Um auf einfache Weise eine Trennung der Materialschicht in einen heißeren und einen kühleren Teil zu erreichen, besteht erfindungsgemäß die Trenneinrichtung aus einem von unten nach oben schlagenden keilförmigen Hammerwerkzeug, beispielsweise Preßlufthammer, und einem das gebrannte Material von der Ofenanlage in den Wirkungsbereich des Werkzeuges bringenden Führungsrost od. dgl. Das von der Ofenanlage kommende heiße Material wird so vom Führungsrost erfaßt, in seiner Bahn entsprechend umgelenkt und von oben dem Werkzeug zugeführt, wodurch es aufgespaltet wird. Das keilförmige Werkzeug trennt dabei nicht nur die Materialstükke, sondern bildet gleichzeitig auch Abgleitflächen für die abgespaltenen Materialteile.In order to achieve a simple separation of the material layer into a hotter and a cooler part, the separating device according to the invention consists of a wedge-shaped hammer tool, for example a pneumatic hammer, which strikes from the bottom up and a guide grate which brings the fired material from the furnace system into the effective range of the tool od. The like. The hot material coming from the furnace system is gripped by the guide grate, deflected accordingly in its path and fed to the tool from above, whereby it is split up. The wedge-shaped tool not only separates the material pieces, but also forms sliding surfaces for the separated material parts.
Vorteilhaft ist es dabei, wenn der Führungsrost gegenüber der Werkzeugmittelebene verstellbare Endabschnitte aufweist. Durch diese Verstellung des Rostes gegenüber der Wirkrichtung des Werkzeuges ist es möglich, das Verhältnis der aufgespaltenen Materialteile zu variieren und die Temperatur bzw. Menge des dem Kühler bzw. der Kaltsiebung zukommenden Anteiles zu beeinflussen.It is advantageous if the guide grate has end sections that are adjustable relative to the tool center plane. This adjustment of the grate relative to the direction of action of the tool makes it possible to vary the ratio of the split material parts and the temperature or amount of the portion to be supplied to the cooler or the cold sieve to influence.
In der Zeichnung ist der Erfindungsgegenstand rein schematisch dargestellt, und zwar zeigen
- Eig. 1 die gesamte Sinteranlage,
- Fig. 2 und 3 zwei Ausführungsbeispiele eines erfindungsgemäßen Kühlers und
- Fig. 4 eine erfindungsgemäße Trenneinrichtung.
- Own 1 the entire sintering plant,
- 2 and 3 two embodiments of a cooler according to the invention and
- Fig. 4 shows a separation device according to the invention.
In einer kontinuierlich arbeitenden Ofenanlage 1 zum Sintern von Feinerzen od. dgl. wird das zu sinternde Material über eine Aufgabevorrichtung 2 auf einen Wanderrost 3 aufgebracht, der es durch eine Zündzone 4 und eine Wärmebehandlungszone 5 führt. Ein Saugzuggebläse 6 leitet die beim Sinterprozeß anfallenden kühleren Abgase ins Freie, während die heißeren Abgase über ein Gebläse 7 wieder zurück in die Zündzone 4 gefördert werden. Der fertig gesinterte Sinterkuchen 8 fällt nach Verlassen der Ofenanlage vom Wanderrost 3 in größeren Stücken ab und kommt in einen Stachelbrecher 9, wo er kleinstückig gebrochen wird. Der gebrochene Sinterkuchen gelangt dann über einen Füllschacht 10 in einen Schachtkühler 11, den er durch einen Entleerungsschacht 12 und eine Austragrinne 13 abgekühlt verläßt (Pfeile 8'). Zur Kühlung des gesinterten Materials wird über ein Gebläse 14 Kühlluft in den Kühler 11 geblasen, wo sie die Beschickung im Gegenstrom durchdringt. Die erwärmte Kühlluft wird nach oben über eine Rohrleitung 15 abgezogen, einem Feststoffabscheider 16 zugeführt, der sie vom heißen Rückgut befreit, und anschließend zur Gänze durch die Leitung 17 der Wärmebehandlungszone 5 zugeführt, so daß praktisch die gesamte Kühlwärme beim Sinterprozeß wieder verwertbar ist.In a continuously operating
Der Schachtkühler 11, der einen runden oder auch eckigen Querschnitt aufweisen kann, besitzt einen sich nach oben verjüngenden Oberteil 11a, der an die Rohrleitung 15anschließt, und einen trichterförmigen Unterteil 11b, der in den Entleerungsschacht 12 übergeht. Der Schachtkühler 11 nimmt einen ringförmigen Schubtisch 18 auf, der auf einem Kreuzträger 19 quer bewegbar lagert und mittels eines Antriebes 20 in exzentrische oder oszillierende Bewegung versetzt werden kann. Mit Abstand über dem Schubtisch 18 ist am Kreuzträger 19 eine kegel- oder pyramidenförmige Materialrutsche 21 fest montiert, die mit dem Schubtisch 18 zusammenwirkt. Die Spitze der Materialrutsche 21 liegt unterhalb des Mündungsbereiches 22 des Füllschachtes 10, so daß das zu kühlende gebrochene Sintermaterial 8a durch die Materialrutsche 21 gleichmäßig verteilt auf den Schubtisch 18 aufgebracht und durch die Schubtischbewegung gleichmäßig sowohl an der Außenseite des Schubtisches als auch durch den Spalt zwischen Schubtisch und Materialrutsche an der Innenseite des Schubtisches ausgetragen wird. Seitlich am Schachtkühler umlaufende Leitbleche 23 dienen zur Regulierung des Materialflusses sowie zur Leitung der Kühlluft durch den Materialstrom. Die Kühlluft wird nun durch das Gebläse 14 im Bereich des Schubtisches 18, also zwischen dem bereits gekühlten Material und dem noch heißen Material durch Eintrittsöffnungen 14' in den Schachtkühler 11 eingeblasen und durchdringt das zu kühlende Material im Gegenstrom, wie durch die Pfeile 24 angedeutet. Der Füllschacht 10 ist nun genügend lang ausgebildet, so daß das eingebrachte Sintermaterial 8a selbstdichtend wirkt und nur minimale Kühlluftmengen durch den Kühlschacht entweichen können. Ähnliches gilt beim Entleerungsschacht 12, wenn dieser genügend lang ist, doch kann bei geringer Bauhöhe durchaus auch ein bekanntes Doppelklappensystem zur Abdichtung verwendet werden.The
Um eine beschleunigte Abkühlung zu erreichen, können in der Materialrutsche 21 zusätzliche Luftdurchtrittsöffnungen 25 vorgesehen sein, was beim Ausführungsbeispiel nach Fig. 3 angedeutet ist.In order to achieve accelerated cooling, additional
Wie in Fig. 4 veranschaulicht, kann nun dem Kühler 11 eine Trenneinrichtung 26 vorgeordnet sein, die den Sinterkuchen 8 der Höhe nach in zwei Teile teilt. Wie Messungen ergaben, ist der Sinterkuchen nämlich an seiner auf dem Wanderrost 3 aufliegenden Seite wesentlich heißer als auf seiner freien Oberfläche, so daß durch diese Trenneinrichtung 26 dem Kühler 11 nur der heißere Anteil zugeführt zu werden braucht und der kühlere Anteil gleich beispielsweise einer Kaltsiebung unterzogen werden kann. Die Trenneinrichtung 26 besteht nun aus einem von unten nach oben schlagenden keilförmigen Preßlufthammer 27, der mit einem Führungsrost 28 zusammenwirkt. Die vom Wanderrost abfallenden Sinterkuchenstücke 8b werden durch den Führungsrost 28 beidseitig erfaßt und in den Wirkungsbereich des Hammers 27 gebracht, der sie in einen kühleren Anteil 8b' und einen heißeren Anteil 8b" aufteilt, welche Anteile über eigene Förderschächte 29a; 29b abgeführt werden. Um das Verhältnis zwischen den beiden Anteilen variieren zu können, besitzt/der Führungsrost 28 verstellbare Endabschnitte 30, wodurch die Wirkungsebene des Hammers 27 relativ zur Höhe der Sinterkuchenstücke 8b eingestellt werden kann und der dem Kühler zugeförderte Anteil 8b" mengen- und temperaturmäßig wählbar ist.As illustrated in FIG. 4, the cooler 11 can now be preceded by a separating
Claims (10)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT660/79 | 1979-01-30 | ||
AT66079A AT358617B (en) | 1979-01-30 | 1979-01-30 | METHOD AND DEVICE FOR COOLING BURNED MATERIAL, LIKE SINTERS OR PELLETS |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0013871A1 true EP0013871A1 (en) | 1980-08-06 |
EP0013871B1 EP0013871B1 (en) | 1983-11-09 |
Family
ID=3496456
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP79890059A Expired EP0013871B1 (en) | 1979-01-30 | 1979-12-12 | Process and apparatus for cooling burnt material such as sinters or pellets |
Country Status (5)
Country | Link |
---|---|
US (1) | US4277235A (en) |
EP (1) | EP0013871B1 (en) |
JP (1) | JPS55104441A (en) |
AT (1) | AT358617B (en) |
DE (1) | DE2966401D1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2488985A1 (en) * | 1980-08-21 | 1982-02-26 | Koppers Co Inc | METHOD AND APPARATUS FOR COOLING PELLETS |
EP0436140A1 (en) * | 1989-12-14 | 1991-07-10 | Linde Aktiengesellschaft | Process and apparatus for cooling a particulate material |
EP0522220A1 (en) * | 1991-07-09 | 1993-01-13 | Consergra, S.A. | A machine for cooling animal fodder and similar material |
EP3096101A1 (en) * | 2015-05-20 | 2016-11-23 | Primetals Technologies Austria GmbH | Cooling device for cooling bulk material |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61238885A (en) * | 1985-04-16 | 1986-10-24 | Maruzen Sekiyu Kagaku Kk | Method of refining raw material used for production of carbon product |
DE102016102843A1 (en) * | 2016-02-18 | 2017-08-24 | Aktien-Gesellschaft der Dillinger Hüttenwerke | Apparatus and method for sintering ore, in particular iron ore, containing mix |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1039234B (en) * | 1955-05-23 | 1958-09-18 | Metallgesellschaft Ag | Process for increasing the performance of pelletizing ores |
DE1097346B (en) * | 1956-02-10 | 1961-01-12 | Smidth & Co As F L | Method and device for cooling lumpy or grainy material coming from an oven, e.g. Cement clinker |
DE1115930B (en) * | 1957-01-29 | 1961-10-26 | Metallgesellschaft Ag | Process for cooling hot material of different grain sizes, preferably hot ore sinter |
DE1558609A1 (en) * | 1967-04-08 | 1970-06-11 | Walther & Cie Ag | Cooling device for rotary furnaces for firing or sintering unshaped or coarse masses |
FR2190257A5 (en) * | 1972-06-19 | 1974-01-25 | Kloeckner Humboldt Deutz Ag | |
DE2238991A1 (en) * | 1972-08-08 | 1974-02-28 | Polysius Ag | Shaft cooler with multiple air inlets - at different heights in wall has outlets opposite inlets and general contraflow of air |
DE2745924A1 (en) * | 1977-02-14 | 1978-08-17 | Voest Ag | Shaft furnace for treating solid materials - using oscillated baseplate to facilitate discharge from base of shaft (OE 15.12.77) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3155378A (en) * | 1960-12-01 | 1964-11-03 | Knapsack Ag | Apparatus for conducting sintered material from a sintering grate to a cooling grate |
GB1168713A (en) * | 1967-04-24 | 1969-10-29 | Head Wrightson & Co Ltd | Improvements in Moving Grate Furnaces. |
US3909189A (en) * | 1971-08-25 | 1975-09-30 | Mcdowell Wellman Eng Co | Process for conditioning sinter draft for electrostatic precipitation of particulate material therefrom |
JPS4913221A (en) * | 1972-05-19 | 1974-02-05 |
-
1979
- 1979-01-30 AT AT66079A patent/AT358617B/en not_active IP Right Cessation
- 1979-12-12 DE DE7979890059T patent/DE2966401D1/en not_active Expired
- 1979-12-12 EP EP79890059A patent/EP0013871B1/en not_active Expired
-
1980
- 1980-01-11 US US06/111,213 patent/US4277235A/en not_active Expired - Lifetime
- 1980-01-30 JP JP885580A patent/JPS55104441A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1039234B (en) * | 1955-05-23 | 1958-09-18 | Metallgesellschaft Ag | Process for increasing the performance of pelletizing ores |
DE1097346B (en) * | 1956-02-10 | 1961-01-12 | Smidth & Co As F L | Method and device for cooling lumpy or grainy material coming from an oven, e.g. Cement clinker |
DE1115930B (en) * | 1957-01-29 | 1961-10-26 | Metallgesellschaft Ag | Process for cooling hot material of different grain sizes, preferably hot ore sinter |
DE1558609A1 (en) * | 1967-04-08 | 1970-06-11 | Walther & Cie Ag | Cooling device for rotary furnaces for firing or sintering unshaped or coarse masses |
FR2190257A5 (en) * | 1972-06-19 | 1974-01-25 | Kloeckner Humboldt Deutz Ag | |
DE2238991A1 (en) * | 1972-08-08 | 1974-02-28 | Polysius Ag | Shaft cooler with multiple air inlets - at different heights in wall has outlets opposite inlets and general contraflow of air |
DE2745924A1 (en) * | 1977-02-14 | 1978-08-17 | Voest Ag | Shaft furnace for treating solid materials - using oscillated baseplate to facilitate discharge from base of shaft (OE 15.12.77) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2488985A1 (en) * | 1980-08-21 | 1982-02-26 | Koppers Co Inc | METHOD AND APPARATUS FOR COOLING PELLETS |
EP0436140A1 (en) * | 1989-12-14 | 1991-07-10 | Linde Aktiengesellschaft | Process and apparatus for cooling a particulate material |
EP0522220A1 (en) * | 1991-07-09 | 1993-01-13 | Consergra, S.A. | A machine for cooling animal fodder and similar material |
EP3096101A1 (en) * | 2015-05-20 | 2016-11-23 | Primetals Technologies Austria GmbH | Cooling device for cooling bulk material |
WO2016184682A1 (en) * | 2015-05-20 | 2016-11-24 | Primetals Technologies Austria GmbH | Cooling device for cooling bulk goods |
CN106168448A (en) * | 2015-05-20 | 2016-11-30 | 首要金属科技奥地利有限责任公司 | For the chiller that discrete material is cooled down |
RU2707773C2 (en) * | 2015-05-20 | 2019-11-29 | Прайметалз Текнолоджиз Аустриа ГмбХ | Cooling device for loose material cooling |
Also Published As
Publication number | Publication date |
---|---|
DE2966401D1 (en) | 1983-12-15 |
JPS55104441A (en) | 1980-08-09 |
ATA66079A (en) | 1980-02-15 |
AT358617B (en) | 1980-09-25 |
EP0013871B1 (en) | 1983-11-09 |
US4277235A (en) | 1981-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE824854C (en) | Method and device for the heat treatment of small molded bodies made of ore and mineral dust | |
DE2343339A1 (en) | CLINKER COOLING DEVICE | |
DE2712238A1 (en) | METHOD AND DEVICE FOR MULTI-STAGE BURNING OF CEMENT CLINKERS | |
DE3039854C2 (en) | ||
DE2307165A1 (en) | METHOD AND DEVICE FOR DIRECT COOLING OF FINE-GRAIN TO COARSE-GRAIN PRODUCTS USING COOLING AIR | |
DE1433342A1 (en) | Device for the separation of discharge mixtures from rotary tube furnaces | |
DE2724654A1 (en) | PROCESS AND EQUIPMENT FOR BURNING FINE-GRAINED TO DUST-GRAINED GOODS, IN PARTICULAR RAW CEMENT FLOUR | |
DE2737533A1 (en) | DEVICE FOR COOLING PARTICULAR MATERIAL | |
DE3407154C2 (en) | Method and device for producing cement | |
DE3784814T3 (en) | Device for roasting fine-grained substances. | |
EP0013871A1 (en) | Process and apparatus for cooling burnt material such as sinters or pellets | |
DE2602285C2 (en) | Process for sintering fine-grained material, in particular iron ore | |
EP1244818B1 (en) | Method and installation for reducing ore fines in a multi-stage suspension gas stream using a cyclone separator | |
DE3110156C2 (en) | Device for drying and / or preheating fine-grained and / or dust-like solids | |
DE2846584A1 (en) | METHOD AND DEVICE FOR THE HEAT TREATMENT OF FINE GRAIN GOODS | |
EP2136937B1 (en) | Method and device for heat treatment including method and device for separating or classifying material to be fed | |
EP1052231A1 (en) | Method and apparatus for the thermal treatment of raw meal | |
DE2606272C3 (en) | Process for removing the moisture and fat content of a rolling mill sludge | |
DE3036957C2 (en) | ||
EP1925679B1 (en) | Method for calcinating solids or slurry | |
DE3633588A1 (en) | Process and equipment for producing cement clinker | |
DE3541677A1 (en) | Process and tubular cooler for cooling thermally treated mineral raw materials | |
DE4304458A1 (en) | Device for cooling hot, granular material | |
DE1796018A1 (en) | Method and device for the production of cement clinker | |
DE589715C (en) | Process for the pretreatment of kiln products using rotary kiln exhaust gases |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): DE FR GB |
|
17P | Request for examination filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): DE FR GB |
|
REF | Corresponds to: |
Ref document number: 2966401 Country of ref document: DE Date of ref document: 19831215 |
|
ET | Fr: translation filed | ||
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
26 | Opposition filed |
Opponent name: KRUPP - KOPPERS GMBH Effective date: 19840724 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19841119 Year of fee payment: 6 Ref country code: DE Payment date: 19841119 Year of fee payment: 6 |
|
RDAG | Patent revoked |
Free format text: ORIGINAL CODE: 0009271 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT REVOKED |
|
27W | Patent revoked |
Effective date: 19850410 |
|
GBPR | Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state | ||
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |