[go: up one dir, main page]

EP0001946B1 - Reactive gases mixing apparatus for oxygen-reforming reactors - Google Patents

Reactive gases mixing apparatus for oxygen-reforming reactors Download PDF

Info

Publication number
EP0001946B1
EP0001946B1 EP78400145A EP78400145A EP0001946B1 EP 0001946 B1 EP0001946 B1 EP 0001946B1 EP 78400145 A EP78400145 A EP 78400145A EP 78400145 A EP78400145 A EP 78400145A EP 0001946 B1 EP0001946 B1 EP 0001946B1
Authority
EP
European Patent Office
Prior art keywords
oxygen rich
gas
rich gas
process gas
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP78400145A
Other languages
German (de)
French (fr)
Other versions
EP0001946A1 (en
Inventor
David Léon Banquy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0001946A1 publication Critical patent/EP0001946A1/en
Application granted granted Critical
Publication of EP0001946B1 publication Critical patent/EP0001946B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/10Mixing by creating a vortex flow, e.g. by tangential introduction of flow components

Definitions

  • the present invention relates to an apparatus having for object to very quickly mix the reaction gases entering an oxygen reforming reactor intended for the production of synthesis gas.
  • a process gas is subjected to partial oxidation by reaction with an oxidizing gas, in a reactor coated with an internal refractory, provided with a bed of catalyst based on nickel, and operating under practically adiabatic conditions.
  • Said process gas is composed of one or more hydrocarbons, and optionally water vapor, hydrogen, oxides of carbon and nitrogen.
  • Said oxidizing gas contains a high content of free oxygen, and optionally nitrogen, water vapor and carbon dioxide.
  • the object of the present invention is precisely to respond to this need, by designing a gas mixing device making it possible to very quickly obtain a quasi-homogeneous mixture before the oxygen has time to react in a manner significant.
  • the mixing device is designed essentially for a liquid raw material, which is injected into the reactor in the form of a thin film receiving on both sides at high speed jets of oxygen at a certain angle. .
  • This device is particularly suitable for dispersing the liquid into fine droplets; however, this does not allow a homogeneous gas mixture to be obtained quickly, since the oxygen jets are not surrounded by gas at high speed.
  • the mixing devices designed for the partial oxidation processes cannot be suitable for the reforming with oxygen of a gaseous hydrocarbon raw material, under severe conditions as described above, since the risk of carbon particle formation must be completely eliminated.
  • reaction gas mixing device such as that described in US Pat. No. 3,998,934 for producing carbon black by oxygen reforming hydrocarbons, for example by injecting oxygen into the central pipes. 13-14-15 of said apparatus, and the process gas through the tangential side pipes 16.
  • the process gas molecules which come into contact with those of oxygen furthest from the axis react first to produce a mixture at high temperature, as a result of the exothermicity of the reaction; then, the oxygen molecules a little closer to the axis react with said mixture to produce a gaseous mixture at an even higher temperature, and so on to the axis of the apparatus where the temperature will be maximum.
  • a central zone is thus formed having a temperature very much higher than that of the process gas on the periphery, which does not react at the start With oxygen, but receives by radiation the heat from said central zone and then undergoes thermal cracking leading to training of carbon particles.
  • a large part of the oxygen molecules come into contact with gas which has already reacted and which is therefore brought to a high temperature, which creates an excessive temperature in the central zone and causes the formation of carbon particles which deposit on the catalyst and make the process unusable.
  • the apparatus of US Pat. No. 3,998,934 cannot therefore be suitable either for mixing the two reaction gases entering an oxygen reforming reactor where the reaction begins instantly on contact with the two gases.
  • the fundamental idea in the design of the apparatus which is the subject of the present invention is that the section for the passage of the oxidizing gas, at the precise place where it begins to come into contact with the process gas, must imprint on the flow of oxygen a form of fine mesh or thin layer, so that the oxygen molecules have very little way to go before being dispersed in the other gas. Given the high flow rate of oxidizing gas used, this implies that it is injected into the process gas through a multitude of parallel channels, each ending in an outlet orifice, at least one of the dimensions is very small.
  • This outlet orifice may have the form of a slit, continuous or discontinuous, the width of which is less than 20 mm, and preferably less than 8 mm; said orifice can also have a circular or elliptical shape, the smallest of the diameters of which must be less than 20 mm, and preferably less than 8 mm.
  • the latter is driven by a violent heficoidal movement around said channels, this movement being preferably obtained by a tangential injection of this gas onto the interior walls of the appliance.
  • the mixing apparatus Given the high temperatures and pressures in the oxygen reforming reactor, and the need to place the mixing apparatus close to the catalyst, this and that are both placed in the same metal container, coated internally with a layer of bricks or refractory cement.
  • the housing of the catalyst requires a large diameter, while the mixing apparatus requires a fairly small space, the volume of which is on the order of 3 to 9 percent of that of the catalyst.
  • the apparatus which is the subject of the present invention thus consists of two parts: on the one hand an envelope coated internally with refractory, and inside which the process gas is injected, and on the other hand a distributor and a multitude parallel channels in which the oxidizing gas circulates, and which are housed inside said envelope.
  • the shape of the envelope can be either cylindrical, with a circular or elliptical section, or frustoconical.
  • the connection with the catalyst bed is generally made by a frustoconical section.
  • Fig. 1 shows the envelope in its preferred form: the metallic and cylindrical wall 1 is extended downwards by a frustoconical section 3 for the connection with the reforming reactor carrying the catalyst, and upwards by a spherical bottom 2 through which pass it. pipe 5 from which the oxidizing gas arrives.
  • the process gas inlet pipes have not been shown in FIG. 1 for easier reading; nevertheless their axes are at level A-A ', and they are arranged so as to obtain a tangential flow of the gas along the internal walls of the refractory, as indicated in FIGS. 2 and Fig. 3 which represent sections according to A-A '.
  • the oxidizing gas enters through the pipe 5, which leads to a distributor 6 having a cone-shaped ice, but which may have other forms of revolution around the axis of the envelope such as: torus, sphere or saucer.
  • the central distributor 6 supplies all the pipes parallel to the axis of the envelope and which are welded, and arranged regularly over the entire section; the diameter of the distributor 6 is substantially less than the internal diameter of the refractory lining 4, in order to leave space for good circulation of the process gas.
  • the distributor and channel assembly is made of a stainless and refractory alloy, and is held in position by all appropriate mechanical means.
  • each channel is composed of a pipe 7 of small diameter, that is less than 80 mm, the end of which ends in a fan 8 with double wall: the oxidizing gas exits through the continuous or discontinuous slot formed at the edge of the 'fan by the two walls, and whose width is less than 20 mm, and preferably less than 8 mm.
  • the plane of each fan is oriented parallel to the wall closest to the envelope, or makes a slight angle with it, for example from 10 to 30 °, in the direction facilitating the flow of the process gas.
  • Only three channels have been shown in FIG. 1, to facilitate reading, but FIG. 2 shows a section on A-A 'with all of the channels shown; in this last figure are shown the inlet pipes 9 for the process gas, tangentially to the walls.
  • the end of the channels or tubes is in the form of a star or cross with double walls, which is obtained by crushing on four or more sides the walls of the tube with pliers. Two or more crossed slits are thus obtained, the width of each being less than 20 mm, and preferably less than 8 mm.
  • the representation described above is particularly suitable for small or medium capacities, for which a limited number of parallel tubes can be used, and each having a fairly small diameter.
  • flow of oxidizing gas becomes very large, it is necessary either to increase the number of tubes, or to increase their diameter, or both simultaneously; all these measures have the effect of counteracting the helical movement of the process gas and of converting it very quickly into a movement parallel to the tubes.
  • This drawback can be overcome, at least partially, by giving certain tubes, especially those located on the periphery, a helical shape oriented in the same direction as the process gas.
  • Fig. 3 shows, in section along A-A 'of FIG. 1, a second representation of the present invention, designed to avoid the drawback mentioned above, and therefore perfectly suited to very large capacities.
  • Each oxidant gas channel 10 has a double-walled crescent-shaped section, oriented so as to facilitate the circulation of process gas between the channels.
  • the slot through which the oxidizing gas exits has a width of less than 20 mm, and preferably less than 8 mm, and is obtained by bringing the two walls of the crescent closer together, which gives it the same shape as the channel. himself.
  • each film of oxidizing gas, as it leaves the slot is sandwiched between two layers of process gas, which disperses it very quickly therein.
  • the smallest dimension of the outlet opening of the oxygen channels, or the width of the slot therein will essentially depend on the degree of severity of the oxygen reforming reaction, i.e. the rate of reaction of oxygen with the process gas in the gas phase, and the risk of carbon black formation or excessive temperatures, which would result from high reaction speed in a very heterogeneous gas mixture. Consequently, the width of said slit, or the smallest dimension of said orifice, will be all the more reduced the greater the reaction speed, or the greater the risk of black formation. In the most severe cases, this slot width or this smallest dimension must be less than 3 mm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

La présente invention se rapporte à un appareil ayant pour objet de mélanger très rapidement les gaz réactionnels entrant dans un réacteur de réformage à l'oxygène destiné à la production de gaz de synthèse.The present invention relates to an apparatus having for object to very quickly mix the reaction gases entering an oxygen reforming reactor intended for the production of synthesis gas.

Dans la technique du réformage à l'oxygène, on fait subir à un gaz de procédé une oxydation partielle par réaction avec un gaz oxydant, dans un réacteur revêtu intérieurement de réfractaire, garni d'un lit de catalyseur à base de nickel, et fonctionnant dans des conditions pratiquement adiabatiques. Ledit gaz de procédé est composé d'un ou de plusieurs hydrocarbures, et éventuellement de vapeur d'eau, d'hydrogène, des oxydes du carbone et d'azote. Ledit gaz oxydant contient une teneur élevée en oxygène libre, et éventuellement de l'azote, de la vapeur d'eau et du gaz carbonique. Dans la pratique industrielle, on trouve avantageux de préchauffer les gaz réactionnels autant que possible avant de les injecter dans le réacteur, afin d'économiser la consommation d'oxygène et d'améliorer ainsi le rendement général de la réaction.In the oxygen reforming technique, a process gas is subjected to partial oxidation by reaction with an oxidizing gas, in a reactor coated with an internal refractory, provided with a bed of catalyst based on nickel, and operating under practically adiabatic conditions. Said process gas is composed of one or more hydrocarbons, and optionally water vapor, hydrogen, oxides of carbon and nitrogen. Said oxidizing gas contains a high content of free oxygen, and optionally nitrogen, water vapor and carbon dioxide. In industrial practice, it is advantageous to preheat the reaction gases as much as possible before injecting them into the reactor, in order to save oxygen consumption and thus improve the general yield of the reaction.

On constate alors qu'au delà d'une certaine température de préchauffe, variable suivant les paramètres du procédé, la réaction commence instantanément dès qu'on met en contact les deux gaz réactionnels, bien avant d'arriver en contact avec le catalyseur. Or la réaction qui se produit dans la phase gazeuse peut conduire à des effets indésirables, comme la surchauffe excessive de la zone correspondante du réacteur, ou les réactions secondaires parasites aboutissant à la formation de particules de noir de carbone, qui se déposent ensuite sur le catalyseur et en réduisent la performance. Dans un grand nombre de cas, ces effets indésirables sont attribuables au dispositif de mélange des gaz réactionnels à l'entrée du réacteur, ledit dispositif mélangeant les gaz à une vitesse trop lente par rapport à la vitesse de réaction en phase gazeuse.It is then found that beyond a certain preheating temperature, which varies according to the process parameters, the reaction begins instantly as soon as the two reaction gases are brought into contact, well before coming into contact with the catalyst. However, the reaction which takes place in the gas phase can lead to undesirable effects, such as excessive overheating of the corresponding zone of the reactor, or parasitic side reactions leading to the formation of carbon black particles, which are then deposited on the catalyst and reduce performance. In a large number of cases, these undesirable effects are attributable to the device for mixing the reaction gases at the inlet of the reactor, said device mixing the gases at a rate too slow relative to the rate of reaction in the gas phase.

En effet, lorsque fa réaction commence instantanément au contact des deux gaz réactionnels, alors que le mélange est encore loin d'être homogène, la réaction fortement exothermique qui se produit dans les fractions riches en oxygène fait monter à un niveau très élevé la température desdites fractions, et la chaleur ainsi dégagée est transmise par radiation aux autres fractions qui sont pauvres en oxygène et riches en hydrocarbures, provoquant ainsi un craquage thermique de ceux-ci et, en conséquence, la formation de particules de carbone dans le mélange réactionnel.In fact, when the reaction begins instantaneously in contact with the two reaction gases, while the mixture is still far from being homogeneous, the strongly exothermic reaction which takes place in the oxygen-rich fractions causes the temperature of the said gases to rise to a very high level. fractions, and the heat thus released is transmitted by radiation to the other fractions which are poor in oxygen and rich in hydrocarbons, thus causing a thermal cracking of these and, consequently, the formation of carbon particles in the reaction mixture.

Dans les réacteurs de réformage à l'oxygène présentement utilisés dans l'industrie, que l'on peut classer en deux catégories, les effets indésirables sont évités pour des raisons qui sont spécifiques à chaque catégorie:

  • (a) Dans la préparation du gaz de synthèse d'ammoniac par réformage primaire à la vapeur suivi d'un réformage secondaire à l'air, telle que décrite dans les brevets USA 2 829 113,' 3 278 452, 3 264 066 et 3 388 074 par exemple, la température d'entrée des gaz réactionnels au réacteur de réformage secondaire est suffisamment élevée pour que la réaction commence instantanément; néanmoins, la pression partielle de l'oxygène dans le mélange desdits gaz réactionnels est très faible, de l'ordre de 1,0 à 1,5 bar seulement, et le gaz provenant du réformage primaire ne contient aucun autre hydrocarbure que le méthane, dont la molécule est beaucoup plus stable thermiquement que celles des autres hydrocarbures; de plus, la pression partielle du méthane dans le mélange des gaz réactionnels est très faible, de l'ordre de 1,3 à 1,8 bar; dans ces conditions, aucune précaution particulière n'est nécessaire pour procéder au mélange des gaz réactionnels, sauf que la couche supérieure de catalyseur, ainsi que le revêtement réfractaire dans la zone de mélange, sont conçus pour résister à des températures sensiblement plus élevées que celle du lit catalytique.
  • (b) Dans la préparation des gaz de synthèse par réformage direct à l'oxygène des hydrocarbures, telle que décrite dans le brevet français 1 158 617 par exemple, on limite en général la température de préchauffe des deux gaz réactionnels à un niveau inférieur à 450°C environ, comme indiqué à la page 2 ligne 4 dudit brevet, et l'on utilise aussi une importante quantité de vapeur d'eau dans le gaz de procédé, et parfois même dans l'oxygène. Dans ces conditions, la réaction commence à peine dans la phase gazeuse, avant d'arriver au contact du catalyseur, et les dispositifs de mélange présentement utilisés permettent d'obtenir un mélange quasi-homogène sur le catalyseur; néanmoins, ces dispositifs ne seraient plus satisfaisants si la réaction devait commencer d'une manière appréciable dans la phase gazeuse, par le jeu des températures de préchauffe plus élevées, c'est à dire supérieures à 500°C, et des proportions de vapeur plus faibles.
In oxygen reforming reactors currently used in industry, which can be classified into two categories, undesirable effects are avoided for reasons which are specific to each category:
  • (a) In the preparation of ammonia synthesis gas by primary steam reforming followed by secondary air reforming, as described in US Patents 2,829,113, 3,278,452, 3,264,066 and 3,388,074 for example, the inlet temperature of the reaction gases to the secondary reforming reactor is high enough for the reaction to start instantly; nevertheless, the partial pressure of oxygen in the mixture of said reaction gases is very low, of the order of only 1.0 to 1.5 bar, and the gas originating from the primary reforming contains no other hydrocarbon than methane, whose molecule is much more thermally stable than those of other hydrocarbons; in addition, the partial pressure of methane in the mixture of reaction gases is very low, of the order of 1.3 to 1.8 bar; under these conditions, no particular precaution is necessary to proceed with the mixing of the reaction gases, except that the upper layer of catalyst, as well as the refractory lining in the mixing zone, are designed to withstand temperatures substantially higher than that of the catalytic bed.
  • (b) In the preparation of synthesis gases by direct oxygen reforming of hydrocarbons, as described in French patent 1,158,617 for example, the preheating temperature of the two reaction gases is generally limited to a level below 450 ° C approximately, as indicated on page 2 line 4 of said patent, and a large amount of water vapor is also used in the process gas, and sometimes even in oxygen. Under these conditions, the reaction hardly begins in the gas phase, before arriving in contact with the catalyst, and the mixing devices presently used make it possible to obtain a quasi-homogeneous mixture on the catalyst; nevertheless, these devices would no longer be satisfactory if the reaction were to start appreciably in the gas phase, by the play of the higher preheating temperatures, that is to say higher than 500 ° C., and more vapor proportions. weak.

Dans le procédé décrit dans la demande de brevet français FR - A - 2 372 116, les conditions de marche du réformage secondaire à l'oxygène sont précisément plus sévères que celles pratiquées actuellement, essentiellement du fait que la pression partielle de l'oxygène dans le mélange réactionnel est nettement supérieure, c'est à dire de l'ordre de 6 à 8 bars, que la pression partielle du méthane dans ledit mélange est de l'ordre de 10 à 15 bars, et que le gaz de procédé peut contenir des hydrocarbures plus lourds que le méthane, tout en ayant des températures de préchauffe comparables ou supérieures à celles pratiquées pour le réacteur secondaire dans l'industrie du gaz de synthèse d'ammoniac. Ainsi, dans ledit procédé, la réaction commence instantanément au contact des deux gaz réactionnels, et l'on a besoin d'utiliser une nouvelle conception d'appareil mélangeur de gaz pour éviter les risques de formation de particules de carbone.In the process described in French patent application FR-A-2,372,116, the operating conditions for secondary oxygen reforming are precisely more severe than those practiced at present, essentially because the partial pressure of the oxygen in the reaction mixture is much higher, that is to say of the order of 6 to 8 bars, that the partial pressure of methane in said mixture is of the order of 10 to 15 bars, and that the process gas may contain heavier hydrocarbons than methane, while having comparable preheating temperatures or higher than those used for the secondary reactor in the ammonia synthesis gas industry. Thus, in said method, the reaction begins instantaneously on contact with the two reaction gases, and there is a need to use a new design of gas mixing apparatus to avoid the risks of formation of carbon particles.

De même, si l'on veut procéder à un réformage direct à l'oxygène d'une matière première hydrocarbonée, en vue de produire un gaz de synthèse ayant un faible rapport molaire H2/CO, impliquant l'utilisation de températures de préchauffe élevées et des proportions de vapeur faibles, on aurait aussi besoin d'une nouvelle conception d'appareil de mélange pour les raisons explicitées ci-dessus.Likewise, if it is desired to carry out a direct reforming with oxygen of a hydrocarbon raw material, with a view to producing a synthesis gas having a low molar ratio H2 / CO, implying the use of high preheating temperatures and low vapor proportions, there would also be a need for a new design of mixing apparatus for the reasons explained above.

L'objet de la présente invention est précisément de répondre à cette nécessité, par une conception d'un appareil mélangeur de gaz permettant d'obtenir très rapidement un mélange quasi-homogène avant que l'oxygène n'ait le temps de réagir de manière significative.The object of the present invention is precisely to respond to this need, by designing a gas mixing device making it possible to very quickly obtain a quasi-homogeneous mixture before the oxygen has time to react in a manner significant.

Dans le domaine de la production des gaz de synthèse par oxydation partielle des hydrocarbures, la réaction de l'oxygène sur la matière première est réalisée sans l'aide de catalyseur, et en conséquence, la formation d'une faible quantité de particules de noir de carbone n'est pas gênante pour un fonctionnement satisfaisant du procédé. De plus, la réaction d'oxydation partielle dans ces procédés a lieu à une température bien supérieure (1300 à 1500°C) à celle du réformage à l'oxygène (900 à 1 100°C), et en conséquence le soucis majeur est de protéger l'appareil mélangeur de la chaleur excessive du réacteur, par une circulation intérieure d'eau par exemple.In the field of the production of synthesis gases by partial oxidation of hydrocarbons, the reaction of oxygen on the raw material is carried out without the aid of a catalyst, and consequently, the formation of a small amount of black particles. carbon is not a problem for satisfactory operation of the process. In addition, the partial oxidation reaction in these processes takes place at a much higher temperature (1300 to 1500 ° C) than that of oxygen reforming (900 to 1100 ° C), and therefore the major concern is to protect the mixing device from excessive reactor heat, for example by internal circulation of water.

Dans le domaine d'oxydation partielle susmentionné, plusieurs appareils mélangeurs ont été conçus, tels que décrits dans les brevets USA 2 582 938 - 2 772 149 - 2 621 117 - 2 838 105 et les brevets Grande Bretagne 726 206 - 780 120 et 832 385. Dans ces appareils mélangeurs, l'oxygène est en général injecté à travers un seul canal, lequel doit avoir une section suffisante pour admettre la totalité du débit; en conséquence, même si l'oxygène est injecté à grande vitesse à travers ladite section, la vitesse de dispersion des molécules d'oxygène dans le mélange réactionnel est lente comparée à celle de la réaction. De plus, le jet d'oxygène, à l'endroit où il sort de son orifice, est en général entouré par le gaz à faible vitesse du réacteur, ce qui n'est pas favorable à une dispersion rapide des molécules d'oxygène.In the aforementioned partial oxidation field, several mixing devices have been designed, as described in the US patents 2,582,938 - 2,772,149 - 2,621,117 - 2,838,105 and the Great Britain patents 726,206 - 780 120 and 832 385. In these mixing devices, oxygen is generally injected through a single channel, which must have a cross section sufficient to admit the entire flow; therefore, even if oxygen is injected at high speed through said section, the speed of dispersion of the oxygen molecules in the reaction mixture is slow compared to that of the reaction. In addition, the oxygen jet, at the point where it leaves its orifice, is generally surrounded by the gas at low speed of the reactor, which is not favorable to a rapid dispersion of the oxygen molecules.

Dans le cas particulier du brevet USA 2 772 149 le mélange de gaz réactionnels se fait à la surface d'un diaphragme poreux; cela présente l'avantage de mélanger rapidement les gaz réactionnels. Néanmoins, à cause de la vitesse lente du gaz traversant les pores du diaphragme, la réaction a lieu essentiellement à la surface de sortie dudit diaphragme, lequel doit en conséquence être conçu pour résister aux hautes températures. Dans les unités de grande capacité, ce dispositif nécessiterait une grande surface pour le diphragme, ce qui le rend onéreux et impraticable.In the particular case of US Pat. No. 2,772,149 the mixture of reaction gases takes place on the surface of a porous diaphragm; this has the advantage of rapidly mixing the reaction gases. However, because of the slow speed of the gas passing through the pores of the diaphragm, the reaction takes place essentially at the outlet surface of said diaphragm, which must therefore be designed to withstand high temperatures. In large capacity units, this device would require a large area for the diphragm, which makes it expensive and impractical.

Dans le cas du brevet Grande Bretagne 726206 l'appareil mélangeur est conçu essentiellement pour une matière première liquide, laquelle est injectée dans le réacteur sous forme d'un film mince recevant des deux côtés à grande vitesse des jets d'oxygène sous un certain angle. Ce dispositif est particulièrement adapté pour disperser le liquide en fine gouttelettes; néanmoins, cela ne permet pas d'obtenir rapidement un mélange gazeux homogène, du fait que les jets d'oxygène ne sont pas entourés de gaz à grande vitesse. Si l'on utilise dans ce dispositif une matière première gazeuse, et surtout si elle contient une forte teneur en hydrogène comme dans la demande de brevet français FR - A - 2 372 116, le débit volumétrique correspondant serait nettement supérieur à celui de l'oxygène ou du liquide équivalent; comme le jet d'oxygène n'entre en contact avec le jet de gaz de procédé que d'un seul côté, la vitesse de dispersion des molécules d'oxygène serait trop lente par rapport à celle de la réaction qui commence instantanément au contact des deux gaz.In the case of Great Britain patent 726206, the mixing device is designed essentially for a liquid raw material, which is injected into the reactor in the form of a thin film receiving on both sides at high speed jets of oxygen at a certain angle. . This device is particularly suitable for dispersing the liquid into fine droplets; however, this does not allow a homogeneous gas mixture to be obtained quickly, since the oxygen jets are not surrounded by gas at high speed. If a gaseous raw material is used in this device, and especially if it contains a high hydrogen content as in French patent application FR - A - 2 372 116, the corresponding volumetric flow rate would be much higher than that of oxygen or equivalent liquid; as the oxygen jet only comes into contact with the process gas jet on one side, the speed of dispersion of the oxygen molecules would be too slow compared to that of the reaction which starts instantly on contact with the two gases.

Pour toutes les raisons développées ci-dessus, les appareils mélangeurs conçus pour les procédés d'oxydation partielle ne peuvent pas convenir pour le réformage à l'oxygène d'une matière première hydrocarbonée gazeuse, dans des conditions sévères telles que décrites ci-dessus, du fait que le risque de formation de particules de carbone doit être totalement éliminé.For all the reasons developed above, the mixing devices designed for the partial oxidation processes cannot be suitable for the reforming with oxygen of a gaseous hydrocarbon raw material, under severe conditions as described above, since the risk of carbon particle formation must be completely eliminated.

On pourrait envisager d'utiliser pour le réformage à l'oxygène des hydrocarbures un appareil mélangeur de gaz réactionnels comme celui décrit dans le brevet USA 3 998 934 pour la production de noir de carbone, en injectant par exemple l'oxygène dans les tubulures centrales 13-14-15 dudit appareil, et le gaz de procédé par les tubulures latérales tangentielles 16. Lorsque la réaction commence immédiatement au contact des deux gaz réactionnels, par suite de températures de préchauffe élevées, les molécules de gaz de procédé qui entrent en contact avec celles d'oxygène les plus éloignées de l'axe réagissent en premier pour produire un mélange à température élevée, par suite de l'exothermicité de la réaction; ensuite, les molécules d'oxygène un peu plus proches de l'axe réagissent avec ledit mélange pour produire un mélange gazeux à température encore plus élevée, et ainsi de suite jusqu'à l'axe de l'appareil où la température sera maximum. Il se forme ainsi une zone centrale ayant une température très nettement supérieure à celle du gaz de procédé sur la périphérie, lequel ne réagit pas au début Avec l'oxygène, mais reçoit par radiation la chaleur de ladite zone centrale et subit alors un craquage thermique conduisant à la formation de particules de carbone. Ainsi, quel que soit le degré de turbulence, une grande partie des molécules d'oxygène entrent en contact avec du gaz qui a déjà réagi et qui est donc porté à une température élevée, ce qui crée une température excessive dans la zone centrale et provoque la formation de particules de carbone qui se déposent sur le catalyseur et rendent le procédé inexploitable. L'appareil du brevet USA 3 998 934 ne peut donc pas convenir non plus pour mélanger les deux gaz réactionnels entrant dans un réacteur de réformage à l'oxygène où la réaction commence instantanément au contact des deux gaz.One could consider using a reaction gas mixing device such as that described in US Pat. No. 3,998,934 for producing carbon black by oxygen reforming hydrocarbons, for example by injecting oxygen into the central pipes. 13-14-15 of said apparatus, and the process gas through the tangential side pipes 16. When the reaction begins immediately in contact with the two reaction gases, as a result of high preheating temperatures, the process gas molecules which come into contact with those of oxygen furthest from the axis react first to produce a mixture at high temperature, as a result of the exothermicity of the reaction; then, the oxygen molecules a little closer to the axis react with said mixture to produce a gaseous mixture at an even higher temperature, and so on to the axis of the apparatus where the temperature will be maximum. A central zone is thus formed having a temperature very much higher than that of the process gas on the periphery, which does not react at the start With oxygen, but receives by radiation the heat from said central zone and then undergoes thermal cracking leading to training of carbon particles. Thus, whatever the degree of turbulence, a large part of the oxygen molecules come into contact with gas which has already reacted and which is therefore brought to a high temperature, which creates an excessive temperature in the central zone and causes the formation of carbon particles which deposit on the catalyst and make the process unusable. The apparatus of US Pat. No. 3,998,934 cannot therefore be suitable either for mixing the two reaction gases entering an oxygen reforming reactor where the reaction begins instantly on contact with the two gases.

En règle générale, dans les procèdes de production de noir de carbone, comme celui décrit dans le brevet USA 3 998 934, la chaleur est transmise par radiation d'un gaz chaud circulant à la périphérie de l'appareil cylindrique vers un hydrocarbure liquide dispersé très finement en gouttelettes par l'effet de la turbulence le long de l'axe de l'appareil; il n'est donc pas besoin de mélanger les fluides pour provoquer le craquage thermique de la charge qui produira le noir de carbone. Or, dans les procédes de réformage à l'oxygène, on cherche précisément à faire l'inverse, car on doit impérativement éviter la formation de particules de carbone, ce qui nécessite d'obtenir très rapidement un mélange homogène des gaz réactionnels avant d'arriver au contact du catalyseur, et même avant que l'oxygène n'ait le temps de réagir de manière significative en phase gazeuse dans le cas des procédés utilisant des conditions sévères, tel que celui décrit dans la demande de brevet français 77-08459, procédés dans lesauels la réaction commence instantanément en phase gazeuse dès que les deux gaz réactionnels sont mis en contact. Ainsi, pour ces raisons, on ne peut pas utiliser dans lesdits procédés un" liÎppareil mélangeur de gaz réactionnels analogue à ceux utilisés dans les procédés de production de noir de carbone par décomposition thermique des hydrocarbures.Typically, in processes for producing carbon black, such as that described in U.S. Patent 3,998,934, heat is transmitted by radiation from a hot gas flowing around the periphery of the cylindrical apparatus to a dispersed liquid hydrocarbon. very finely in droplets by the effect of turbulence along the axis of the device; there is therefore no need to mix the fluids to cause thermal cracking of the charge which will produce carbon black. However, in the oxygen reforming processes, it is precisely sought to do the opposite, because it is imperative to avoid the formation of carbon particles, which requires very quickly to obtain a homogeneous mixture of the reaction gases before arrive in contact with the catalyst, and even before the oxygen has time to react significantly in the gas phase in the case of processes using severe conditions, such as that described in French patent application 77-08459, In processes in which the reaction begins instantly in the gas phase as soon as the two reaction gases are brought into contact. Thus, for these reasons, it is not possible to use in said processes a "mixing apparatus of reaction gases similar to those used in the processes for producing carbon black by thermal decomposition of hydrocarbons.

L'idée fondamentale dans la conception de l'appareil objet de la présente invention est que la section de passage du gaz oxydant, à l'endroit précis où il commence à entrer en contact avec le gaz de procédé, doit imprimer au flux d'oxygène une forme de filet fin ou couche fine, afin que les molécules d'oxygène aient très peu de chemin à parcourir avant d'être dispersées dans l'autre gaz. Etant donné le débit important de gaz oxydant utilisé, cela implique que celui-ci soit injecté dans le gaz de procédé par l'intermédaire d'une multitude de canaux parallèles, se terminant chacun par un orifice de sortie dont l'une au moins des dimensions est très réduite. Cet orifice de sortie peut avoir la forme d'une fente, continue ou discontinue, dont la largeur est inférieure à 20 mm, et de préférence inférieure à 8 mm; ledit orifice peut aussi avoir une forme circulaire ou elliptique, dont le plus petit des diamètres doit être inférieur à 20 mm, et de préférence inférieur à 8 mm. De plus, afin d'augmenter la vitesse de dispersion de l'oxygène dans le gaz de procédé, celui-ci est animé d'un violent mouvement heficoïdal autour desdits canaux, ce mouvement étant obtenu de préférence par une injection tangentielle de ce gaz sur les parois intérieures de l'appareil.The fundamental idea in the design of the apparatus which is the subject of the present invention is that the section for the passage of the oxidizing gas, at the precise place where it begins to come into contact with the process gas, must imprint on the flow of oxygen a form of fine mesh or thin layer, so that the oxygen molecules have very little way to go before being dispersed in the other gas. Given the high flow rate of oxidizing gas used, this implies that it is injected into the process gas through a multitude of parallel channels, each ending in an outlet orifice, at least one of the dimensions is very small. This outlet orifice may have the form of a slit, continuous or discontinuous, the width of which is less than 20 mm, and preferably less than 8 mm; said orifice can also have a circular or elliptical shape, the smallest of the diameters of which must be less than 20 mm, and preferably less than 8 mm. In addition, in order to increase the speed of dispersion of the oxygen in the process gas, the latter is driven by a violent heficoidal movement around said channels, this movement being preferably obtained by a tangential injection of this gas onto the interior walls of the appliance.

Etant donné les températures et les pressions élevées dans le réacteur de réformage à l'oxygène, et la nécessité de placer l'appareil mélangeur près du catalyseur, celui-ci et celui-là sont tous les deux placés dans le même récipient métallique, revêtu intérieurement d'une couche de briques ou de ciment réfractaire. De plus, le logement du catalyseur nécessite un grand diamètre, alors que l'appareil de mélange a besoin d'un espace assez réduit, dont le volume est de l'ordre de 3 à 9 pour cent de celui du catalyseur.Given the high temperatures and pressures in the oxygen reforming reactor, and the need to place the mixing apparatus close to the catalyst, this and that are both placed in the same metal container, coated internally with a layer of bricks or refractory cement. In addition, the housing of the catalyst requires a large diameter, while the mixing apparatus requires a fairly small space, the volume of which is on the order of 3 to 9 percent of that of the catalyst.

L'appareil objet de la présente invention est ainsi constitué de deux parties: d'une part une enveloppe revêtue intérieurement de réfractaire, et à l'intérieur de laquelle est injecté le gaz de procédé, et d'autre part un distributeur et une multitude de canaux parallèles dans lesquels circule le gaz oxydant, et qui sont logés à l'intérieur de ladite enveloppe. La forme de l'enveloppe peut être soit cylindrique, avec une section circulaire ou elliptique, soit tronconique. Le raccordement avec le lit de catalyseur se fait en général par une section tronconique.The apparatus which is the subject of the present invention thus consists of two parts: on the one hand an envelope coated internally with refractory, and inside which the process gas is injected, and on the other hand a distributor and a multitude parallel channels in which the oxidizing gas circulates, and which are housed inside said envelope. The shape of the envelope can be either cylindrical, with a circular or elliptical section, or frustoconical. The connection with the catalyst bed is generally made by a frustoconical section.

La Fig. 1 représente l'enveloppe sous sa forme préférentielle: la paroi métallique et cylindrique 1 se prolonge vers le bas par une section tronconique 3 pour la liaison avec le réacteur de réformage portant le catalyseur, et vers le haut par un fond sphérique 2 à travers lequel passe le. tuyau 5 d'où arrive le gaz oxydant. Les tubulures d'entrée du gaz de procédé n'ont pas été représentées sur la Fig. 1 pour en faciliter la lecture; néanmoins leurs axes sont au niveau A-A', et elles sont disposées de manière à obtenir un écoulement tangentiel du gaz le long des parois intérieures du réfractaire, comme indiqué sur les Fig. 2 et Fig. 3 qui représentent des sections selon A-A'. Comme le gaz s'écoule ensuite vers le bas, il suit un mouvement hélicoïdal à l'intérieur de l'enveloppe, autour des et entre les multiples canaux parallèles du gaz oxydant.Fig. 1 shows the envelope in its preferred form: the metallic and cylindrical wall 1 is extended downwards by a frustoconical section 3 for the connection with the reforming reactor carrying the catalyst, and upwards by a spherical bottom 2 through which pass it. pipe 5 from which the oxidizing gas arrives. The process gas inlet pipes have not been shown in FIG. 1 for easier reading; nevertheless their axes are at level A-A ', and they are arranged so as to obtain a tangential flow of the gas along the internal walls of the refractory, as indicated in FIGS. 2 and Fig. 3 which represent sections according to A-A '. As the gas then flows downward, it follows a helical movement within the envelope, around and between the multiple parallel channels of the oxidizing gas.

Le gaz oxydant entre par le tuyau 5, lequel aboutit à un distributeur 6 ayant ice une forme de cone, mais pouvant avoir d'autres formes de révolution autour de l'axe de l'enveloppe telles que: tore, sphère ou soucoupe. Le distributeur central 6 alimente toutes les canalisations parallèles à l'axe de l'enveloppe et qui sont soudees, et disposees régulièrement sur toute la section; le diamètre du distributeur 6 est sensiblement inférieur au diamètre intérieur du revêtement réfractaire 4, afin de laisser l'espace à une bonne circulation du gaz de procédé. Bien entendu, l'ensemble distributeur et canaux est constitué d'un alliage inoxydable et refractaire, et est maintenu en position par tous les moyens mécaniques appropriés.The oxidizing gas enters through the pipe 5, which leads to a distributor 6 having a cone-shaped ice, but which may have other forms of revolution around the axis of the envelope such as: torus, sphere or saucer. The central distributor 6 supplies all the pipes parallel to the axis of the envelope and which are welded, and arranged regularly over the entire section; the diameter of the distributor 6 is substantially less than the internal diameter of the refractory lining 4, in order to leave space for good circulation of the process gas. Of course, the distributor and channel assembly is made of a stainless and refractory alloy, and is held in position by all appropriate mechanical means.

Selon une première représentation de la présente invention, indiquée sur la Fig. 1, chaque canal est composé d'un tuyau 7 de faible diamètre, soit inférieur à 80 mm, dont l'extrémité se termine par un éventail 8 à double paroi: le gaz oxydant sort par le fente continue ou discontinue formée au bord de l'éventail par les deux parois, et dont la largeur est inférieure à 20 mm, et de préférence inférieure à 8 mm. Le plan de chaque éventail est orienté parallélement à la paroi la plus proche de l'enveloppe, ou fait avec celle-ci un angle faible, par exemple de 10 à 30°, dans le sens facilitant l'écoulement du gaz de procédé. Seuls trois canaux ont été représentés sur la Fig. 1, pour en faciliter la lecture, mais la Fig. 2 représente une coupe selon A-A' avec la totalité des canaux représentés; sur cette dernière figure ont été représentées les tubulures 9 d'entrée du gaz de procédé, tangentiellement aux parois.According to a first representation of the present invention, indicated in FIG. 1, each channel is composed of a pipe 7 of small diameter, that is less than 80 mm, the end of which ends in a fan 8 with double wall: the oxidizing gas exits through the continuous or discontinuous slot formed at the edge of the 'fan by the two walls, and whose width is less than 20 mm, and preferably less than 8 mm. The plane of each fan is oriented parallel to the wall closest to the envelope, or makes a slight angle with it, for example from 10 to 30 °, in the direction facilitating the flow of the process gas. Only three channels have been shown in FIG. 1, to facilitate reading, but FIG. 2 shows a section on A-A 'with all of the channels shown; in this last figure are shown the inlet pipes 9 for the process gas, tangentially to the walls.

Selon une variante de cette première représentation, l'extrémité des canaux ou tubes est en forme d'étoile ou de croix à parois doubles, que l'on obtient en écrasant sur quatre ou plusieurs côtés les parois du tube avec une pince. On obtient ainsi deux ou plusieurs fentes croisées, la largeur de chacune étant inférieure à 20 mm, et de préférence inférieure 8 mm.According to a variant of this first representation, the end of the channels or tubes is in the form of a star or cross with double walls, which is obtained by crushing on four or more sides the walls of the tube with pliers. Two or more crossed slits are thus obtained, the width of each being less than 20 mm, and preferably less than 8 mm.

La représentation décrite ci-dessus convient particulièrement aux petites ou moyennes capacités, pour lesquelles on peut utiliser un nombre restreint de tubes parallèles, et ayant chacun un diamètre assez faible. Lorsque le débit de gaz oxydant devient très important, on est obligé soit d'augmenter le nombre de tubes, soit d'augmenter leur diamètre, soit les deux simultanément; toutes ces mesures ont pour effet de contrecarrer le mouvement hélicoïdal du gaz de procédé et de le convertir très rapidement en un mouvement parallèle aux tubes. On peut pallier, au moins partiellement, à cet inconvénient en donnant à certains tubes, surtout à ceux qui sont situés sur la périphérie, une forme hélicoïdale orientée dans le même sens que le gaz de procédé.The representation described above is particularly suitable for small or medium capacities, for which a limited number of parallel tubes can be used, and each having a fairly small diameter. When the flow of oxidizing gas becomes very large, it is necessary either to increase the number of tubes, or to increase their diameter, or both simultaneously; all these measures have the effect of counteracting the helical movement of the process gas and of converting it very quickly into a movement parallel to the tubes. This drawback can be overcome, at least partially, by giving certain tubes, especially those located on the periphery, a helical shape oriented in the same direction as the process gas.

La Fig. 3 montre, en coupe suivant A-A' de la Fig. 1, une seconde représentation de la présente invention, conçue pour éviter l'inconvénient mentionné ci-dessus, et donc parfaitement adaptée aux très grandes capacités. Chaque canal de gaz oxydant 10 a une section en forme de croissant à double paroi, orienté de manière à faciliter la circulation du gaz de procédé entre les canaux. De plus, la fente par laquelle sort le gaz oxydant, a une largeur inférieure à 20 mm, et de préférence inférieure à 8 mm, et est obtenue par le rapprochement des deux parois du croissant, ce qui lui donne la même forme que le canal lui même. Ainsi, chaque film de gaz oxydant, au moment où il sort de la fente, se trouve pris en sandwich entre deux couches de gaz de procédé, ce qui le disperse très rapidement dans celui-ci.Fig. 3 shows, in section along A-A 'of FIG. 1, a second representation of the present invention, designed to avoid the drawback mentioned above, and therefore perfectly suited to very large capacities. Each oxidant gas channel 10 has a double-walled crescent-shaped section, oriented so as to facilitate the circulation of process gas between the channels. In addition, the slot through which the oxidizing gas exits has a width of less than 20 mm, and preferably less than 8 mm, and is obtained by bringing the two walls of the crescent closer together, which gives it the same shape as the channel. himself. Thus, each film of oxidizing gas, as it leaves the slot, is sandwiched between two layers of process gas, which disperses it very quickly therein.

Comme pour la représentation précédente, on peut dans ce cas aussi donner, au moins à certains cannaux, une forme hélicoïdale orientée dans le même sens que celui du gaz de procédé, afin de faciliter la dispersion de l'oxygène dans celui-ci, tout en réduisant l'impact de gaz trop chaud sur le catalyseur du réacteur.As in the previous representation, it is also possible in this case to give, at least to certain channels, a helical shape oriented in the same direction as that of the process gas, in order to facilitate the dispersion of the oxygen therein, while reducing the impact of too hot gas on the reactor catalyst.

De la description développée ci-dessus, on peut se rendre compte que la plus petite dimension de l'orifice de sortie des canaux d'oxygène, ou la largeur de la fente qui s'y trouve, dépendra essentiellement du degré de sévérité de la réaction de réformage à l'oxygène, c'est à dire de la vitesse de réaction de l'oxygène avec le gaz de procédé en phase gazeuse, et du risque de formation de noir de carbone ou de températures excessives, qui résulteraient d'une grande vitesse de réaction dans un mélange gazeux très hétérogène. En conséquence, la largeur de ladite fente, ou la plus petite dimension dudit orifice, sera d'autant plus réduite que la vitesse de réaction est plus grande, ou que le risque de formation de noir est plus grand. Dans les cas les plus sévères, cette largeur de fente ou cette plus petite dimension doit être inférieure à 3 mm.From the description developed above, it can be seen that the smallest dimension of the outlet opening of the oxygen channels, or the width of the slot therein, will essentially depend on the degree of severity of the oxygen reforming reaction, i.e. the rate of reaction of oxygen with the process gas in the gas phase, and the risk of carbon black formation or excessive temperatures, which would result from high reaction speed in a very heterogeneous gas mixture. Consequently, the width of said slit, or the smallest dimension of said orifice, will be all the more reduced the greater the reaction speed, or the greater the risk of black formation. In the most severe cases, this slot width or this smallest dimension must be less than 3 mm.

Tandis que les représentations particulières de la présente invention ont été décrites ci-dessus, il est bien entendue que la présente invention ne s'y trouve pas confinée, et, en conséquence, les revendications suivantes ont pour objet de couvrir toute l'étendue, et de traduire tout l'esprit, de la présente invention.While the particular representations of the present invention have been described above, it is understood that the present invention is not confined thereto, and, therefore, the object of the following claims is to cover the whole scope, and translate the whole spirit of the present invention.

Claims (7)

1. An apparatus for mixing very rapidly, without formation of carbon particules, the reacting gases entering oxygen reforming reactors containing a catalyst and where a highly exothermic reaction occurs instantaneously, before reaching said catalyst, between a free oxygen rich gas and a process gas containing hydrocarbons, and possibly steam, hydrogen and carbon oxides, which comprises essentially a metallic shell (1) containing a distributor (6) and a multitude of parallel channels (7), and which is characterized by
- said metallic shell (1) having a cylindrical or truncated conical shape, being intemally lined with refractory (4), and being provided with one or several conduits (9) through which said process gas is injected tangentially into said shell, thereby subjecting it to a helical flow therein,
- said distributor (6) having a shape of revolution around the axis of said metallic shell (1), and receiving said free oxygen rich gas through a conduit (5) crossing said metallic shell and its refractory lining (4),
- said channels (7) being parallel to the axis of said metallic shell (1), and arranged so as to allow said process gas to flow around and between said channels before coming into contact with said free oxygen rich gas,
- each one of said parallel channels (7) being welded at one end to distributor (6) and open at the other end, so that free oxygen rich gas is injected in each channel at one and issues at the other end, where it comes into contact with said process gas,
- the orifice through which said free oxygen rich gas issues from each parallel channel (7) having at least one very reduced dimension, thus allowing to inject each jet of said free oxygen rich gas into said process gas in the form of a thin film or a thin thread.
2. An apparatus according to claim 1, wherein the outlet orifice of said free oxygen rich gas has the shape of a slot.
3. An apparatus according to claim 1 or 2, wherein each channel (7) is made of a circular tube having, at the end where said oxygen rich gas issues, a double walled fish tail (8) ending by a slot.
4. An apparatus according to claim 1 or 2, wherein, at least for some of the channels, each channel has the shape of a crescent (10), oriented in the direction which facilitates the helical flow of said process gas, and has, at the end where said oxygen rich gas issues, a slot having the same crescent shape (10).
5. An apparatus according to claim 1 wherein the outlet orifice of the oxygen rich gas has the form of a cross or a star, of which each branch is a slot.
6. An apparatus according to claim 1 wherein the outlet orifice of the oxygen rich gas has a circular or elliptical shape.
7. An apparatus according to any one of claims 1 to 6, wherein some channels (7) have a helical form oriented in the same direction as that of the helical flow of the process gas.
EP78400145A 1977-11-08 1978-10-24 Reactive gases mixing apparatus for oxygen-reforming reactors Expired EP0001946B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR7733493 1977-11-08
FR7733493A FR2407738A1 (en) 1977-11-08 1977-11-08 REACTION GAS MIXING APPARATUS FOR OXYGEN REFORMING REACTORS

Publications (2)

Publication Number Publication Date
EP0001946A1 EP0001946A1 (en) 1979-05-16
EP0001946B1 true EP0001946B1 (en) 1981-03-25

Family

ID=9197363

Family Applications (1)

Application Number Title Priority Date Filing Date
EP78400145A Expired EP0001946B1 (en) 1977-11-08 1978-10-24 Reactive gases mixing apparatus for oxygen-reforming reactors

Country Status (7)

Country Link
EP (1) EP0001946B1 (en)
JP (1) JPS5930128B2 (en)
AU (1) AU4050278A (en)
CA (1) CA1116856A (en)
DE (1) DE2860566D1 (en)
FR (1) FR2407738A1 (en)
WO (1) WO1979000273A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01117633U (en) * 1988-02-04 1989-08-09
US6471937B1 (en) * 1998-09-04 2002-10-29 Praxair Technology, Inc. Hot gas reactor and process for using same
US7465326B2 (en) 2003-12-09 2008-12-16 Panasonic Corporation Hydrogen generating apparatus
JP4505367B2 (en) * 2005-04-01 2010-07-21 株式会社豊田中央研究所 Hydrogen fuel supply system
JP6229526B2 (en) * 2014-02-13 2017-11-15 株式会社Ihi Tar reforming furnace and its gasification equipment

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1206399B (en) * 1963-04-27 1965-12-09 Bayer Ag Process for carrying out gas phase reactions
BE795321A (en) * 1972-09-20 1973-08-13 Gardinier Ets REACTOR SUITABLE FOR REACTIONS BETWEEN TWO FLUIDS
US3998934A (en) * 1974-07-03 1976-12-21 Phillips Petroleum Company Production of carbon black
SE387862B (en) * 1974-09-13 1976-09-20 G A Staaf PIPE MIXER, INCLUDING A HOUSE DESIGNED AS A ROTARY BODY, TWO OR MORE CONNECTED PIPE PIPES FOR SUPPLYING THE MIXING COMPONENTS, AS WELL AS A TO THE HOUSE AXIALLY CONNECTED

Also Published As

Publication number Publication date
JPS5930128B2 (en) 1984-07-25
WO1979000273A1 (en) 1979-05-17
AU4050278A (en) 1980-04-17
FR2407738A1 (en) 1979-06-01
EP0001946A1 (en) 1979-05-16
DE2860566D1 (en) 1981-04-16
CA1116856A (en) 1982-01-26
FR2407738B1 (en) 1982-07-09
JPS54500042A (en) 1979-10-25

Similar Documents

Publication Publication Date Title
CA2559851C (en) Synthesis gas production process coming from a first synthesis gas obtained by steam reforming and a second synthesis gas obtained by partial oxidation
FR2914395A1 (en) NEW COMPACT EXCHANGER REACTOR USING A POROUS BURNER
WO2001066463A1 (en) Method for producing carbon monoxide by reverse conversion with an adapted catalyst
EP0001946B1 (en) Reactive gases mixing apparatus for oxygen-reforming reactors
EP3322777B1 (en) Device and method for producing synthetic gas
FR2625692A1 (en) REACTOR WITH INTERNAL THERMAL CONTROL BY HOT PLATES HEAT EXCHANGERS
FR2588564A1 (en) Apparatus for cracking gaseous or liquid hydrocarbons
CA2343428A1 (en) Process for producing a mixture comprising hydrogen and co
CH411826A (en) Process for the production of adiponitrile and apparatus for using
WO2009141372A1 (en) Process for the thermal and/or catalytic conversion of reactive fluids passing through various longitudinal reaction volumes of a rotating fluidized bed
FR2831155A1 (en) Heat exchanger system for use with device for auto-thermal reforming of hydrocarbons, has tubes disposed in flow path with curved sections so that fluid impinges on and passes around tube sections perpendicularly
FR2883861A1 (en) Hydrogen generating device from diesel oil, oxygen and water, for power supply to fuel cells, comprises a reaction chamber, in which fluids are introduced to produce hydrogen and carbon monoxide, three cylindrical zones and a mixer
FR2973483A1 (en) SOLAR SYSTEM FOR REPRODUCING THE EFFECT OF A COMBUSTION FLAME
EP3828465B1 (en) Solar reactor with jet, intended for the thermochemical conversion of a carbonaceous filler, with improved discharge of ash, method for operation thereof, application to gasification of biomass or reforming
EP3322778B1 (en) Apparatus and method for producing synthesis gas
BE519007A (en)
BE541642A (en)
BE544124A (en)
BE494498A (en)
CH314318A (en) Process for preparing low calorific and generating gas for the implementation of this process
BE486524A (en)
FR2580953A2 (en) Method and device for setting in contact at least two gaseous components, in particular reacting at high temperature, in a space limited by walls
FR2847489A1 (en) Integrated reactor with two separated channel structures carrying two fluids, one taking part in a reaction generating heat and with heat transfer between the two at the same time, notably for fuel systems
BE711205A (en)
FR2589848A1 (en) HYDROCARBON CONVERSION PROCESS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE GB NL SE

17P Request for examination filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE DE GB NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19810325

Ref country code: NL

Effective date: 19810325

REF Corresponds to:

Ref document number: 2860566

Country of ref document: DE

Date of ref document: 19810416

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: GB

Ref legal event code: 732

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19901012

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19901130

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19911024

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19920701

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19921211

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19931031

BERE Be: lapsed

Owner name: FOSTER WHEELER ENERGY CORP.

Effective date: 19931031

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT