[go: up one dir, main page]

EP0000169B1 - Semiconductor junction capacitor in integrated method of construction and bootstrap circuit with such a capacitor - Google Patents

Semiconductor junction capacitor in integrated method of construction and bootstrap circuit with such a capacitor Download PDF

Info

Publication number
EP0000169B1
EP0000169B1 EP78100194A EP78100194A EP0000169B1 EP 0000169 B1 EP0000169 B1 EP 0000169B1 EP 78100194 A EP78100194 A EP 78100194A EP 78100194 A EP78100194 A EP 78100194A EP 0000169 B1 EP0000169 B1 EP 0000169B1
Authority
EP
European Patent Office
Prior art keywords
transistor
base
emitter
diode
collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP78100194A
Other languages
German (de)
French (fr)
Other versions
EP0000169A1 (en
Inventor
James Joseph Tomczak
Richard Norman Wilson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Publication of EP0000169A1 publication Critical patent/EP0000169A1/en
Application granted granted Critical
Publication of EP0000169B1 publication Critical patent/EP0000169B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/201Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of only components covered by H10D1/00 or H10D8/00, e.g. RLC circuits
    • H10D84/204Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of only components covered by H10D1/00 or H10D8/00, e.g. RLC circuits of combinations of diodes or capacitors or resistors
    • H10D84/212Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of only components covered by H10D1/00 or H10D8/00, e.g. RLC circuits of combinations of diodes or capacitors or resistors of only capacitors
    • H10D84/215Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of only components covered by H10D1/00 or H10D8/00, e.g. RLC circuits of combinations of diodes or capacitors or resistors of only capacitors of only varactors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/01Modifications for accelerating switching
    • H03K19/013Modifications for accelerating switching in bipolar transistor circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • H03K19/018Coupling arrangements; Interface arrangements using bipolar transistors only
    • H03K19/01806Interface arrangements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D1/00Resistors, capacitors or inductors
    • H10D1/60Capacitors
    • H10D1/62Capacitors having potential barriers
    • H10D1/64Variable-capacitance diodes, e.g. varactors 
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/60Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D10/00 or H10D18/00, e.g. integration of BJTs
    • H10D84/611Combinations of BJTs and one or more of diodes, resistors or capacitors
    • H10D84/613Combinations of vertical BJTs and one or more of diodes, resistors or capacitors
    • H10D84/615Combinations of vertical BJTs and one or more of resistors or capacitors

Definitions

  • the invention relates to a semiconductor junction capacitance in integrated design according to the preamble of claim 1 and their use. in a bootstrap circuit.
  • Bipolar circuits are often used for applications in logic circuits and for clocks, whereas field effect circuits are used for memory applications. Since bipolar circuits generally operate at voltages well below the values required to operate field effect circuits, buffer circuits are required to raise the bipolar signal levels to the level of field effect circuits. Bipolar circuits are usually used to implement this buffer function.
  • Patent 3,656,004 the built-in capacitance between the base and emitter itself is used to provide additional stored charge that allows the output emitter follower to remain conductive for a sufficient period of time after the base driver circuitry has been completed has become non-conductive, so that the output voltage reaches the value of the supply potential.
  • the article "Bipolar Bootstrap Circuit" in IBM Technical Disclosure Bulletin, Feb. 76, pages 2818 to 2819 describes a similar charge storage technique in which the base-collector capacitance of a bipolar transistor is used to add additional current deliver with which the driver circuit is kept in a conductive state after switching its source. In both examples, the amount of charge that can be retained is limited by the large interference capacitances between the circuit elements and the substrate of the integrated circuit, and by the time required for charging the internal capacitances after the output signal has started.
  • Fig. 1 shows a simplified drive circuit of bootstrap type in which an input signal V is applied to T1, and an inverted output signal Vout appears at the voltage node A. If V is a high level logic signal, T1 is conducting, and thus T4, which connects node A to ground.
  • T1 When T1 conducts, the base of T2 is near ground potential and T 2 is off. The voltage drop across R1 allows the feedback capacitor Cfb to charge to approximately VL minus Vbe of the diode D1.
  • T1 and T4 When the input signal transitions from its high to low logic level, T1 and T4 are turned off. The base of T2 then rises in potential and thus turns on T2, which also makes T3 conductive and causes the output signal V out to rise.
  • the rate at which the potential in node A increases is determined by the size of the applied capacitive load (which is not shown), the size of Cfb and the size of various parasitic capacities, which are summarized as variable capacitance Cp.
  • FIG. 3A is a schematic representation of the in FIG. 2 shows the capacitor
  • FIG. 3B is a representation of the capacitive effects of the capacitor when the potential at node A increases.
  • the characteristics of the reverse polarity diode correspond to a variable capacitor CP, the capacitance of which increases as the potential at node A increases. Since the ratio of Cfb to Cp can be small, the effectiveness of the feedback is reduced.
  • other capacitor structures for example junction capacitance as in US Pat. No. 3,474,309 can be used, they also have large parasitic capacitances which are coupled to the capacitor connections and reduce the effectiveness of this circuit.
  • Layer diode the area corresponding to the base together with an area corresponding to the collector, wherein a plurality of areas corresponding to the emitter are further arranged in a area corresponding to the base and connected to a common output terminal.
  • a semiconductor junction capacitance does not allow parasitic capacitances, e.g. in bootstrap circuits.
  • the object of the present invention is to provide an improved integrated bipolar semiconductor junction capacitance, with which in particular the disturbing effects of parasitic capacitances in bootstrap circuits are reduced.
  • the invention uses a semiconductor junction capacitance with a plurality of semiconductor boundary layers, in which three pn boundary layers connected in series are arranged between a reference potential and an output terminal, and in which the middle pn boundary layer is reversely polarized with respect to the other two boundary layers.
  • the use of the voltage-dependent capacitance as Bootstrap - capacity in a bipolar driver circuit provides a circuit which has a wide working range, mainly due to the built-in load capacitance, which is provided for the input signal by the capacity of the central pn junction.
  • Fig. 4 shows an embodiment of the invention in the form of a bipolar bootstrap driver circuit with an emitter follower of the Darlington type.
  • V e; " which is supplied by a bipolar logic circuit
  • the circuit is intended to deliver an output signal V out , the voltage of which Level between the ground potential and the supply voltage V ⁇ for the drain electrodes of a driven field effect transistor (FET) circuit.
  • the circuit comprises an input transistor T 1 , the base of which is coupled to V a and the collector of which is connected to the input of a Darlington amplifier pair T2 and T3.
  • the emitter of T1 is grounded through resistor R2 and is connected directly to the base of transistor T4, which is used to quickly step down the output signal.
  • the collector of T1 is also connected via a transistor connected as a diode, resistor R1 is further connected to a low-level voltage VL.
  • the amplifier or driver part of the circuit contains transistors T2 and T3, the collectors of which are connected to the supply potential VH of the PET drain electrodes.
  • the output of the amplifier is connected to the collector of transistor T4 at voltage node A.
  • an element T5 which is similar to a bipolar transistor and whose base is connected to both the node A and to V out .
  • the collector of T5 is connected to VH, the emitter to voltage node B between R1 and D1.
  • the bias of T5 is such that no transistor effect occurs and the element acts only as a pair of boundary layer capacitances which give the output signal V out via the feedback capacitance Cfb to node B and couple the output signal V out to VH via the internal load capacitance CLi.
  • the circuit works according to Figure 4 is as follows: If V assumes a high level, T1 is conductive and a current flows from VL through D1, R1, T1 and R2 to ground. Current through R2 causes the base of T4 to rise above the value Vbe and thus turns on the transistor T4, which then sets the nodes A and Vout to ground potential. The voltage division by D1, R1 and R2 keeps the base potential of T2 so low that T2 and T3 remain non-conductive. However, node B maintains a voltage that is approximately equal to VL minus Vbe of D1, and thus causes the emitter / base interface of T5 to be reverse biased and charges Cfb. The collector of T5 connected to VH supplies a reverse voltage for the collector-base boundary layer, which loads the CLi.
  • T1 switches off and thus also T4, so that the output signal is no longer held at ground potential.
  • T1 switches off, the potential at the base of T2 increases, both T2 and T3 switch on and the potential at node A and the voltage V out increase in the direction of VH.
  • the transistor effect of T2 would be limited to the area where node A is more than about two to three Vbe voltage drops below VL because R1 would not be able to carry current to deliver to the base of T2 when the voltage difference at R1 becomes zero.
  • the voltage due to the precharge on Cfb is capacitively coupled to node B, which thereby rises to a potential V out plus the precharge voltage (VL minus Vbe) and thus causes node B to rise considerably above the precharge potential (VL minus Vbe) .
  • the voltage rise enables T2 and T3 to remain conductive until V out essentially reaches VH; the desired goal has been achieved.
  • the internal load capacitance CLi which is formed by blocking the collector-base junction of T5, acts as a limiter for the rise time of the output signal.
  • the ratio of Cfb and CLi can be adjusted during the manufacturing process so that both the desired feedback and the desired internal load capacity result. It should be noted here that, unlike in the prior art (FIG. 1), this circuit does not have a relatively large parasitic capacitance Cp between the output and ground.
  • Fig. 5A is an illustration of the diode characteristics of the capacitive element T5; thereafter it consists of pn-junction diodes connected in series, namely the emitter-base diode, ie the first pn-junction diode 10, the base-collector diode ie the second pn-junction diode 12 and the collector-isolation diode, ie the third pn - Boundary layer diode, 14. All of these three pn boundary layers are permanently polarized in the reverse direction.
  • the first pn junction diode 10 is initially kept at the voltage (VL minus Vbe) via the output terminal B and at zero V via the input terminal A.
  • the second pn junction diode 12 lies between the voltages VH and and zero V.
  • the first pn junction diode 10 remains polarized in the reverse direction, since the output terminal B is capacitively coupled so that it assumes a higher potential than the input terminal A. ; the second pn junction diode 12 is made between the voltages VH and V,
  • Fig. 5B shows schematically the purely capacitive effect of T5 between terminals A and B.
  • Cfb and CLi are shown as variable capacitances, since they are formed by reverse polarized pn boundary layers (junction capacitance), the different Reverse voltage conditions are subject.
  • the third pn junction diode 14 in Fig. 5A is shown as a fixed capacitance Cp; it actually has no influence on the functioning of the circuit. In cases where Cp is large, as in Fig. 3B, care must be taken that Cp does not affect the effect of bootstrap capacity Cfb.
  • FIG. 6 shows a second embodiment of the invention in the form of a NAND driver circuit with two input signals.
  • the circuit consists of an AND gate with two inputs A and B, which are connected to the emitters of the transistors T6A and T6B.
  • the transistor D4 connected as a diode between the base and the collector of T6A and T6B prevents them from reaching deep into the saturation region.
  • the T6A and T6B collectors are coupled to the bases of T1 and T7 via resistor R7.
  • the emitters of T1 and T7 are connected to the base of transistor T4, which serves to reduce the voltage to ground potential.
  • the collector of T1 is connected to the input of the amplification transistor T2, as well as to the diodes D2 and D3, which are coupled to VH via R4 to avoid deep saturation of T1.
  • the emitter of T2 is connected to the base of the output driver transistor T3, the emitter of which is in turn connected to the output V out .
  • the collector of T7 is coupled to the base of T8, whose emitter is connected to the base of T3 to provide additional driver current for T3.
  • the current for driving T2 is provided by the combination T9, R1, R12 and R13, which together are functionally equivalent to D1 and R1 in FIG. 4.
  • the element T5 supplies the voltage-dependent capacitances Cfb and Cli, which are coupled to the output at the emitter of T3.
  • T5 is designed as a bipolar element with five emitters and multiple base contacts; this structure will be discussed in more detail later.
  • Transistors D8, D5 and D6, connected as diodes, help to supply current via T1 and T7 to T4 when the output signal is driven to ground by the value VH.
  • the diode D7 prevents T2 from reaching deep into the saturation range.
  • the circuit of Figure 6 operates in a similar manner to that of Figure 4 when that; additional logical AND gate at the input is taken into account. If one or both of the input signals A and / or B 'are at the low logic level (zero V), then either T6A or T6B conducts or both and result in the base of T1 and T7 having a potential close to the ground potential ( See zero V). Since T1 and T7 do not conduct, T4 also remains non-conductive. At this point in time, the output signal V out has already reached a value of essentially VH and maintains this potential until both input signals A and B 'have returned to the high logic level.
  • Resistor voltage divider R13 and R14 is now between VH and ground (excluding the base of T5) and the potential at the base of T9 turns on T9 and charges the multiple emitters of T5 to a potential that is approximately one Vbe voltage drop below the potential lies, which is determined by the voltage divider R13 and R14. The This feeds back capacitance Cfb to the same potential. At the same time, the internal load capacity CLi is loaded onto VH.
  • T3 and V out can also rise.
  • the rise in V out leads to capacitive coupling of the reverse emitters of T5 and to a sufficiently high potential to lower current at T2 until V out rises to the value VH. If the potential at the multiple emitters of T5 increases, T9 blocks because its emitter has a higher potential than its base.
  • FIGS. 7A and 7B show the structure of the element T5 as it is built into the circuit of FIG. 6; a common manufacturing process is used for all transistors.
  • the capacitive element is formed in an insulated diffusion trough in the form of a region 16 made of epitaxial N silicon which corresponds to the collector and was produced on a P substrate 18; the tub is delimited by the insulation areas 20.
  • the diffusion well is essentially identical to that used for the other bipolar elements on the circuit board.
  • the remaining transistor structures on the substrate use a buried N + subcollector, one is missing in the capacitive element in order to minimize the density of the insulation faults (so-called pipe faults) and to achieve maximum collector resistance.
  • the contact to the collector is made in an extension of the area 16 corresponding to the collector.
  • a single region 22 corresponding to the base having a P-type conductivity is diffused within the region 16 corresponding to the collector and a plurality of regions 24, for example 5, corresponding to the emitter are diffused within the region 22 corresponding to the base.
  • a suitable insulation layer 26 covers the surface of the Elements with the exception of the contact holes, at which the conductor tracks not shown above the structure form an ohmic contact with the different parts of the semiconductor substrate shown. All areas corresponding to the emitter are connected to a common conductor which has finger-like emissions which extend along the areas 24 corresponding to the emitter. In a similar manner, multiple contacts, for example six, are provided for contacting the area 22 corresponding to the base.
  • the capacitance of the feedback capacitor Cfb can be varied by increasing or decreasing the number and size (i.e. the area of the boundary layer) of the emitter regions.
  • the value of Cfb can be changed with little or no change in the capacitance of the base-collector interface so that the ratio of Cfb to CLi can also be adjusted. Since the area 16 corresponding to the collector is connected directly to VH, the normally large capacitance collector insulation and collector substrate are isolated from the active terminals of the element.
  • NPN transistors NPN transistors
  • PNP-type ones instead of NPN transistors
  • the capacitive element labeled T5 has been shown in the drawings with the symbols for a bipolar transistor; this was done mainly to underline the structural similarities of the element with conventional bipolar transistors. However, it must be emphasized that element 5 does not operate in an area where transistor action occurs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Logic Circuits (AREA)
  • Bipolar Transistors (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Bipolar Integrated Circuits (AREA)

Description

Die Erfindung betrifft eine Halbleitersperrschichtkapazität in integrierten Bauweise nach dem Oberbegriff von Anspruch 1 und deren Verwendung. in einer Bootstrap-Schaltung.The invention relates to a semiconductor junction capacitance in integrated design according to the preamble of claim 1 and their use. in a bootstrap circuit.

Beim Entwurf digitaler Systeme ist es oft notwendig, zwei verschiedene Technologien integrierter Schaltkreise, beispielsweise bipolare und Feldeffektanordnungen zu verwenden, wenn der vorgegebene Leistungsbereicht für die Schaltung erreicht werden soll. So werden häufig bipolare Schaltkreise für Anwendungen in logischen Kreisen und bei Taktgebern verwendet, Feldeffektschaltungen dagegen für Speicheranwendungen. Da bipolare Schaltungen im allgemeinen bei Spannungen arbeiten, die beträchtlich unter den Werten liegen, die für den Betrieb von Feldeffektschaltkreisen erforderlich sind, werden Pufferschaltkreise notwendig, um die bipolaren Signalpegel auf den Pegel von Feldeffektschaltungen anzuheben. Üblicherweise dienen zur Realisierung dieser Pufferfunktion bipolare Schaltkreise.When designing digital systems, it is often necessary to use two different integrated circuit technologies, for example bipolar and field effect arrangements, if the specified performance range for the circuit is to be achieved. Bipolar circuits are often used for applications in logic circuits and for clocks, whereas field effect circuits are used for memory applications. Since bipolar circuits generally operate at voltages well below the values required to operate field effect circuits, buffer circuits are required to raise the bipolar signal levels to the level of field effect circuits. Bipolar circuits are usually used to implement this buffer function.

Da Feldeffektschaltkreise besonders dazu neigen, Spannungsabfälle in der Größe einer Schwellwertspannung (typischerweise 0,5 bis 1,5 V) pro logischer Stufe zu erzeugen, ist es besonders wichtig, daß die Eingangssignale für Feldeffektkreise so nahe wie möglich dem Versorgungspotential der Drain-Elektrode diese Kreise liegen (typischerweise 8 bis 15 V). Fast ausschließlich werden Emitterfolger verwendet; zur Eliminierung oder Herabsetzung des Spannungsabfalls-Basis/Emitter, der unvermeidlich in solchen Schaltkreisen auftritt, wird in der einen oder anderen Form eine kapazitive Ladungszurückhaltung oder ein Bootstrap-Element eingesetzt. Beispielsweise wird in der US-Patentschrift 3 656 004 die eingebaute Kapazität zwischen Basis und Emitter selbst verwendet, um zusätzliche gespeicherte Ladung zu liefern, mit der der Ausgangsemitterfolger noch eine ausreichend lange Zeit im leitenden Zustand ausfrechterhalten werden kann, nachdem der Treiberschaltkreis für die Basis schon nichtleitend geworden ist, so daß die Ausgangsspannung den Wert des Versorgungspotentials erreicht. Der Artikel "Bipolare Bootstrap-Schaltung" im IBM Technical Disclosure Bulletin, Febr. 76, Seiten 2818 bis 2819, beschreibt eine ähnliche Technik zur Ladungs= speicherung, in der die Basis-Kollektor-Kapazität eines bipolaren Transistors dazu verwendet wird, zusätzlichen Strom zu liefern, mit dem der Treiberkreis nach dem Schalten seiner Quelle noch im leitfähigen Zustand gehalten wird. In beiden Beispielen ist der Betrag der zurückhaltbaren Ladung begrenzt durch die großen Störkapazitäten zwischen den Schaltungselementen und dem Substrat der integrierten Schaltung, sowie durch die Zeit, die zum Laden der internen Kapazitäten nach Einsetzen des Ausgangssignals erforderlich ist.Since field effect circuits tend to generate voltage drops the size of a threshold voltage (typically 0.5 to 1.5 V) per logic stage, it is particularly important that the input signals for field effect circuits be as close as possible to the supply potential of the drain electrode Circles lie (typically 8 to 15 V). Emitter followers are used almost exclusively; To eliminate or reduce the voltage drop base / emitter that inevitably occurs in such circuits, capacitive charge retention or a bootstrap element is used in one form or another. For example, in U.S. Patent 3,656,004, the built-in capacitance between the base and emitter itself is used to provide additional stored charge that allows the output emitter follower to remain conductive for a sufficient period of time after the base driver circuitry has been completed has become non-conductive, so that the output voltage reaches the value of the supply potential. The article "Bipolar Bootstrap Circuit" in IBM Technical Disclosure Bulletin, Feb. 76, pages 2818 to 2819 describes a similar charge storage technique in which the base-collector capacitance of a bipolar transistor is used to add additional current deliver with which the driver circuit is kept in a conductive state after switching its source. In both examples, the amount of charge that can be retained is limited by the large interference capacitances between the circuit elements and the substrate of the integrated circuit, and by the time required for charging the internal capacitances after the output signal has started.

In dem Artikel "Takttreiber für dynamische MOS-FET-Schieberegistermatritzen" im IBM Technical Disclosure Bulletin, Febr. 1974, Seiten 2767 bis 2768 und in der US-Patentschrift 4002931, wird eine Bootstrap-Kapazität verwendet, die zwischen dem Ausgang des Emitterfolgers und seinem Eingang liegt; dadurch ergibt sich ein hochgesetzter Spannungspegel, mit dem die Ausgangsschaltung leitend gehalten wird, nachdem das Eingangssignal für die Treiberschaltung im Normalfall schon abgeklungen ist. Fig. 1 zeigt eine vereinfachte Treiberschaltung des Bootstrap-Typs, in der Eingangssignal Vein an T1 angelegt wird und ein invertiertes Ausgangssignal Vaus am spannungsknoten A erscheint. Wenn Vein ein logisches Signal mit hohem Pegel ist, leitet T1 und damit auch T4, der den Knoten A an Erde legt. Wenn T1 leitet, liegt die Basis von T2 in der Nähe des Erdpotentials und T2 ist ausgeschaltet. Der Spannungsabfall an R1 ermöglicht es dem Rückkoppelkondensator Cfb, sich auf ungefähr VL minus Vbe der diode D1 aufzuladen. Wenn das Eingangssignal von seinem hohen auf den niedrigen logischen Pegel übergeht, werden T1 und T4 augesschaltet. Die Basis von T2 steigt dann potentialmäßig und schaltet damit T2 ein, wodurch auch T3 leitend wird und das Ausgangssignal Vaus ansteigen läßt. Die Geschwindigkeit, mit der das Potential im Knoten A ansteigt, wird durch die Größe der beaufschlagten kapazitiven Last (die nicht eingezeichnet ist) bestimmt, sowie durch die Größe von Cfb und die Größe verschiedener Parasitärkapazitäten, die zusammengefaßt als variable Kapzität Cp dargestellt sind. Je größer Cp wird, desto größer muß Cfb sein, damit genügend Rückkopplung zum Knoten B zur Verfügung steht, um der Basis von T2 Strom zuzuführen und solange leitend zu halten, bis Knoten A das Versorgungspotential VH der Drain-Elektrode erreicht. In vielen Fällen ist Cfb zu groß, als daß ein Kondensator entsprechender Kapazität auf demselben Substrat wie der übrige Schaltkreis eingebaut werden könnte; er wird deshalb als diskrete externe Komponente ausgeführt. Die oben erwähnte US-Patentschrift 4 002 931 beschreibt eine integrierte Kapazität mit dünner Oxydschicht, entsprechend der Darstellung in Fig. 2. Der Ausgang am Knoten A ist leitend mit einem N+-dotierten Halbleiterbereich verbunden, wobei die P+-lsolationswannen in der auf einem P-Substrat gewachsenen Epitaxialschicht vom Typ N ausgebildet sind. Die Kapizität Cfb zwischen den Kontakten A und B ist zwar konstant, die Kapazität zwischen dem Kontakt A und dem Substrat enthält aber eine in Sperrichtung vorgespannte P-N-Grenzschicht Fig. 3A ist eine schematische Darstellung des in Fig. 2 gezeigten Kondensators, Fig. 3B ist eine Darstellung der kapazitiven Effekte des Kondensators, wenn das Potential am Knoten A ansteigt. Die Charakteristiken der in Sperrichtung gepolten Diode entsprechen einem variablen Kondensator CP, dessen Kapazität ansteigt, wenn das Potential am Knoten A zunimmt. Da das Verhältnis von Cfb zu Cp klein sein kann, wird die Wirksamkeit der Rückkopplung herabgesetzt. Obwohl andere Kondensatorstrukturen, beispiesweise Sperrschichtkapazitäten wie in der US-Patentschrift 3 474 309 herangezogen werden können, so weisen diese doch ebenfalls große parasitäre Kapazitäten auf, die mit den Kondensatoranschlüssen gekoppelt sind und die Effektivität dieses Schaltkreises herabsetzen.In the article "Clock Drivers for Dynamic MOS-FET Shift Register Matrices" in IBM Technical Disclosure Bulletin, Feb. 1974, pages 2767 to 2768 and in US Pat. No. 4002931, a bootstrap capacity is used which is between the output of the emitter follower and its Entrance lies; this results in a high voltage level with which the output circuit is kept conductive after the input signal for the driver circuit has normally already decayed. Fig. 1 shows a simplified drive circuit of bootstrap type in which an input signal V is applied to T1, and an inverted output signal Vout appears at the voltage node A. If V is a high level logic signal, T1 is conducting, and thus T4, which connects node A to ground. When T1 conducts, the base of T2 is near ground potential and T 2 is off. The voltage drop across R1 allows the feedback capacitor Cfb to charge to approximately VL minus Vbe of the diode D1. When the input signal transitions from its high to low logic level, T1 and T4 are turned off. The base of T2 then rises in potential and thus turns on T2, which also makes T3 conductive and causes the output signal V out to rise. The rate at which the potential in node A increases is determined by the size of the applied capacitive load (which is not shown), the size of Cfb and the size of various parasitic capacities, which are summarized as variable capacitance Cp. The larger Cp, the larger Cfb must be, so that sufficient feedback to node B is available to supply current to the base of T2 and to keep it conductive until node A reaches the supply potential VH of the drain electrode. In many cases, Cfb is too large to accommodate a capacitor of the appropriate capacitance on the same substrate as the rest of the circuit; it is therefore designed as a discrete external component. The above-mentioned US Pat. No. 4,002,931 describes an integrated capacitance with a thin oxide layer, as shown in FIG. 2. The output at node A is conductively connected to an N + -doped semiconductor region, the P + isolation wells in the on a P -Substrate grown type N epitaxial layer are formed. The capacitance Cfb between the contacts A and B is constant, but the capacitance between the contact A and the substrate contains a PN boundary layer biased in the reverse direction. FIG. 3A is a schematic representation of the in FIG. 2 shows the capacitor, FIG. 3B is a representation of the capacitive effects of the capacitor when the potential at node A increases. The characteristics of the reverse polarity diode correspond to a variable capacitor CP, the capacitance of which increases as the potential at node A increases. Since the ratio of Cfb to Cp can be small, the effectiveness of the feedback is reduced. Although other capacitor structures, for example junction capacitance as in US Pat. No. 3,474,309 can be used, they also have large parasitic capacitances which are coupled to the capacitor connections and reduce the effectiveness of this circuit.

Als weiterer Stand der Technik, der hier von Interesse ist, kann genant werden: US-Patentschrift 3 641 368, in der ein NPN-Transistor mit kurzgeschlossenem Kollektor-Emitter als Kapazität verwendet wird und die US-Patentsghrift 3 678 348, in den ein bipolarer Multiemittertransistor gezeigt ist, bei dem mehrere Kontakte gemeinsam mit einer einzigen Emitterelektrode und einer getrennten Mehrfachkontaktbasiselektrode verbunden sind.As further prior art that is of interest here can be genant: US Patent 3,641,368, in which an NPN transistor is used with short-circuited collector-emitter as the capacitance and the US patent g hrift 3,678,348, in a bipolar multi-emitter transistor is shown, in which a plurality of contacts are connected in common to a single emitter electrode and a separate multi-contact base electrode.

Aus der deutschen Offenlegungsschrift DE-A 17 64 148 ist eine Halbleitersperrschichtkapazität in integrierter Bauweise be- . kannt, bei dem erste und zweite Grenzschichtdioden angeordnet sind, wobei die zweite Diode bezüglich der anderen umgekehrt gepolt ist und bei der alle Dioden in Sperrichtung betrieben werden (vgl. Oberbegriff von Anspruch 1). Außerdem ist es aus dieser Schrift bekannt, daß die pn-Grenzschichtdioden als eine, einem Transistor entsprechende Struktur auf einem einzigen Halbleiterplättchen ausgebildet sind, wobei die erste pn-Grenzschichtdiode einem dem Emitter entsprechenden Bereich zusammen mit einem der Basis entsprechenden Bereich umfaßt und die zweite pn-Grenz-. schichtdiode den der Basis entsprechenden Bereich zuisammen mit einem dem Kollektor entsprechenden Bereich, wobei ferner eine Mehrzahl von der dem Emitter entsprechenden Bereiche in einem gemeinsam der Basis entsprechenden Bereich angeordnet und mit einer gemeinsamen Ausgangsklemme verbunden sind. Ein derartiger Aufbau einer Halbleitersperrschichtkapazität ermöglicht es jedoch nicht, parasitäre Kapazitäten, z.B. in Bootstrap-Schaltungen, auszuschalten.From the German published patent application DE-A 17 64 148 a semiconductor junction capacitance in an integrated design is known. knows, in which the first and second boundary layer diodes are arranged, the second diode having the opposite polarity with respect to the other and in which all the diodes are operated in the reverse direction (cf. preamble of claim 1). It is also known from this document that the pn-junction diodes are formed as a structure corresponding to a transistor on a single semiconductor chip, the first pn-junction diode comprising an area corresponding to the emitter together with an area corresponding to the base and the second pn -Border-. Layer diode the area corresponding to the base together with an area corresponding to the collector, wherein a plurality of areas corresponding to the emitter are further arranged in a area corresponding to the base and connected to a common output terminal. However, such a construction of a semiconductor junction capacitance does not allow parasitic capacitances, e.g. in bootstrap circuits.

Die Aufgabe der vorliegenden Erfindung besteht dementsprechend darin, eine verbesserte integrierte bipolare Halbleitersperrschichtkapazität anzugeben, mit der insbesondere die störenden Effekte parasitärer Kapazitäten in Bootstrap-Schaltungen herabgesetzt werden.Accordingly, the object of the present invention is to provide an improved integrated bipolar semiconductor junction capacitance, with which in particular the disturbing effects of parasitic capacitances in bootstrap circuits are reduced.

Diese Aufgabe wird durch die in den Ansprüchen 1 und 5 gekennzeichnete Erfindung gelöst; Besondere Ausführungsorten der Erfindung sind in den Unteransprüchen gekennzeichnet.This object is achieved by the invention characterized in claims 1 and 5; Particular embodiments of the invention are characterized in the subclaims.

Die Erfindung verwendet eine Halbleitersperrschichtkapazität mit mehreren Halbleitergrenzschichten, bei der drei in Reihe geschaltete p-n-Grenzschichten zwischen einem Bezugspotential und einer Ausgangsklemme angeordnet sind, und bei der die mittlere p-n-Grenzschicht bezüglich der beiden anderen Grenzschichten umgekehrt gepolt ist. Indem alle diese Grenzschichten in Sperrichtung gepolt bleiben, erzeugt ein Eingangssignal, das zwischen den beiden der Ausgangsklemme am nächsten liegenden Grenzschichten zugeführt wird, eine spannungsabhängige Kapazität zwischen dem Eingangssignal und der Ausgangsklemme, während die mittlere PN-Grenzschicht eine kapazitive Trennung zwischen Eingangssignal und Bezugspotential liefert. Die Verwendung der spannungsabhängigen Kapazität als Bootstrap-Kapazität in einem Bipolar-Treiberschaltkreis liefert einen Schaltkreis, der einen weiten Arbeitsbereich aufweist, und zwar hauptsächlich infolge der eingebauten Lastkapazität, die für das Eingangssignal durch die Kapazität der mittleren p-n-Grenzschicht geliefert wird.The invention uses a semiconductor junction capacitance with a plurality of semiconductor boundary layers, in which three pn boundary layers connected in series are arranged between a reference potential and an output terminal, and in which the middle pn boundary layer is reversely polarized with respect to the other two boundary layers. By keeping all of these boundary layers polarized in the reverse direction, an input signal that is fed between the two boundary layers closest to the output terminal creates a voltage-dependent capacitance between the input signal and the output terminal, while the middle PN boundary layer provides a capacitive separation between the input signal and the reference potential . The use of the voltage-dependent capacitance as Bootstrap - capacity in a bipolar driver circuit provides a circuit which has a wide working range, mainly due to the built-in load capacitance, which is provided for the input signal by the capacity of the central pn junction.

Ein Weg zur Ausführung der Erfindung wird nun anhand von Zeichnungen näher erläutert.One way of carrying out the invention will now be explained in more detail with reference to drawings.

Es zeigen:

  • Fig. 1 einen schematischen Schaltkreis einer bipolaren Bootstrap-Treiberschaltung nach dem Stand der Technik,
  • Fig. 2 einen schematischen Querschnitt einer Kondensatorstruktur (Kapazität) nach dem Stand der Technik,
  • Fign. 3A und 3B schematische Schaltkreise mit zwei verschiedenen elektrischen Darstellungen der in Fig. 2 dargestellten Kapazität,
  • Fig. 4 einen schematischen Schaltkreis einer bipolaren Bootstrap-Treiberschaltung in der die erfindungsgemäße Halbleitersperrschicht-kapazitat als bipolarer Transistor dargestellt ist,
  • Fign. 5A und 5B schematische Schaltbilder alternativer elektrischer Schaltkreise Halbleitersperrschichtkapazität von Fig. 4,
  • Fig. 6 ein schematisches Schaltbild einer anderen Ausführung des bipolaren Bootstrap-Treiberschaltkreises,
  • Fig. 7A eine Aufsicht auf eine Ausführungsform der Halbleitersperrschichtkapazitat mit mehrfachen emitterähnlichen und basis- ähnlichen Kontaktbereichen des in Fig. 6 dargestellten kapazitiven Elements T5,
  • Fig. 7B einen Querschnitt der Halbleitersperrschichtkapazität von Fig. 7A links der Linie B-B mit dem vertikalen Profil der Struktur.
Show it:
  • 1 shows a schematic circuit of a bipolar bootstrap driver circuit according to the prior art,
  • 2 shows a schematic cross section of a capacitor structure (capacitance) according to the prior art,
  • Fig. 3A and 3B are schematic circuits with two different electrical representations of the capacitance shown in FIG. 2,
  • 4 shows a schematic circuit of a bipolar bootstrap driver circuit in which the semiconductor junction capacitance according to the invention is shown as a bipolar transistor,
  • Fig. 5A and 5B are schematic circuit diagrams of alternative electrical circuits semiconductor junction capacitance of FIG. 4,
  • 6 is a schematic diagram of another embodiment of the bipolar bootstrap driver circuit;
  • 7A is a plan view of an embodiment of the semiconductor junction capacitance with multiple emitter-like and base-like contact areas of the capacitive element T5 shown in FIG. 6.
  • 7B is a cross section of the semiconductor junction capacitance of FIG. 7A to the left of line BB with the vertical profile of the structure.

Fig. 4 zeigt eine Ausführung der Erfindung in Form eines bipolaren Bootstrap-Treiberschaltkreises mit einem Emitterfolger vom Darlington-Typ. Der Schaltkreis soll beim Anlegen eines Eingangssignals Ve;", das von einer bipolaren Logikschaltung geliefert wird, ein Ausgangssignal Vaus liefern, dessen Spannungspegel zwischen dem Erdpotential und der Versorgungsspannung Vµ für die Drain-Elektroden eines getriebenen Feldeffekttransistor-(FET)-Schaltkreises liegen. Der Schaltkreis umfaßt einen Eingangstransistor T1, dessen Basis mit Vein gekoppelt ist und dessen Kollektor mit dem Eingang eines Darlington-Verstärkerpaars T2 und T3 verbunden ist. Der Emitter von T1 ist über den Widerstand R2 an Erde gelegt und direkt mit der Basis des Transistors T4 verbunden, der zum schnellen Herabsetzen des Ausgangssignals verwendet wird. Der Kollektor von T1 ist weiterhin über einen als Diode geschalteten Transistor ist weiterhin Widerstand R1 mit einer niederpegeligen Spannung VL verbunden. Der Verstärker- oder Treiberteil des Schaltkreises enthält die Transistoren T2 und T3, deren Kollektoren mit dem Versorgungspotential VH der PET-Drain-Elektroden verbunden sind. Der Ausgang des Verstärkers ist beim Spannungsknoten A mit dem Kollektor des Transistors T4 verbunden. Zwischen dem Knoten A und der Ausgangsklemme Vaus liegt ein Element T5, das Ähnlichkeit mit einem bipolaren Transistor aufweist und dessen Basis sowohl mit dem Knoten A als auch mit Vaus verbunden ist. Der Kollektor von T5 ist mit VH verbunden, der Emitter mit dem Spannungsknoten B zwischen R1 und D1. Die Vorspannung von T5 ist so, daß keine Transistorwirkung eintritt und das Element nur als Paar von Grenzschichtkapazitäten wirkt, die das Ausgangssignal Vaus über die Rückkoppelkapazität Cfb an Knoten B geben und das Ausgangssignal Vaus mit VH über die interne Lastkapazität CLi koppeln.Fig. 4 shows an embodiment of the invention in the form of a bipolar bootstrap driver circuit with an emitter follower of the Darlington type. When an input signal V e; " , which is supplied by a bipolar logic circuit, is applied, the circuit is intended to deliver an output signal V out , the voltage of which Level between the ground potential and the supply voltage V µ for the drain electrodes of a driven field effect transistor (FET) circuit. The circuit comprises an input transistor T 1 , the base of which is coupled to V a and the collector of which is connected to the input of a Darlington amplifier pair T2 and T3. The emitter of T1 is grounded through resistor R2 and is connected directly to the base of transistor T4, which is used to quickly step down the output signal. The collector of T1 is also connected via a transistor connected as a diode, resistor R1 is further connected to a low-level voltage VL. The amplifier or driver part of the circuit contains transistors T2 and T3, the collectors of which are connected to the supply potential VH of the PET drain electrodes. The output of the amplifier is connected to the collector of transistor T4 at voltage node A. Between the node A and the output terminal V out there is an element T5 which is similar to a bipolar transistor and whose base is connected to both the node A and to V out . The collector of T5 is connected to VH, the emitter to voltage node B between R1 and D1. The bias of T5 is such that no transistor effect occurs and the element acts only as a pair of boundary layer capacitances which give the output signal V out via the feedback capacitance Cfb to node B and couple the output signal V out to VH via the internal load capacitance CLi.

Im Betrieb arbeitet der Schaltkreis nach Fig. 4 folgendermaßen: Wenn Vein den hohen Pegel einnimmt, wird T1 leitend und es fließt ein Strom von VL über D1, R1, T1 und R2 zur Masse. Strom durch R2 läßt die Basis von T4 über den Wert Vbe ansteigen und schaltet somit den Transistor T4 ein, der dann den Knoten A und Vaus auf Massenpotential legt. Die Spannungsteilung durch D1, R1 und R2 hält das Basispotential von T2 so gering, daß T2 und T3 nichtleitend bleiben. Der Knoten B behält jedoch eine Spannung bei, die ungefähr gleich VL minus Vbe von D1 ist und somit bewirkt, daß die Emitter/Basis-Grenzschicht von T5 in Sperrichtung gepolt wird und Cfb auflädt. Der mit VH verbundene Kollektor von T5 liefert eine Sperrspannung für die Kollektor-Basis-Grenzschicht, die CLi lädt.In operation, the circuit works according to Figure 4 is as follows:. If V assumes a high level, T1 is conductive and a current flows from VL through D1, R1, T1 and R2 to ground. Current through R2 causes the base of T4 to rise above the value Vbe and thus turns on the transistor T4, which then sets the nodes A and Vout to ground potential. The voltage division by D1, R1 and R2 keeps the base potential of T2 so low that T2 and T3 remain non-conductive. However, node B maintains a voltage that is approximately equal to VL minus Vbe of D1, and thus causes the emitter / base interface of T5 to be reverse biased and charges Cfb. The collector of T5 connected to VH supplies a reverse voltage for the collector-base boundary layer, which loads the CLi.

Wenn Veln auf den niederen Pegel übergeht, schaltet T1 aus und damit auch T4, so daß das Ausgangssignal nicht mehr auf Massenpotential festgehalten wird. Beim Ausschalten von T1 steigt das Potential an der Basis von T2, sowohl T2 als auch T3 schalten ein und das Potential am Knoten A und die Spannung Vaus nehmen in Richtung VH zu. Wird für einen Augenblick angenommen, daß T5 nicht vorhanden ist, so wäre die Transistorwirkung von T2 auf den Bereich begrenzt, in dem der Knoten A mehr als ungefähr zwei bis drei Vbe-Spannungsabfälle unter VL liegt, da R1 nicht in der Lage wäre, Strom an die Basis von T2 zu liefern, wenn die Spannungsdifferenz an R1 null wird. Im vorliegenden Schaltkreis ist die Spannung aufgrund der Vorladung auf Cfb kapazitiv an Knoten B gekoppelt, der dadurch auf ein Potential Vaus plus der Vorladungsspannung (VL minus Vbe) ansteigt und somit bewirkt, daß Knoten B beträchtlich über das Vorladungspotential (VL minus Vbe) ansteigt. Der Spannungsanstieg ermöglicht es T2 und T3 leitend zu bleiben, bis Vaus im wesentlichen den Wert VH erreicht; damit ist das gewünschte Ziel erreicht. Während Vaus ansteigt, wirkt die interne Lastkapazität CLi, die durch Sperren der Kollektor-Basis-Grenzschicht von T5 gebildet wird, als Begrenzer für die Anstiegszeit des Ausgangssignals. Wie noch erläutert wird, kann das Verhältnis von Cfb und CLi während des Herstellprozesses so eingestellt werden, daß sich sowohl die gewünschte Rückkopplung als auch die gewünschte interne Lastkapazität ergibt. Hier ist zu beachten, daß bei diesem Schaltkreis, anders als im Stand der Technik (Fig. 1), keine relativ große parasitäre Kapazität Cp zwischen Ausgang und Masse vorhanden ist.When V eln changes to the low level, T1 switches off and thus also T4, so that the output signal is no longer held at ground potential. When T1 is switched off, the potential at the base of T2 increases, both T2 and T3 switch on and the potential at node A and the voltage V out increase in the direction of VH. Assuming for a moment that T5 is absent, the transistor effect of T2 would be limited to the area where node A is more than about two to three Vbe voltage drops below VL because R1 would not be able to carry current to deliver to the base of T2 when the voltage difference at R1 becomes zero. In the present circuit, the voltage due to the precharge on Cfb is capacitively coupled to node B, which thereby rises to a potential V out plus the precharge voltage (VL minus Vbe) and thus causes node B to rise considerably above the precharge potential (VL minus Vbe) . The voltage rise enables T2 and T3 to remain conductive until V out essentially reaches VH; the desired goal has been achieved. As V out increases, the internal load capacitance CLi, which is formed by blocking the collector-base junction of T5, acts as a limiter for the rise time of the output signal. As will be explained later, the ratio of Cfb and CLi can be adjusted during the manufacturing process so that both the desired feedback and the desired internal load capacity result. It should be noted here that, unlike in the prior art (FIG. 1), this circuit does not have a relatively large parasitic capacitance Cp between the output and ground.

Fig. 5A ist eine Darstellung der Diodeneigenschaften des kapazitiven Elements T5; danach besteht es aus in Reihe geschalteten pn-Grenzschicht-Dioden, namlich der EmitterBasis-Diode, d.h. der ersten pn-Grenzschichtdiode 10, der Basis-Kollektor-Diode d.h. der zweiten pn-Grenzschichtdiode 12 und der Kollektor-Isolationsdiode, d.h. der dritten pn-Grenzschichtdiode, 14. Alle diese drei pn-Grenzschichten sind dauernd in Sperrichtung gepolt. Die erste pn-Grenzschichtdiode 10 wird anfangs uber die Ausgangsklemme B auf der Spannung (VL minus Vbe) und uber die Eingangsklemme A auf Null V gehalten. Die zweite pn-Grenzschichtdiode 12 liegt zwischen den Spannungen VH und und Null V. Wenn Vaus ansteigt, bleibt die erste pn-Grenzschichtdiode 10 in Sperrichtung gepolt, da die Ausgangsklemme B kapazitiv so gekoppelt ist, daß sie ein höheres Potential als Eingangsklemme A annimmt; die zweite pn-Grenzschichtdiode 12 liegt zwischen den Spannungen VH und Vaus,Fig. 5A is an illustration of the diode characteristics of the capacitive element T5; thereafter it consists of pn-junction diodes connected in series, namely the emitter-base diode, ie the first pn-junction diode 10, the base-collector diode ie the second pn-junction diode 12 and the collector-isolation diode, ie the third pn - Boundary layer diode, 14. All of these three pn boundary layers are permanently polarized in the reverse direction. The first pn junction diode 10 is initially kept at the voltage (VL minus Vbe) via the output terminal B and at zero V via the input terminal A. The second pn junction diode 12 lies between the voltages VH and and zero V. When V out rises, the first pn junction diode 10 remains polarized in the reverse direction, since the output terminal B is capacitively coupled so that it assumes a higher potential than the input terminal A. ; the second pn junction diode 12 is made between the voltages VH and V,

Fig. 5B zeigt schematisch den rein kapazitiven Effekt von T5 zwischen den Klemmen A und B. Hier ist zu beachten, daß Cfb und CLi als variable Kapazitäten dargestellt sind, da sie durch in Sperrichtung gepolte p-n-Grenzschichten (Sperrschichtkapazität) gebildet werden, die verschiedenen Sperrspannungsbedingungen unterworfen sind. Die dritte pn-Grenzschichtdiode 14 in Fig. 5A ist als feste Kapazität Cp dargestellt; sie hat tatsächlich keinen Einfluß auf die Arbeitsweise der Schaltung. In Fällen, bei denen wie in Fig. 3B Cp groß ist,muß beachtet werden, daß Cp die Wirkung der Bootstrap-Kapazität Cfb nicht beeinflußt.Fig. 5B shows schematically the purely capacitive effect of T5 between terminals A and B. It should be noted that Cfb and CLi are shown as variable capacitances, since they are formed by reverse polarized pn boundary layers (junction capacitance), the different Reverse voltage conditions are subject. The third pn junction diode 14 in Fig. 5A is shown as a fixed capacitance Cp; it actually has no influence on the functioning of the circuit. In cases where Cp is large, as in Fig. 3B, care must be taken that Cp does not affect the effect of bootstrap capacity Cfb.

Fig. 6 zeigt eine zweite Ausführungsform der Erfindung in Form eines NAND-Treiberschaltkreises mit zwei Eingangssignalen. In Fig. 6 und Fig. 4 übereinstimmende Bezugszeichen betreffen Elemente mit ähnlichen Funktionen. Der Schaltkreis besteht aus einem UND-Glied mit zwei Eingängen A und B, die mit den Emittern der Transistoren T6A und T6B verbunden sind. Der als Diode geschaltete Transistor D4 zwischen der Basis und dem Kollektor von T6A und T6B verhindert, daß diese tief in das Sättigungsgebiet gelangen. Die Kollektoren von T6A und T6B sind über Widerstand R7 mit den Basen von T1 und T7 gekoppelt. Die Emitter von T1 und T7 sind mit der Basis des Transistors T4 verbunden, der zum Herabsetzen der Spannung auf Massenpotential dient. Der Kollektor von T1 ist mit dem Eingang des Verstärkungstransistors T2 verbunden, sowie mit den Dioden D2 und D3, die über R4 mit VH gekoppelt sind, um eine tiefe Sättigung von T1 zu vermeiden. Der Emitter von T2 ist mit der Basis des Ausgangs-Treiber-Transistors T3 verbunden, dessen Emitter wiederum mit dem Ausgang Vaus verbunden sind. Der Kollektor von T7 ist mit der Basis von T8 gekoppelt, dessen Emitter mit der Basis von T3 verbunden ist, um einen zusätzlichen Treiberstrom für T3 zu liefern. Der Strom zum Treiben von T2 wird durch die Kombination T9, R1, R12 und R13 geliefert, die zusammen funktionell mit D1 und R1 in Fig. 4 äquivalent sind. Das Element T5 liefert die spannungsabhängigen Kapazitäten Cfb und Cli, die mit dem Ausgang am Emitter von T3 gekoppelt sind. Damit sich die gewünschten Charakteristiken ergeben, ist T5 als bipolares Element mit fünf Emittern und mehrfachen Basiskontakten ausgebildet; diese Struktur wird später noch näher besprochen. Die als Diode geschalteten Transistoren D8, D5 und D6, tragen dazu bei, Strom über T1 und T7 an T4 zu [iefern, wenn das Ausgangssignal vom Wert VH gegen Masse getrieben wird. Die diode D7 hindert T2 daran, tief in den Sättigungsbereich zu gelangen.6 shows a second embodiment of the invention in the form of a NAND driver circuit with two input signals. In Fig. 6 and FIG. 4 corresponding reference numerals relate to elements with similar functions. The circuit consists of an AND gate with two inputs A and B, which are connected to the emitters of the transistors T6A and T6B. The transistor D4 connected as a diode between the base and the collector of T6A and T6B prevents them from reaching deep into the saturation region. The T6A and T6B collectors are coupled to the bases of T1 and T7 via resistor R7. The emitters of T1 and T7 are connected to the base of transistor T4, which serves to reduce the voltage to ground potential. The collector of T1 is connected to the input of the amplification transistor T2, as well as to the diodes D2 and D3, which are coupled to VH via R4 to avoid deep saturation of T1. The emitter of T2 is connected to the base of the output driver transistor T3, the emitter of which is in turn connected to the output V out . The collector of T7 is coupled to the base of T8, whose emitter is connected to the base of T3 to provide additional driver current for T3. The current for driving T2 is provided by the combination T9, R1, R12 and R13, which together are functionally equivalent to D1 and R1 in FIG. 4. The element T5 supplies the voltage-dependent capacitances Cfb and Cli, which are coupled to the output at the emitter of T3. To achieve the desired characteristics, T5 is designed as a bipolar element with five emitters and multiple base contacts; this structure will be discussed in more detail later. Transistors D8, D5 and D6, connected as diodes, help to supply current via T1 and T7 to T4 when the output signal is driven to ground by the value VH. The diode D7 prevents T2 from reaching deep into the saturation range.

Ein Beispiel fur die Dimensionierung der in der Schaltung nach Fig. 6 verwendeten Widerstände ist im folgenden angegeben:

  • Widerstand R1 zwischen der Basis von T2 und den Emittern entsprechenden Bereichen von T5:
    • R = 2 k9 Ω Widerstand R2 zwischen Emitter von T1 und
  • Masse:
    • R2 = 0,4 kΩ Widerstand R3 parallel zu D8:
    • R3 = 2 k9 Widerstand R4 zwischen VH und Kollektor von
  • D2:
    • R4 = 5,8 kΩ Widerstand R5 zwischen den Kollektoren von
  • D2 und D4:
    • R = 0,2 kQ Widerstand R6 zwischen den Basisanschlüssen von T6A und D4: R6 = 1 k9
    • Widerstand R7 zwischen den Kollektoren von T6A, T6B und der Basis von T1:
      • R7 = 0,5 kQ Widerstand R8 zwischen Basis und Emitter von
    • T1:
      • R8 = 3 kΩ Widerstand R9 zwischen VH und der Basis von
    • T8:
      • R9 = kΩ Widerstand R10 zwischen VH und dem Kollektor von T3:
      • R10 = 20 Ω Widerstand R11 zwischen dem Emitter von T3 und dem Kollektor von T4:
      • R11 = 20 Ω Widerstand R12 zwischen VH und dem Kollektor von T9:
      • R12 = 0,15 kΩ Widerstand R13 zwischen VH und der Basis von
    • T9:
      • R13 = 3 kΩ Widerstand R 14 zwischen der Basis von T9 und dem einem Kollektor entsprechenden Bereich von T5: R14 = 7 kQ.
An example of the dimensioning of the resistors used in the circuit according to FIG. 6 is given below:
  • Resistance R1 between the base of T2 and the areas of T5 corresponding to the emitters:
    • R = 2 k9 Ω resistor R2 between emitter of T1 and
  • Dimensions:
    • R2 = 0.4 kΩ resistor R3 parallel to D8:
    • R3 = 2 k9 resistor R4 between VH and collector of
  • D2:
    • R4 = 5.8 kΩ resistor R5 between the collectors of
  • D2 and D4:
    • R = 0.2 kQ resistor R6 between the base connections of T6A and D4: R6 = 1 k9
    • Resistor R7 between the collectors of T6A, T6B and the base of T1:
      • R7 = 0.5 kQ resistor R8 between base and emitter of
    • T1:
      • R8 = 3 kΩ resistor R9 between VH and the base of
    • T8:
      • R9 = kΩ resistor R10 between VH and the collector of T3:
      • R10 = 20 Ω resistor R11 between the emitter of T3 and the collector of T4:
      • R11 = 20 Ω resistor R12 between VH and the collector of T9:
      • R12 = 0.15 kΩ resistor R13 between VH and the base of
    • T9:
      • R13 = 3 kΩ resistor R 14 between the base of T9 and the area of T5 corresponding to a collector: R14 = 7 kQ.

Im Betrieb arbeitet der Schaltkreis von Fig. 6 in ähnlicher Weise wie der von Fig. 4, wenn das; zusätzliche logische UND-Glied am Eingang berücksichtigt wird. Wenn eines oder beide der Eingangssignale A und/oder B' den niederen logischen Pegel aufweisen (Null V), so leitet entweder T6A oder T6B oder aber beide und führen dazu, daß die Basis von T1 und T7 ein Potential in der Nähe des Massenpotentials (Null V) sehen. Da T1 und T7 nicht leiten, bleibt auch T4 nicht leitend. Das Ausgangssignäl Vaus hat zu diesem Zeitpunkt schon einen Wert von im wesentlichen VH erreicht und behält dieses Potential solange bei, bis beide Eingangssignale A und B' wieder den hohen logischen Pegel einnehmen. Wenn beide Eingangssignale A und B' ein ausreichend hohes Potential aufweisen, so daß die Transistoren T6A und T6B nicht mehr leiten, steigt das Potential an der Basis von T1 und T7 an, so daß diese leitend werden. Es fließt dann ein Strom durch T1 und T7, zur Basis T4, der dem Transistor T4 ansetzt und so Vaus gegen das Massenpotential zieht. Die Dioden D8, D5 und D6 liefern zusammen mit T1 und T7 zusätzlichen Strom an T4, und zwar in Abhängigkeit der Belastung der Ausgangsklemme. Die zwischen die Kollektoren von T1 und T7 geschaltete Diode D6 bewirkt einen Ausgleich der kollektorströme dieser beiden Transistoren.In operation, the circuit of Figure 6 operates in a similar manner to that of Figure 4 when that; additional logical AND gate at the input is taken into account. If one or both of the input signals A and / or B 'are at the low logic level (zero V), then either T6A or T6B conducts or both and result in the base of T1 and T7 having a potential close to the ground potential ( See zero V). Since T1 and T7 do not conduct, T4 also remains non-conductive. At this point in time, the output signal V out has already reached a value of essentially VH and maintains this potential until both input signals A and B 'have returned to the high logic level. If both input signals A and B 'have a sufficiently high potential that the transistors T6A and T6B no longer conduct, the potential at the base of T1 and T7 increases so that they become conductive. A current then flows through T1 and T7, to the base T4, which attaches to the transistor T4 and thus pulls V out against the ground potential. The diodes D8, D5 and D6 together with T1 and T7 supply additional current to T4, depending on the load on the output terminal. The diode D6 connected between the collectors of T1 and T7 balances the collector currents of these two transistors.

Wenn das Ausgangssignal Vaus auf Masse liegt, sind T2 und T3 nichtleitend. Der Widerstand-Spannungsteiler R13 und R14 liegt nun zwischen VH und Masse (ußer die Basis von T5) und das Potential an der Basis von T9 schaltet T9 ein und lädt die Mehrfachemitter von T5 auf ein Potential, das ungefähr ein Vbe-Spannungsabfall unter dem Potential liegt, das durch den Spannungsteiler R13 und R14 bestimmt ist. Die Rückkoppetkapazität Cfb wird dadurch auf dasselbe Potential geladen. Gleichzeitig wird die interne Lastkapazität CLi auf VH geladen. Wenn eines oder beide der Eingangssignale A und/ oder B genugend stark abfallen, um T6A oder T6B einzuschalten und somit T1, T7 und T4 in den Sperrzustand übergehen, steigt das Potential an der Basis von sowohl T2 und T8 gegen VH, T2 und T8 werden leitend, dadurch auch T3 und Vaus kann ansteigen. Wie früher beschrieben, führt der Anstieg von Vaus zu einer kapazitiven Kopplung der in Sperrichtung geschalteten Emitter von T5 und zu einem ausreichend hohen Potential, um Strom an T2 zu tiefem, bis Vaus auf den Wert VH ansteigt. Wenn das Potential an den Mehrfachemittern von T5 ansteigt, sperrt T9, da sein Emitter ein höheres Potential aufweist als seine Basis.When the output signal V out is at ground, T2 and T3 are not conductive. Resistor voltage divider R13 and R14 is now between VH and ground (excluding the base of T5) and the potential at the base of T9 turns on T9 and charges the multiple emitters of T5 to a potential that is approximately one Vbe voltage drop below the potential lies, which is determined by the voltage divider R13 and R14. The This feeds back capacitance Cfb to the same potential. At the same time, the internal load capacity CLi is loaded onto VH. If one or both of the input signals A and / or B fall sufficiently strong to turn on T6A or T6B and thus T1, T7 and T4 go into the blocking state, the potential at the base of both T2 and T8 against VH, T2 and T8 increases conductive, thus T3 and V out can also rise. As described earlier, the rise in V out leads to capacitive coupling of the reverse emitters of T5 and to a sufficiently high potential to lower current at T2 until V out rises to the value VH. If the potential at the multiple emitters of T5 increases, T9 blocks because its emitter has a higher potential than its base.

Die Fig. 7A und 7B zeigen die Struktur des Elements T5, wie es in den Schaltkreis von Fig. 6 eingebaut ist; für alle Transistoren wird dabei ein gemeinsamer Herstellprozeß verwendet. Das kapazitive Element wird in einer isolierten Diffusionswanne in form eines dem Kollektor entsprechend ein Bereichs 16 aus epitaktischem N-Silicium gebildet, das auf einem P-Substrat 18 erzeugt wurde; die Wanne ist durch die Isolationsbereiche 20 begrenzt. Die Diffusionswanne ist im wesentlichen identisch mit denjenigen, die für die anderen bipolaren Elemente auf dem Schaltkreisplättchen verwendet werden. Obwohl die übrigen Transistorstrukturen auf dem Substrat einen vergrabenen N+-Subkollektor verwenden, fehlt ein solcher in dem kapazitiven Element, um die Dichte der Isolationsfehler (sogenannte Pipe-Fehler) auf ein Minimum herabzusetzen und maximalen Kollektorwiderstand zu erreichen. Aus demselben Grund wird der Kontakt zum Kollektor in einer Erweiterung des dem Kollektor entsprechenden Bereichs 16 angebracht. Innerhalb des dem Kollektor entsprechenden Bereichs 16 ist ein einzelner der Basisentsprechender Bereich 22 mit einer Leitfähigkeit vom P-Typ eindiffundiert und innerhalb des der Basis entsprechenden Bereichs 22 eine Mehrzahl von dem Emitter entsprechenden Bereichen 24, beispielsweise 5. Eine geeignete Isolationsschicht 26 bedeckt die Oberfläche des Elements mit Ausnahme der Kontaktlöcher, an denen die über der Struktur liegenden nicht gezeichneten Leiterbahnen einen ohmschen Kontakt mit den verschiedenen Teilen des dargestellten Halbleitersubstrats bilden. Alle dem Emitter entsprechenden Bereiche sind mit einem gemeinsamen Leiter verbunden, der finger- ähnliche Ausstrahlungen aufweist, die sich längs der dem Emitter entsprechenden Bereiche 24 erstrecken. In ähnlicher Weise sind Mehrfachkontakte, beispielsweise sechs, zur Kontaktierung des der Basis entsprechenden Bereichs 22 vorgesehen.FIGS. 7A and 7B show the structure of the element T5 as it is built into the circuit of FIG. 6; a common manufacturing process is used for all transistors. The capacitive element is formed in an insulated diffusion trough in the form of a region 16 made of epitaxial N silicon which corresponds to the collector and was produced on a P substrate 18; the tub is delimited by the insulation areas 20. The diffusion well is essentially identical to that used for the other bipolar elements on the circuit board. Although the remaining transistor structures on the substrate use a buried N + subcollector, one is missing in the capacitive element in order to minimize the density of the insulation faults (so-called pipe faults) and to achieve maximum collector resistance. For the same reason, the contact to the collector is made in an extension of the area 16 corresponding to the collector. A single region 22 corresponding to the base having a P-type conductivity is diffused within the region 16 corresponding to the collector and a plurality of regions 24, for example 5, corresponding to the emitter are diffused within the region 22 corresponding to the base. A suitable insulation layer 26 covers the surface of the Elements with the exception of the contact holes, at which the conductor tracks not shown above the structure form an ohmic contact with the different parts of the semiconductor substrate shown. All areas corresponding to the emitter are connected to a common conductor which has finger-like emissions which extend along the areas 24 corresponding to the emitter. In a similar manner, multiple contacts, for example six, are provided for contacting the area 22 corresponding to the base.

Die Kapazität des Rückkoppelkondensators Cfb kann variiert werden, indem Anzahl und Größe, (d.h. die Fläche der Grenzschicht) der Emitterbereiche vergrößert oder verkleinert werden. Der Wert von Cfb kann geändert werden, wobei sich die Kapazität der Basis-Kollektor-Grenzschicht nur wenig oder gar nicht ändert, so daß das Verhältnis von Cfb zu CLi ebenfalls eingestellt werden kann. Da der dem Kollektor entsprechende Bereich 16 direkt mit VH verbunden ist, sind die normalerweise großen Kapazitäten Kollektor-Isolation und Kollektor-Substrat von den aktiven Klemmen des Elements isoliert.The capacitance of the feedback capacitor Cfb can be varied by increasing or decreasing the number and size (i.e. the area of the boundary layer) of the emitter regions. The value of Cfb can be changed with little or no change in the capacitance of the base-collector interface so that the ratio of Cfb to CLi can also be adjusted. Since the area 16 corresponding to the collector is connected directly to VH, the normally large capacitance collector insulation and collector substrate are isolated from the active terminals of the element.

Die bisherige Beschreibung bezog sich auf NPN-Transistoren; für den Fachmann ist es jedoch ohne weiteres möglich, mit Hilfe de Bekannten Ersetzungsregeln anstelle der NPN-Transistoren solche vom Typ PNP zu verwenden. Das mit T5 bezeichnete kapazitive Element wurde in den Zeichnungen mit den Symbolen für einen Bipolartransistor dargestellt; dies geschah hauptsächlich, um die strukturellen Ahnlichkeiten des Elements mit konventionellen Bipolartransistoren zu unterstreichen. Es muß jedoch betont werden, daß Element 5 nicht in einem Bereich arbeitet, in dem eine Transistorwirkung auftritt.The description so far has referred to NPN transistors; however, it is readily possible for the person skilled in the art to use PNP-type ones instead of NPN transistors with the aid of the known replacement rules. The capacitive element labeled T5 has been shown in the drawings with the symbols for a bipolar transistor; this was done mainly to underline the structural similarities of the element with conventional bipolar transistors. However, it must be emphasized that element 5 does not operate in an area where transistor action occurs.

Claims (10)

1. Integrated semiconductor barrier layer capacitance having a first p-n junction diode (10, Fig. 5a) and a second p-n junction diode (12) which is oppositely poled with respect to the first p-n junction diode, and in which all the p-n junction diodes are operated in the backward direction, characterized in that the first diode (10), the second diode (12) and a third p-n junction diode (14) are arranged in series between a reference potential (ground, Fig. 5A) and an output terminal (B), the third diode (14) being poled in the same direction as the first diode (10), and that an input terminal (A) is connected between the first and the second p-n junction diodes, and that a bias potential (VH) is connected to a terminal between the second and the third p-n junction diodes so that the capacitance of the first p-n junction diode provided between the input terminal (A in Fig. 5) and the output terminal (B in Fig. 5) is separated by the capacitance of the second p-n junction diode from the reference potential connected to the third p-n junction diode.
2. Semiconductor barrier layer capacitance as claimed in claim 1, characterized in that the p-n junction diodes are provided by a single transistor structure having an emitter, a base and a collector formed in a semiconductor chip, the first p-n junction diode comprising a region (24, Fig. 7) corresponding to the emitter of the transistor and a region (22) corresponding to the base of the transistor, the second p-n junction diode comprising the region (22) corresponding to the base and a region (16) corresponding to the collector, and the third p-n . junction diode comprising the region (16) corresponding to the collector and an isolation region (18, 20) isolating the transistor structure in the semiconductor chip.
3. Semiconductor barrier layer capacitance as claimed in claim 2, characterized in that a plurality of the regions (24, Fig. 7A) each corresponding to the emitter are arranged in a common region (22) corresponding to the base, and are connected to a common output terminal.
4. Semiconductor barrier layer capacitance as claimed in claim 2 or 3, characterized in that a constant biasing potential (VH) is applied at the bias potential terminal.
5. Bootstrap circuit comprising a semiconductor barrier layer capacitance as claimed in any one of claims 1 to 4, characterized in that the semiconductor barrier layer capacitance (T5, Fig. 4) is arranged as a feedback device in an integrated bipolar bootstrap circuit, that the output signal of at least one amplifier stage (T2, T3) is connected to the input terminal (A) of the semiconductor barrier layer capacitance, and that the output terminal (B) of the semiconductor barrier layer capacitance transfers the feedback signal.
6. Bootstrap circuit as claimed in claim 5, characterized in that the amplifier stage comprises an emitter follower (T2, T3) of the Darlington type.
7. Bootstrap circuit as claimed in claim 6, characterized in that the bias potential terminal (VH, Fig. 5A) of the semiconductor barrier layer capacitance (T5) is connected to a current source for the amplifier stage.
8. Bootstrap circuit as claimed in one of claims 5 to 7, characterized in that between the supply voltage and the input terminal (A) of the semiconductor barrier layer capacitance (T5) a voltage divider (R13, R14) is arranged having its centre tap connected to the base of a transistor (T9) which with its collector is connected via a resistor (R12) to the supply voltage, and with its emitter to the output terminal of the semiconductor barrier layer (T5), as well as via a resistor (R1) to the base of the first transistor (T2) of the emitter follower.
9. Bootstrap circuit as claimed in claim 8, characterized in that the base and the emitter of an input transistor (T1 ) are respectively connected to the base and the emitter, of a second transistor (T7), that the collector of the second transistor (T7) is connected to the base of a third transistor (T8) and via a resistor (R9) to the supply voltage, and that the collector of the third transistor (T8) is connected to the supply voltage and its emitter to the base of the second transistor (T3) of the emitter follower.
10. Bootstrap circuit as claimed in claim 9, characterized in that the collector of the input transistor (T1) is connected to the collector of a fourth transistor (D6) which is connected as a diode and has its emitter connected to the collector of the second transistor (D7), that the, base of the fourth transistor (D6) is connected to the emitter of a fifth transistor (D5) which is connected as a diode and has its collector connected to the base of the second transistor (T3) of the emitter follower, and that a diode (D8) is connected across the base and emitter of the second transistor (T3) of the emitter follower.
EP78100194A 1977-06-29 1978-06-19 Semiconductor junction capacitor in integrated method of construction and bootstrap circuit with such a capacitor Expired EP0000169B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US05/811,028 US4191899A (en) 1977-06-29 1977-06-29 Voltage variable integrated circuit capacitor and bootstrap driver circuit
US811028 2001-03-16

Publications (2)

Publication Number Publication Date
EP0000169A1 EP0000169A1 (en) 1979-01-10
EP0000169B1 true EP0000169B1 (en) 1981-10-07

Family

ID=25205344

Family Applications (1)

Application Number Title Priority Date Filing Date
EP78100194A Expired EP0000169B1 (en) 1977-06-29 1978-06-19 Semiconductor junction capacitor in integrated method of construction and bootstrap circuit with such a capacitor

Country Status (5)

Country Link
US (1) US4191899A (en)
EP (1) EP0000169B1 (en)
JP (1) JPS5412577A (en)
DE (1) DE2861127D1 (en)
IT (1) IT1112275B (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4321490A (en) * 1979-04-30 1982-03-23 Fairchild Camera And Instrument Corporation Transistor logic output for reduced power consumption and increased speed during low to high transition
US4376252A (en) * 1980-08-25 1983-03-08 International Business Machines Corporation Bootstrapped driver circuit
US4516041A (en) * 1982-11-22 1985-05-07 Sony Corporation Voltage controlled variable capacitor
US4679215A (en) * 1985-12-06 1987-07-07 Sperry Corporation Exceedance counting integrating photo-diode array
US4752913A (en) * 1986-04-30 1988-06-21 International Business Machines Corporation Random access memory employing complementary transistor switch (CTS) memory cells
US4760282A (en) * 1986-11-13 1988-07-26 National Semiconductor Corporation High-speed, bootstrap driver circuit
US4791313A (en) * 1986-11-13 1988-12-13 Fairchild Semiconductor Corp. Bipolar transistor switching enhancement circuit
US5255240A (en) * 1991-06-13 1993-10-19 International Business Machines Corporation One stage word line decoder/driver with speed-up Darlington drive and adjustable pull down
US5680073A (en) * 1993-06-08 1997-10-21 Ramot University Authority For Applied Research & Industrial Development Ltd. Controlled semiconductor capacitors
JP2004241624A (en) * 2003-02-06 2004-08-26 Mitsubishi Electric Corp Voltage controlled oscillation circuit
US7602228B2 (en) 2007-05-22 2009-10-13 Semisouth Laboratories, Inc. Half-bridge circuits employing normally on switches and methods of preventing unintended current flow therein
DE102016216667A1 (en) * 2015-09-10 2017-03-16 Schaeffler Technologies AG & Co. KG Phaser
US10360958B2 (en) * 2017-06-08 2019-07-23 International Business Machines Corporation Dual power rail cascode driver

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1764148A1 (en) * 1968-04-10 1971-05-19 Itt Ind Gmbh Deutsche Voltage-dependent capacitor, especially for solid-state circuits
US3544862A (en) * 1968-09-20 1970-12-01 Westinghouse Electric Corp Integrated semiconductor and pn junction capacitor
FR2036530A5 (en) * 1969-03-24 1970-12-24 Radiotechnique Compelec

Also Published As

Publication number Publication date
DE2861127D1 (en) 1981-12-17
EP0000169A1 (en) 1979-01-10
IT7825052A0 (en) 1978-06-28
JPS5635028B2 (en) 1981-08-14
JPS5412577A (en) 1979-01-30
US4191899A (en) 1980-03-04
IT1112275B (en) 1986-01-13

Similar Documents

Publication Publication Date Title
DE69027240T2 (en) Control circuit for a MOS power transistor with an inductive load
DE68905269T2 (en) MOS transistor and application in a freewheeling diode.
DE3834841C2 (en) Integrated arrangement in a substrate to avoid parasitic substrate effects
DE2751881A1 (en) MONOLITHIC DIGITAL SEMI-CONDUCTOR CIRCUIT WITH SEVERAL BIPOLAR TRANSISTORS
DE3838962C2 (en)
DE2621136C2 (en) Pre-programmed semiconductor memory
EP0000169B1 (en) Semiconductor junction capacitor in integrated method of construction and bootstrap circuit with such a capacitor
DE2460150C2 (en) Storage arrangement that can be monolithically integrated
DE69020316T2 (en) MOS circuit with a gate-optimized lateral bipolar transistor.
EP0261370B1 (en) Integrated circuit having latch-up protection circuit fabricated by complementary mos technology
DE2156805A1 (en) Monolithic memory with bipolar transistors
DE1942559B2 (en) Storage facility for information
DE69624493T2 (en) Device and method for suppressing parasitic effects in an integrated circuit with pn isolation zones
EP0261371B1 (en) Integrated circuit with latch-up protection circuit fabricated by complementary mos technology
DE2657293C3 (en) Electrical circuit arrangement in transistor-transistor logic circuit (TTL)
EP0078335B1 (en) Method for reading a semiconductor memory
DE2309616C2 (en) Semiconductor memory circuit
DE2426447C2 (en) Complementary transistor circuit for performing Boolean operations
EP0004871B1 (en) Monolithic integrated semiconductor device with at least one i2l structure, memory cell using such device and memory matrix using such memory cell
EP0004274B1 (en) Basic integrated transistor logic circuit and logic circuit using such a basic circuit
EP0028306B1 (en) Monolithic integrated memory arrangement with i2l memory cells
DE2612666A1 (en) HIGHLY INTEGRATED, INVERTING LOGICAL CIRCUIT
DE3853182T2 (en) Memory cell with saturated fast writing.
EP0003030B1 (en) Bipolar dynamic memory cell
DE2855342C2 (en) Memory circuit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17P Request for examination filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 2861127

Country of ref document: DE

Date of ref document: 19811217

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19840605

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19840619

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19890619

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19900228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19900301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT