[go: up one dir, main page]

EA009172B1 - Способ вскрытия слабо затвердевших формаций - Google Patents

Способ вскрытия слабо затвердевших формаций Download PDF

Info

Publication number
EA009172B1
EA009172B1 EA200600944A EA200600944A EA009172B1 EA 009172 B1 EA009172 B1 EA 009172B1 EA 200600944 A EA200600944 A EA 200600944A EA 200600944 A EA200600944 A EA 200600944A EA 009172 B1 EA009172 B1 EA 009172B1
Authority
EA
Eurasian Patent Office
Prior art keywords
particles
modifier
interval
colloidal
silicon dioxide
Prior art date
Application number
EA200600944A
Other languages
English (en)
Other versions
EA200600944A1 (ru
Inventor
Самюэль Даникан
Голчехрех Саламат
Алехандро Пена
Эрик Нельсон
Original Assignee
Шлюмбергер Текнолоджи Б.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Шлюмбергер Текнолоджи Б.В. filed Critical Шлюмбергер Текнолоджи Б.В.
Publication of EA200600944A1 publication Critical patent/EA200600944A1/ru
Publication of EA009172B1 publication Critical patent/EA009172B1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/56Compositions for consolidating loose sand or the like around wells without excessively decreasing the permeability thereof
    • C09K8/57Compositions based on water or polar solvents
    • C09K8/572Compositions based on water or polar solvents containing inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/50Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
    • C09K8/504Compositions based on water or polar solvents
    • C09K8/5045Compositions based on water or polar solvents containing inorganic compounds
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/02Subsoil filtering
    • E21B43/025Consolidation of loose sand or the like round the wells without excessively decreasing the permeability thereof
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/261Separate steps of (1) cementing, plugging or consolidating and (2) fracturing or attacking the formation

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Silicon Compounds (AREA)
  • Processing Of Solid Wastes (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Fats And Perfumes (AREA)

Abstract

Способ вскрытия незатвердевшего интервала в подземной формации включает стадию затвердевания. Стадию затвердевания выполняют закачиванием водного раствора коллоидных частиц с рН модификатором и/или модификатором ионного состава. Образуется плотный гель, который удерживает микрочастицы вместе. За отверждением следует гидравлический разрыв. Отклонение к областям более низкой проницаемости может быть увеличено при использовании микрометрических частиц.

Description

Это изобретение относится, в общем, к способам заканчивания подземных скважин, и конкретнее к способам и устройствам для вскрытия слабо затвердевших формаций, приводящим к устранению или уменьшению выноса песка.
Уровень техники
Углеводородные флюиды, такие как нефть и природный газ, получают из подземной геологической формации, то есть резервуара, бурением скважин, которое вскрывает формации, содержащие углеводороды. Как только ствол скважины пробурен, скважина должна быть закончена; заканчивание предусматривает проектирование, выбор и установку оборудования и материалов в стволе скважины или вокруг него для транспортирования, перекачивания или регулирования добычи или закачивания флюидов. После того как скважина закончена, может начаться добыча нефти и газа.
Гидравлический разрыв является первичным инструментом для улучшения производительности скважины размещением или расширением каналов ствола скважины в резервуаре. Эта операция практически выполняется гидравлическим закачиванием жидкости гидроразрыва в ствол скважины, проникающий в подземную формацию, и подачи под давлением жидкости гидроразрыва к пластовым слоям. В результате пластовые слои или горная порода трескаются и ломаются. Расклинивающий агент помещают в разлом для предохранения разлома от закрытия и, таким образом, обеспечения улучшенного течения добываемого флюида, то есть нефти, газа или воды.
В случае, если формация является мягкой или слабо затвердевшей, маленькие частицы, типично песка, присутствующие в формации, могут перемещаться с углеводородами. Такой вынос песка очень нежелателен, поскольку это эродирует поверхностное и подземное оборудование, требует процесса удаления прежде, чем углеводород может быть обработан, и обычно противодействует желательным эффектам способов интенсификации добычи, таких как кислотный способ интенсификации добычи.
Самым общим подходом к минимизации потока маленьких частиц является фильтрование добываемых флюидов через гравийный фильтр, задерживаемый ситом. Добытые флюиды перемещаются через гравийный фильтр и сито без существенного уменьшения выноса перед входом в ствол скважины, в то время как более мелкие частицы блокированы. Однако этот метод является сравнительно затруднительным, и со временем гравийный фильтр и сито могут быть засорены нагаром или эродированы песком.
Это объясняет развитие так называемых бесситовых способов вскрытия скважины. Эти способы типично включают в себя закачивание отверждающего флюида, включающего смолу, вулканизирующий агент, катализатор и гидрофобизатор. Смола располагается в формации, отверждая ее и уменьшая концентрацию свободных маленьких частиц. Примеры отверждающих флюидов и способов их использования описаны, например, в патентах США №№ 5806593; 5199492; 4669543; 4427069 и 4291766.
Обычно применяемые отверждающие флюиды обладают относительно долгим временем схватывания. Поэтому флюиды имеют тенденцию сохранять течение в области наименьшего сопротивления, оставляя остальные необработанными. Это решительно ограничивает длину ствола скважины, которая может быть обработана в однократном применении, не больше чем приблизительно 6 м (20 футов). Дополнительно, неважные результаты достигнуты с гетерогенными формациями, состоящими, например, из слоев, имеющих различные проницаемости. Системы отверждения на основе смолы, как известно, очень усложнены в применении, например, требуя до пяти стадий обработки, и они часто вызывают экологические проблемы.
Для устранения недостатков обычно применяемых флюидов были предложены многостадийные обработки скважины. Большинство из них включает или эмульсию, или пену. И8 № 5363917 указывает вспененный отверждающий флюид, который может способствовать сгоранию углеводородов в формации. Продукты сгорания углеводорода отверждают формацию. И8 №№ 5010953 и 5567088 раскрывают отверждающий флюид, получаемый как аэрозоль в паре. Вышеупомянутый патент указывает, что пар поддерживает пространство пустот в формации в течение схватывания полимеризуемого соединения, например фурфурилового спирта. И8 № 6364020 указывает эмульсии, содержащие по меньшей мере две дисперсные фазы, содержащие гелеобразующий полимер, такой как полисахарид, в одной фазе и неорганический или органический сшивающий агент в другой.
Известны другие способы заканчивания незатвердевшей формации с отверждающей обработкой или без нее. И8 № 5551514 предлагает многостадийное отверждение, сопровождаемое гидравлической обработкой гидроразрыва, в которой применяются способы контроля обратного потока расклинивающего агента. И8 № 6450260 описывает способ выполнения техники, приведенной в И8 № 5551514, используя гибкую систему геля.
Другие способы минимизации выноса песка включают определение направления распространения гидроразрыва и определение местонахождения или формирования перфорационных каналов (см. И8 №№ 5386875 и 6283214). И8 № 6431278 определяет кривую, которая коррелирует процентное отношение потока через перфорационные каналы не в фазе с интервалом проводимости гидроразрыва к проницаемости формации. При желаемом выносе потока может быть определена проводимость формации. Это позволяет нефтедобывающей фирме проектировать и выполнять операцию гидроразрыва для достижения проводимости, необходимой для получения скважины ниже критического перепада давления для выноса песка.
Хотя некоторые успехи были получены с большинством вышеупомянутых способов, ни один из
- 1 009172 них не достиг большого коммерческого одобрения, в особенности ввиду технических и стоимостных ограничений.
Поэтому объект настоящего изобретения - обеспечение улучшенного способа заканчивания незатвердевшего интервала.
Сущность изобретения
Одной задачей настоящего изобретения является способ вскрытия в подземной формации незатвердевшего интервала, способного к образованию частиц, таких как песок, включающий стадию затвердевания упомянутого интервала закачиванием в упомянутый интервал водного раствора коллоидных частиц и рН модификатора и/или модификатора ионного состава для образования плотного геля, который скрепляет частицы вместе, и затем стадию гидравлического гидроразрыва затвердевшего интервала.
Другой задачей настоящего изобретения является способ вскрытия в подземной формации незатвердевшего интервала, способного к образованию частиц, таких как песок, включающий стадию затвердевания упомянутого интервала закачиванием в упомянутый интервал водного раствора коллоидных частиц и рН модификатора и/или модификатора ионного состава для образования плотного геля, который скрепляет частицы вместе, и закупоривающего агента для поддержания однородных скоростей потока водного раствора через области интервала с несходными проницаемостями и затем стадию гидравлического гидроразрыва затвердевшего интервала.
Краткое описание чертежей
Вышеупомянутые и дополнительные задачи, признаки и преимущества настоящего изобретения будут лучше поняты при ссылке на приложенное детальное описание и чертежи, где фиг. 1 показывает изменение времени гелеобразования при комнатной температуре раствора коллоидного диоксида кремния в зависимости от концентрации соляной кислоты;
фиг. 2 является схематичным видом устройства, используемого для оценки приемистости коллоидного диоксида кремния в песчаные пробки различной проницаемости;
фиг. 3 показывает измерения неограниченной прочности на сжатие (ИС8) песчаных пробок с различной проницаемостью через формацию гелей частиц коллоидного диоксида кремния;
фиг. 4 показывает основную конфигурацию оборудования, используемого для выполнения испытаний затвердевания песка песчаных пробок, имеющих различную проницаемость, для моделирования операции одновременного затвердевания интервалов с несходной проницаемостью;
фиг. 5 показывает собранные объемы флюидов через песчаные пробки низкой (50-70 мД) и высокой (750 мД) проницаемости и входное давление для обеих песчаных пробок в эксперименте, выполненном с использованием оборудования, описанного на фиг. 4. Наблюдалось закупоривание пробки низкой проницаемости с последующим предпочтительным потоком через пробку высокой проницаемости;
фиг. 6 показывает средние скорости потока (6-А) и собранные объемы флюидов на выходах ячеек (6-В) в эксперименте, выполненном с использованием оборудования, изображенного на фиг. 4, когда состав микрометрических частиц был добавлен к раствору коллоидного диоксида кремния для улучшения отклонения потока к песчаной пробке низкой проницаемости;
фиг. 7 показывает результаты, подобные показанным на фиг. 6, с другим составом микрометрических частиц;
фиг. 8 показывает результаты, подобные показанным на фиг. 6, когда состав осажденных частиц диоксида кремния был добавлен к раствору коллоидного диоксида кремния для улучшения отклонения потока к песчаной пробке низкой проницаемости;
фиг. 9 показывает результаты, подобные показанным на фиг. 6, когда состав частиц слюды и крахмала эксперимента, показанного на фиг. 6, был добавлен к раствору коллоидного диоксида кремния для улучшения отклонения потока к песчаной пробке низкой проницаемости и система была предварительно промыта буферным раствором с оговоренным рН песчаных пробок.
Подробное описание изобретения
Первой стадией способа вскрытия слабо затвердевших формаций согласно настоящему изобретению является отверждение упомянутых формаций закачиванием жидкости, содержащей коллоидную суспензию.
Коллоидными суспензиями являются типично дисперсии дискретных очень маленьких частиц сферических или удлиненных по форме, заряженных так, что отталкивание между одноименно заряженными частицами стабилизирует дисперсию. Нарушение зарядного баланса, например, из-за удаления воды, изменения рН или добавления соли или водно-смешивающегося органического растворителя заставляет коллоидные частицы соединяться, приводя к образованию геля.
Дисперсия предварительно уплотнена как жидкость, прозрачная в случае относительно низких концентраций частиц, становясь опалесцентной или молочной при более высоких концентрациях. В любом случае, дисперсия может быть взята как жидкость, которая очень упрощает дозировку.
Коммерческие растворы коллоидных частиц типично включают диоксид кремния (также известный как силиказоль) и оксиды алюминия, сурьмы, олова, церия, иттрия и циркония. Частицы являются, главным образом, сферическими с размерами частиц обычно в пределах от приблизительно 4 до приблизительно 250 нм, но удлиненные частицы с длиной до 300 нм являются также доступными и предположительно приемлемыми для изобретения. Частицы могут иметь отрицательный или положительный заряд.
- 2 009172
Водные растворы коллоидных частиц диоксида кремния с размерами частиц в пределах между приблизительно 4 и приблизительно 100 нм, как было найдено, имели превосходную приемистость в песчаные пробки с такой низкой проницаемостью, как 50 мД. Предпочтительные коллоидные частицы имеют размер между 4 и 22 нм. Это уникальное свойство обеспечивает полную обработку матрицы на глубине нескольких футов. Не будучи связано с теорией, полагается, что после добавления рН модификатора и/или модификатора ионного состава диапазон соударений между частицами увеличивается и образуются силоксановые связи (δί-0-δί). Это приводит к плотному гелю, который скрепляет свободные частицы незатвердевшей формации (зерна песка). Действительно, после отверждения согласно изобретению песчаная пробка, которая перед обработкой не проявила абсолютно никакой когезии (поток песка как в песочных часах), показала сжимающую силу не менее чем приблизительно 1,72 МПа и проявилась как твердый разлом.
Коммерческие силиказоли доступны при концентрациях, находящихся между 15 и 50 вес.%. Такие коммерческие растворы могут быть использованы также или разбавлены до более низкого содержания диоксида кремния. Например, золи, содержащие между 25 и 50 вес.% диоксида кремния, обычно используются для целей этого изобретения, но могут быть разбавлены до 2 вес.%. Замечено, что объем закачанного раствора типично остается тем же самым, когда используются разбавленные растворы, но образуется гель более низкой сжимающей силы.
Температуры замерзания вызывают образование кристаллов льда в растворах коллоидного диоксида кремния, которое увеличивает концентрацию диоксида кремния в незамороженной части и ускоряет гелеобразование обогащенной диоксидом кремния фракции. При размораживании гелеобразный диоксид кремния не редиспергируется, но остается как осадок в расплавленном льду. В результате расплавленный материал также содержит пониженную концентрацию дисперсных частиц диоксида кремния и обычно является непригодным для использования. Необратимое гелеобразование коллоидного диоксида кремния при температурах ниже 0°С может быть предотвращено смешением упомянутого раствора коллоидного диоксида кремния с этиленгликолем, пропиленгликолем или метанолом при концентрации между 0,1 и 10 вес.%, предпочтительно между 0,1 и 5 вес.%.
Образование геля вызвано рН модификатором и/или модификатором ионного состава. Согласно одному варианту осуществления настоящего изобретения упомянутый модификатор ионного состава может быть солью. В этом случае суспензию коллоидного диоксида кремния (например, Ьибох®) смешивают с минерализованной водой (солями, содержащимися в этой минерализованной воде, являются предпочтительно хлорид калия, хлорид натрия или хлорид кальция, но могут также быть любыми минеральными или органическими солями или соединениями, подходящими для изменения ионного состава коллоидного раствора). Когда соль добавлена, противоположно заряженные ионы (в бессолевом золе положительные/отрицательные противоположно заряженные ионы, уравновешивающие отрицательный/положительный поверхностный заряд, являются диффузно ориентированными вокруг частицы) придвигаются намного более тесно к поверхности частицы, что уменьшает расстояние, через которое действуют силы отталкивания. Это вызывает понижение стабильности золя увеличением вероятности соударений между частицами, и это вызывает образование плотного геля. Время гелеобразования может быть установлено с концентрацией минерализованной воды или температурой. Распределение размера частиц и концентрация частиц могут также влиять на время гелеобразования.
Согласно другому варианту осуществления настоящего изобретения упомянутым рН модификатором является кислота или основание. Дисперсии коллоидного диоксида кремния, используемые для применений цементирования песка, обычно имеют рН между 8 и 11, но могут также быть кислыми (рН приблизительно 4). Добавлением кислого раствора/раствора основания рН коллоидной дисперсии может быть уменьшен/увеличен. Таким образом, заряды на поверхности частиц диоксида кремния уменьшаются и частицы могут войти в контакт и образовать силоксановые связи. Тенденция наиболее коллоидного диоксида кремния к гелю является самой большой при рН 5-6. Время гелеобразования может быть установлено с рН раствора и/или температурой для данного размера частиц диоксида кремния и концентрацией.
Концентрация рН модификатора и модификатора ионного состава находится между 0,1 и 5 вес.% и предпочтительно между 0,1 и 1,5 вес.%.
Объем закачиваемых отверждающих флюидов предпочтительно равен, по меньшей мере, двойному объему пор отверждаемой области формации. Упомянутая область формации обычно не больше чем 10 объемов пор в отверждаемой области. Обычно отверждаемая область имеет глубину между приблизительно 15 и приблизительно 90 см, типично приблизительно 30 см.
В случае, если отверждаемая формация является гетерогенной, процесс отверждения может быть выполнен с использованием выдержки по времени, в силу чего накачана часть отверждающего флюида, тогда накачивание остановлено так, что зоны более высокой проницаемости и, следовательно, более высокой приемистости являются затвердевшими. Ступенчатую процедуру повторяют, пока весь отверждающий флюид не будет накачан.
Согласно другому варианту осуществления настоящего изобретения отверждающий флюид включает не только коллоидные частицы, но также микрометрические частицы, такие как осажденные частицы диоксида кремния. Под микрометрическими частицами подразумевают частицы в диапазоне между
- 3 009172 приблизительно 0,5 и приблизительно 100 мкм и наиболее предпочтительно системы, имеющие по меньшей мере 80% частиц в диапазоне размера между приблизительно 1 и приблизительно 60 мкм. Микрометрические частицы имеют тенденцию проникать в области более высокой проницаемости и начинают образовывать низкопроницаемую корку на стенках резервуара, таким образом отклоняя отверждающий флюид к областям более низкой проницаемости и поддерживая постоянные скорости потока через отверждающиеся зоны с неравномерной проницаемостью. Упомянутые микрометрические частицы могут быть, например слюдой, осажденным диоксидом кремния, коллоидальным диоксидом кремния, неразбухающей глиной и крахмалом.
Пример 1. Выбор суспензии.
Десять коммерческих суспензий водного коллоидного диоксида кремния были протестированы. Некоторые характеристики суспензий приведены в табл. 1 ниже, включая заряд (Ν: отрицательный, Р: положительный), средний размер частиц, содержание диоксида кремния, удельную поверхность (8§р) и рН. Суспензии были загущены или добавлением соли (2 мл 4М №С1, добавленные к 14 мл коллоидной суспензии, см. результаты в табл. 2), или добавлением соляной кислоты (15 вес.% водного раствора кислоты, добавленного к 15 мл коллоидной суспензии, см. результаты в табл. 3). После 2 дней при 66°С сопротивление геля было оценено со шпателем приложением низкого давления (сопротивление 1 геля) или высокого давления (сопротивление 5 геля). Значение, располагающееся между 1 и 5, было оценено в зависимости от сопротивления геля (1 - для геля очень низкой силы, 5 - для геля высокой силы).
Таблица 1
Заряд Средний размер частиц (нм) Диоксид кремния (вес.%) Удельная поверхность (м2/г) рН
1 N 7 30 345 10
2 N 12 30 220 8/ 9
3 N 12 40 220 9,7
4 N 22 50 140 9
5 N 4 15 Неизвестно 11
6 N 100 50 Неизвестно 9
7 N 40 50 80 9,5
8 N 12 30 215 8,2
9 N 13-14 30 210-230 9,6
10 Р 12 30 230 4, 5
Таблица 2
Таблица 3
Ν’ 15 вес.% НС1 (мл) рН Сопротивление геля
ДО после
1 0,5 10 7 4
2 0,3 9 3 2
3 0,3 10 7 4
4 0,3 9 3 4
5 0,75 11 8 3
6 0,3 9 2 1
7 0,3 9 3 2
8 0, 2 8 2 1
9 0, 5 70 6 1
10 0,2 4,5 3 Нет геля
- 4 009172
Эти предварительные тесты показали, что суспензии с наименьшим размером коллоидных частиц (ниже 10 нм) обеспечивают лучшую прочность геля. Чем выше концентрация частиц, тем более прочный гель. Было дополнительно найдено, что меньшие частицы и более высокие концентрации приводили в лаборатории к более быстрому развитию геля.
Пример 2. Оптимальный рН.
Была выбрана суспензия № 3 примера 1. К 15 мл суспензии были добавлены различные количества соляной кислоты. Отношение между общей концентрацией НС1 в суспензии и временем гелеобразования (в часах) при комнатной температуре изображено на фиг. 1. Самое короткое время гелеобразования было получено с концентрацией кислоты 0,32 вес.%, соответствующей рН между приблизительно 6 и приблизительно 7.
Когда тот же самый тест был повторен с суспензией № 1 примера 1, было найдено, что самое короткое время гелеобразования - с рН между приблизительно 5 и приблизительно 6. Это показывает, что, когда используют кислоту, чтобы вызвать гелеобразование, концентрация должна предпочтительно быть подобрана так, чтобы рН суспензии был немного слабокислым (рН между приблизительно 5 и приблизительно 7) для получения самого короткого времени гелеобразования.
Пример 3. Тесты закачивания.
Фиг. 2 является схематичным видом устройства, используемого для оценки приемистости коллоидного диоксида кремния в песчаные пробки различной проницаемости. Это устройство включает в себя трубчатую ячейку 1, закрытую на одном конце верхним колпачком 2 и нижним колпачком 3 на другом конце. Песчаная пробка 4 помещена в ячейку 1 между двумя ситами 5. Поршень 6 включает в себя вход 7 жидкости для закачивания жидкостей обработки и предварительной обработки. Ячейка дополнительно соединена с источником 8 газа, таким как азот, который позволяет уплотнять песок проталкиванием поршня. Нижний колпачок содержит выход 9 жидкости для сбора жидкостей, которые передвигаются через песчаную пробку 4.
Песчаная пробка с 750 мД была предварительно промыта 2 вес.% КС1 рассолом перед закачиванием суспензии № 1 коллоидного диоксида кремния примера 1 с концентрацией соляной кислоты приблизительно 0,45 вес.% (рН между 6 и 7). Давление закачивания было только 0,04 МПа при температуре окружающей среды. Ячейка была оставлена в духовом шкафу на одну ночь при 93 °С. Возвратная проницаемость была меньше чем 1 мД.
Песчаная пробка с 50 мД была предварительно промыта раствором соляной кислоты при рН 4. Тест был выполнен при 82°С. Та же самая жидкость обработки, как в высокопроницаемой пробке, была закачана под давлением закачивания приблизительно 0,34 МПа. Пробку отверждали 3 дня в духовом шкафу при 93 °С. Возвратная проницаемость была меньше чем 1 мД.
Пример 4. Сжимающие тесты.
Неограниченная прочность на сжатие (ЛС8) затвердевших пробок была измерена после нескольких недель отверждения при 65°С. Три песчаные пробки, имеющие начальную проницаемость приблизительно 50-70 мД, приблизительно 750 мД и приблизительно 3 Д, были протестированы (2 теста были выполнены для каждой песчаной пробки). Песчаные пробки были отверждены коллоидным диоксидом кремния № 3 примера 1 с КС1, используемым как модификатор ионного состава. Результаты показаны на фиг. 3. Во всех случаях образование гелей приводило к достижению отвержденных пробок с прочностями на сжатие, располагающимися между 1,72 и 3,45 МПа.
Пример 5. Приемистость и отклонение без закупоривающих агентов.
Отверждаемые формации являются часто негомогенными с зонами более низкой и более высокой проницаемости. Когда отверждающий флюид закачан в такую формацию, он предпочтительно внедряется в зоны более высокой проницаемости. Если время гелеобразования отверждающего флюида является длинным по сравнению с временем закачивания, вероятно, что ни одна из зон более низкой проницаемости не отвержена.
Для оценки возможности обеспечения обработки по всему отверждаемому интервалу использовалось экспериментальное устройство, изображенное на фиг. 4. Оборудование состоит из двух ячеек (11 и 12) НазДег, связанных параллельно, в которых песчаные пробки (13 и 14), имеющие различные проницаемости, ограничены. Флюиды накачивают поршневыми насосами А и В и собирают через выходы ячеек (15 и 16). Ограничивающее давление установлено гидравлически насосом С, и электрическая система нагрева взаимосвязана с ячейками для достижения желательной температуры теста.
Ячейка 11 была заполнена песчаной пробкой 13, имеющей проницаемость приблизительно 50 мД. Ячейка 12 была заполнена песчаной пробкой 14, имеющей проницаемость приблизительно 750 мД. Каждая песчаная пробка имела диаметр 2,5 см и длину 30 см. Обработка была выполнена при 93°С и ограничивающем давлении 6,9 МПа. Два объема порового пространства 2 вес.% КС1 и два объема порового пространства НС1 при рН 4 были использованы как жидкость для предварительной промывки. Отверждающая обработка состояла из коллоидного диоксида кремния состава № 3 примера 1 с рН, установленным 8. Фиг. 5 показывает объем, собранный из выходов 15 и 16, соответственно, ячеек 11 и 12, и давление закачивания. В течение приблизительно 25 мин никакой флюид не был собран из выхода 15; толь- 5 009172 ко песчаная пробка высокой проницаемости была отверждена. В конце этой первой фазы началось отклонение, и флюид был собран на выходе 16. Приблизительно 103 мин пробка низкой проницаемости была закупорена. Наблюдалось закупоривание низкой проницаемости с последующим предпочтительным течением через пробку высокой проницаемости.
Пример 6. Приемистость и отклонение с закупоривающими агентами.
Пример 5 подтверждает, что полная обработка гетерогенной зоны может быть достигнута с отверждающим флюидом, основанным только на коллоидном диоксиде кремния; добавление более крупных микрометрических частиц, имеющих размеры между приблизительно 0,5 и приблизительно 100 мкм, может существенно уменьшить продолжительность обработки и, тем самым, необходимый накачиваемый объем. Три типа более крупных частиц были протестированы. Распределение этого размера частиц представлено в табл. 4 ниже. Распределение размера частиц было таким, что, например, 80% частиц типа А были между приблизительно 4,7 и приблизительно 51,8 мкм.
Таблица 4
А В С
Йо. 5 14,5 мкм 23,2 мкм 3,4 мкм
<6θ. 5 4,7 мкм 6,7 мкм 1,7 мкм
^0.5 51,8 мкм 58,1 мкм 7,0 мкм
Было использовано экспериментальное устройство фиг. 4. Отверждающий флюид был закачан при 93°С при давлении ограничения 6,9 МПа. рН отверждающих флюидов был установлен между 7 и 8, с раствором 15 вес.% НС1. К отверждающим флюидам примера 5 были добавлены растворы микрометрических частиц А, В и С при концентрациях между 0,1 и 0,5 вес.%.
Фиг. 6 показывает средние скорости потока (6-А) и объемы флюидов, собранные на выходах ячеек (6-В), в эксперименте, выполненном с помощью оборудования, изображенного на фиг. 4, когда состав частиц слюды и крахмала (размеры частиц между 0,5 и 100 мкм, средний диаметр 14,5 мкм) был добавлен к раствору коллоидного диоксида кремния для улучшения отклонения потока к песчаной пробке низкой проницаемости (50-70 мД), когда вторая пробка была пробкой высокопроницаемой (750 мД).
С частицами типа А при 0,25 вес.% наблюдалось, что начало затвердевания пробки низкой проницаемости произошло только после приблизительно 10 мин и что было достигнуто отношение скоростей потока 4:1 (высокая проницаемость: низкая проницаемость). Отношение между 10:1 и 15:1 ожидается без закупоривающих агентов. Поэтому добавление более крупных микрометрических частиц увеличило относительную скорость потока через пробку низкой проницаемости. После приблизительно 40 мин обе пробки оказались закупоренными.
Фиг. 7 показывает средние скорости потока как функцию времени (фиг. 7-А), протекающего через пробку высокой проницаемости (750 мД) и пробку низкой проницаемости (50 мД), для жидкости, содержащей частицы типа В (0,5 вес.% в данном примере). Объемы жидкости, собираемой на конце каждой пробки, показаны на фиг. 7-В. Частицы типа В оказались менее эффективными, чем частицы типа А с началом затвердевания пробки низкой проницаемости, происходящего приблизительно после 20 мин, и среднего отношения расходов между пробками высокой и низкой проницаемости приблизительно 6:1.
Фиг. 8 показывает результаты, подобные показанным на фиг. 6, когда состав осажденных частиц диоксида кремния (размеры частиц между 0,5 и 100 мкм, средний диаметр 3,4 мкм) был добавлен к раствору коллоидного диоксида кремния для улучшения отклонения потока к песчаной пробке низкой проницаемости (50-70 мД). Отношение скоростей потока около 1:1 (высокая проницаемость:низкая проницаемость) было достигнуто с этим закупоривающим агентом.
На фиг. 8-А показаны средние скорости потока как функция времени, протекающего через пробку высокой проницаемости (750 мД) и пробку низкой проницаемости (50 мД), для жидкости, содержащей частицы типа В (0,1 вес.% в данном примере). Объемы жидкости, собираемой на конце каждой пробки, показаны на фиг. 8-В. Обе пробки оказались затвердевшими почти одновременно, и среднее отношение скоростей потока между пробками высокой и низкой проницаемости было приблизительно 1:1, показывая, что комбинация коллоидных частиц и микрометрических частиц, подобных частицам типа С, приводила к гомогенной обработке негомогенной формации.
Фиг. 9 показывает результаты, подобные показанным на фиг. 6, когда состав частиц слюды и крахмала, изложенный на фиг. 6, был добавлен к раствору коллоидного диоксида кремния для улучшения отклонения потока к песчаной пробке низкой проницаемости (50-70 мД) и система была предварительно промыта буферным раствором с оговоренным рН песчаных пробок. Частицы типа А были использованы (0,5 вес.% в данном примере) с предварительной промывкой буферного раствора с рН 9,3, применяемой до закачивания раствора коллоидного диоксида кремния, который также содержит буферный агент для регулирования их рН до 9,3. Объемы жидкости, собираемой на конце каждой пробки, показаны на фиг. 9-В. Обе пробки оказались затвердевшими почти одновременно, и среднее отношение скоростей потока меж- 6 009172 ду пробками высокой и низкой проницаемости было приблизительно 3:1, показывая, что больше жидкости было закачено и закупоривающий эффект был улучшен контролем рН системы.

Claims (10)

1. Способ вскрытия незатвердевшего интервала в подземной формации, включающий стадию затвердевания упомянутого интервала закачиванием в упомянутый интервал водного коллоидного раствора, микрометрических частиц, рН модификатора и/или модификатора ионного состава для образования плотного геля, который удерживает частицы вместе, и затем стадию гидравлического разрыва затвердевшего интервала.
2. Способ по п.1, в котором коллоидные частицы имеют средний диаметр между 4 и 100 нм.
3. Способ по п.1 или 2, в котором коллоидные частицы являются частицами диоксида кремния.
4. Способ по п.3, в котором частицы диоксида кремния присутствуют в растворе с концентрацией между 2 и 50 вес.% и раствор содержит этиленгликоль, пропиленгликоль или метанол с концентрацией между 0,1 и 10 вес.%.
5. Способ по любому из предшествующих пунктов, в котором затвердевший интервал имеет прочность на сжатие, большую чем 1,72 МПа, и область затвердевания имеет глубину между приблизительно 15 и приблизительно 90 см.
6. Способ по любому из предшествующих пунктов, в котором модификатор ионного состава является рассолом, модификатор рН является кислотой или основанием и концентрация рН модификатора и/или модификатора ионного состава находится между 0,1 и 5 вес.%.
7. Способ по любому из предшествующих пунктов, в котором на стадии гидравлического разрыва гидроразрыв рассчитывают для создания длины, большей чем приблизительно удвоенная глубина затвердевшего интервала, и объем закачиваемых отверждающих флюидов находится между приблизительно 2 и приблизительно 10 объемов пор отверждаемой формации.
8. Способ по любому из предшествующих пунктов, дополнительно включающий отверждающую обработку закачиванием с использованием схемы с выдержкой по времени.
9. Способ по любому из предшествующих пунктов, в котором упомянутые коллоидные частицы являются заряженными.
10. Способ по любому из пп.1-9, в котором упомянутые микрометрические частицы выбраны из группы, состоящей из слюды, осажденного диоксида кремния, коллоидного диоксида кремния, неразбухающей глины и крахмала, и 80% упомянутых микрометрических частиц имеют распределение по размерам в диапазоне между приблизительно 1 и приблизительно 60 мкм.
Фиг. 2
- 7 009172
050 ЖД 750ШТ
Δ3 Д»РСИ
0 1 2 3 4 5
НЕДЕЛИ
Фиг. 3
Фиг. 4
О 30 45 60 75 90 105 120 135 150 165 180
ВРЕМЯ (МИН)
Фиг. 5
- 8 009172
- 9 009172
EA200600944A 2003-11-11 2004-11-09 Способ вскрытия слабо затвердевших формаций EA009172B1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/605,975 US7013973B2 (en) 2003-11-11 2003-11-11 Method of completing poorly consolidated formations
PCT/IB2004/052360 WO2005045186A1 (en) 2003-11-11 2004-11-09 Method of completing poorly consolidated formations

Publications (2)

Publication Number Publication Date
EA200600944A1 EA200600944A1 (ru) 2006-08-25
EA009172B1 true EA009172B1 (ru) 2007-12-28

Family

ID=34549714

Family Applications (1)

Application Number Title Priority Date Filing Date
EA200600944A EA009172B1 (ru) 2003-11-11 2004-11-09 Способ вскрытия слабо затвердевших формаций

Country Status (5)

Country Link
US (1) US7013973B2 (ru)
CN (2) CN103015944A (ru)
BR (1) BRPI0416443A (ru)
EA (1) EA009172B1 (ru)
WO (1) WO2005045186A1 (ru)

Families Citing this family (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7111683B2 (en) * 2004-06-14 2006-09-26 Schlumberger Technology Corporation Formation consolidation process
US20070044969A1 (en) * 2005-08-31 2007-03-01 Schlumberger Technology Corporation Perforating a Well Formation
US7350579B2 (en) * 2005-12-09 2008-04-01 Clearwater International Llc Sand aggregating reagents, modified sands, and methods for making and using same
US7458424B2 (en) * 2006-05-16 2008-12-02 Schlumberger Technology Corporation Tight formation water shut off method with silica gel
US20080035344A1 (en) * 2006-08-07 2008-02-14 Nadir Odeh Delayed polyacrylamide-co-aluminum hydroxyl chloride gel
DE102006045384A1 (de) * 2006-09-26 2008-04-03 H.C. Starck Gmbh Wässrige Siliciumdioxid Dispersionen für Klebstoffformulierungen
WO2009034287A1 (en) * 2007-09-13 2009-03-19 Halliburton Energy Services, Inc. Methods of using colloidal silica based gels
US20090082230A1 (en) * 2007-09-21 2009-03-26 Bj Services Company Well Treatment Fluids Containing Nanoparticles and Methods of Using Same
US7823642B2 (en) * 2007-09-26 2010-11-02 Schlumberger Technology Corporation Control of fines migration in well treatments
US7810562B2 (en) 2007-12-19 2010-10-12 Schlumberger Technology Corporation In-situ formation of solids for well completions and zonal isolation
US8006754B2 (en) * 2008-04-05 2011-08-30 Sun Drilling Products Corporation Proppants containing dispersed piezoelectric or magnetostrictive fillers or mixtures thereof, to enable proppant tracking and monitoring in a downhole environment
US8936081B2 (en) * 2009-04-09 2015-01-20 Schlumberger Technology Corporation Compositions and methods for servicing subterranean wells
US20100270016A1 (en) * 2009-04-27 2010-10-28 Clara Carelli Compositions and Methods for Servicing Subterranean Wells
US9834719B2 (en) 2010-11-30 2017-12-05 Schlumberger Technology Corporation Methods for servicing subterranean wells
US9950952B2 (en) 2010-11-30 2018-04-24 Schlumberger Technology Corporation Methods for servicing subterranean wells
US9637680B2 (en) 2012-01-10 2017-05-02 Baker Hughes Incorporated Method of controlling reservoir particles using electrolytic composite materials
US9045965B2 (en) 2012-05-01 2015-06-02 Halliburton Energy Services, Inc. Biodegradable activators to gel silica sol for blocking permeability
US20150197998A1 (en) * 2012-07-09 2015-07-16 M-I, L.L.C. Process for recovery of oleaginous fluids from wellbore fluids
WO2014011549A2 (en) * 2012-07-09 2014-01-16 M-I L.L.C. Insulating annular fluid
US9133386B2 (en) 2012-12-12 2015-09-15 Hallburton Energy Services, Inc. Viscous settable fluid for lost circulation in subterranean formations
ES2659374T3 (es) 2013-02-01 2018-03-15 Global Polishing Systems LLC Soluciones de tratamiento de corte, pulido y coloración de hormigón
US11471998B2 (en) 2013-02-01 2022-10-18 Global Polishing Systems, Llc Tools for polishing and refinishing concrete and methods for using the same
US9677386B2 (en) 2013-02-28 2017-06-13 Halliburton Energy Services, Inc. Methods of stabilizing weakly consolidated subterranean formation intervals
WO2014183046A1 (en) * 2013-05-09 2014-11-13 Global P0Lishing Systems Llc Drilling solutions and methods
US10151420B2 (en) 2013-09-23 2018-12-11 Halliburton Energy Services, Inc. Solidified, thermally insulating composition
RU2548629C1 (ru) * 2014-01-28 2015-04-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кубанский государственный технологический университет" (ФГБОУ ВПО "КубГТУ") Способ определения параметров разуплотненной зоны продуктивного пласта
RU2558080C1 (ru) * 2014-06-05 2015-07-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кубанский государственный технологический университет" (ФГБОУ ВПО "КубГТУ") Способ крепления слабосцементированного пласта
US10233372B2 (en) 2016-12-20 2019-03-19 Saudi Arabian Oil Company Loss circulation material for seepage to moderate loss control
US10619083B2 (en) 2017-02-03 2020-04-14 Saudi Arabian Oil Company Nanosilica dispersion lost circulation material (LCM)
US10407609B2 (en) 2017-05-02 2019-09-10 Saudi Arabian Oil Company Chemical plugs for preventing wellbore treatment fluid losses
US10053613B1 (en) 2017-05-02 2018-08-21 Saudi Arabian Oil Company Plugging and sealing subterranean formations
WO2018213050A1 (en) 2017-05-15 2018-11-22 Saudi Arabian Oil Company Composition and method for water and gas shut-off in subterranean formations
EP3630914A1 (en) * 2017-06-02 2020-04-08 Saudi Arabian Oil Company Coated silica particles
US10759986B2 (en) 2017-08-17 2020-09-01 Saudi Arabian Oil Company Loss circulation material composition having alkaline nanoparticle based dispersion and water soluble hydrolysable ester
US10351755B2 (en) 2017-08-17 2019-07-16 Saudi Arabian Oil Company Loss circulation material composition having alkaline nanoparticle based dispersion and water insoluble hydrolysable polyester
US11015102B2 (en) 2017-08-17 2021-05-25 Saudi Arabian Oil Company Loss circulation material composition having alkaline nanoparticle based dispersion, water insoluble hydrolysable polyester, and formaldehyde resin
US10316238B2 (en) 2017-09-11 2019-06-11 Saudi Arabian Oil Company Nanosilica dispersion for thermally insulating packer fluid
US11279865B2 (en) 2017-09-11 2022-03-22 Saudi Arabian Oil Company Well treatment fluid having an acidic nanoparticle based dispersion, an epoxy resin, and a polyamine
US10233380B1 (en) 2017-09-11 2019-03-19 Saudi Arabian Oil Company Well treatment fluid having an acidic nanoparticle based dispersion and a polyamine
US10577526B2 (en) * 2017-09-11 2020-03-03 Saudi Arabian Oil Company Loss circulation material composition having an acidic nanoparticle based dispersion and polyamine
US10683452B2 (en) 2017-09-11 2020-06-16 Saudi Arabian Oil Company Nanosilica dispersion for thermally insulating packer fluid
US10570699B2 (en) 2017-11-14 2020-02-25 Saudi Arabian Oil Company Insulating fluid for thermal insulation
US20190161668A1 (en) 2017-11-27 2019-05-30 Saudi Arabian Oil Company Method and materials to convert a drilling mud into a solid gel based lost circulation material
US11149181B2 (en) 2017-11-27 2021-10-19 Saudi Arabian Oil Company Method and materials to convert a drilling mud into a solid gel based lost circulation material
CA3089878A1 (en) 2018-02-15 2019-08-22 Saudi Arabian Oil Company A method and material for isolating a severe loss zone
US10954427B2 (en) 2018-05-17 2021-03-23 Saudi Arabian Oil Company Method and composition for sealing a subsurface formation
US10745610B2 (en) 2018-05-17 2020-08-18 Saudi Arabian Oil Company Method and composition for sealing a subsurface formation
US11203710B2 (en) 2019-02-21 2021-12-21 Saudi Arabian Oil Company Method and materials to convert a drilling mud into a solid gel based lost circulation material
US10655050B1 (en) 2019-02-21 2020-05-19 Saudi Arabian Oil Company Method and materials to convert a drilling mud into a solid gel based lost circulation material
US11124691B2 (en) 2019-02-21 2021-09-21 Saudi Arabian Oil Company Method and materials to convert a drilling mud into a solid gel based lost circulation material
US10655049B1 (en) 2019-02-21 2020-05-19 Saudi Arabian Oil Company Method and materials to convert a drilling mud into a solid gel based lost circulation material
EP4025666A1 (en) 2019-09-05 2022-07-13 Saudi Arabian Oil Company Propping open hydraulic fractures
US11015108B1 (en) 2020-03-18 2021-05-25 Saudi Arabian Oil Company Methods of reducing lost circulation in a wellbore using Saudi Arabian volcanic ash
US11820708B2 (en) 2020-03-18 2023-11-21 Saudi Arabian Oil Company Geopolymer cement slurries, cured geopolymer cement and methods of making and use thereof
US11098235B1 (en) 2020-03-18 2021-08-24 Saudi Arabian Oil Company Methods of converting drilling fluids into geopolymer cements and use thereof
US10920121B1 (en) 2020-03-18 2021-02-16 Saudi Arabian Oil Company Methods of reducing lost circulation in a wellbore using Saudi Arabian volcanic ash
US11820707B2 (en) 2020-03-18 2023-11-21 Saudi Arabian Oil Company Geopolymer cement slurries, cured geopolymer cement and methods of making and use thereof
US11066899B1 (en) 2020-03-18 2021-07-20 Saudi Arabian Oil Company Methods of sealing a subsurface formation with saudi arabian volcanic ash
US11299662B2 (en) 2020-07-07 2022-04-12 Saudi Arabian Oil Company Method to use lost circulation material composition comprising alkaline nanoparticle based dispersion and sodium bicarbonate in downhole conditions
US11802232B2 (en) 2021-03-10 2023-10-31 Saudi Arabian Oil Company Polymer-nanofiller hydrogels
US11753574B2 (en) 2021-07-30 2023-09-12 Saudi Arabian Oil Company Packer fluid with nanosilica dispersion and sodium bicarbonate for thermal insulation
US12158053B2 (en) 2021-12-14 2024-12-03 Saudi Arabian Oil Company Selective zonal isolation
US11572761B1 (en) 2021-12-14 2023-02-07 Saudi Arabian Oil Company Rigless method for selective zonal isolation in subterranean formations using colloidal silica
US11708521B2 (en) 2021-12-14 2023-07-25 Saudi Arabian Oil Company Rigless method for selective zonal isolation in subterranean formations using polymer gels
US11718776B2 (en) 2021-12-16 2023-08-08 Saudi Arabian Oil Company Method to use loss circulation material composition comprising acidic nanoparticle based dispersion and sodium bicarbonate in downhole conditions
CN114350342B (zh) * 2022-01-24 2023-03-31 中国石油大学(华东) 一种pH值调控的气溶胶增产体系及其制备方法与应用
US20240425744A1 (en) * 2023-06-26 2024-12-26 Saudi Arabian Oil Company Preventing water production in subterranean formations

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3965986A (en) * 1974-10-04 1976-06-29 Texaco Inc. Method for oil recovery improvement
US4732213A (en) * 1986-09-15 1988-03-22 Conoco Inc. Colloidal silica-based fluid diversion
US6450260B1 (en) * 2000-07-07 2002-09-17 Schlumberger Technology Corporation Sand consolidation with flexible gel system
US20030230408A1 (en) * 2002-06-12 2003-12-18 Andrew Acock Method of completing a well in an unconsolidated formation

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2281810A (en) * 1940-01-19 1942-05-05 Dow Chemical Co Earth consolidation
US2556169A (en) * 1946-05-08 1951-06-12 Dow Chemical Co Method of treating well bore walls
US3070160A (en) * 1958-10-01 1962-12-25 Jersey Prod Res Co Method of sand control in unconsolidated formations
US3097694A (en) * 1959-04-29 1963-07-16 Jersey Prod Res Co Hydraulic fracturing process
US3411582A (en) * 1966-06-28 1968-11-19 Byron Jackson Inc Consolidation of earth formations
US3487877A (en) * 1967-12-27 1970-01-06 Oil Base Controlling consolidation of permeable earth formations
US3626699A (en) * 1970-01-05 1971-12-14 Borden Inc Grouting of soils
US3847638A (en) * 1972-01-27 1974-11-12 Shell Oil Co Hydrated metal oxide deposition
AT326720B (de) * 1973-05-07 1975-12-29 Honel Holdings Ag Abgedichtete dehnungsfuge in einer fahrbahn
US4291776A (en) * 1979-05-17 1981-09-29 Mettler Instrumente Ag Scale with cantilever beam strain measurement
US4427069A (en) * 1981-06-08 1984-01-24 Getty Oil Company Sand consolidation methods
US4669543A (en) * 1986-05-23 1987-06-02 Halliburton Company Methods and compositions for consolidating solids in subterranean zones
US5010953A (en) * 1990-01-02 1991-04-30 Texaco Inc. Sand consolidation methods
US5145012A (en) * 1990-12-21 1992-09-08 Union Oil Company Of California Method for selectively reducing subterranean water permeability
US5151131A (en) * 1991-08-26 1992-09-29 Halliburton Company Cement fluid loss control additives and methods
US5199492A (en) * 1991-09-19 1993-04-06 Texaco Inc. Sand consolidation methods
US5360066A (en) * 1992-12-16 1994-11-01 Halliburton Company Method for controlling sand production of formations and for optimizing hydraulic fracturing through perforation orientation
US5363917A (en) * 1993-04-19 1994-11-15 Mobil Oil Corporation Method of sand consolidation
US5567088A (en) * 1994-12-16 1996-10-22 Texaco, Inc. Method for treating porous media
US5551514A (en) * 1995-01-06 1996-09-03 Dowell, A Division Of Schlumberger Technology Corp. Sand control without requiring a gravel pack screen
US5806593A (en) * 1996-07-22 1998-09-15 Texaco Inc Method to increase sand grain coating coverage
US5791415A (en) * 1997-03-13 1998-08-11 Halliburton Energy Services, Inc. Stimulating wells in unconsolidated formations
GB2325478A (en) * 1997-05-24 1998-11-25 Sofitech Nv Emulsion for well and formation treatment
US6283214B1 (en) * 1999-05-27 2001-09-04 Schlumberger Technology Corp. Optimum perforation design and technique to minimize sand intrusion
FR2798664B1 (fr) * 1999-09-21 2002-01-11 Inst Francais Du Petrole Methode de preparation de microgels de taille controlee
US6257335B1 (en) * 2000-03-02 2001-07-10 Halliburton Energy Services, Inc. Stimulating fluid production from unconsolidated formations
US6431278B1 (en) * 2000-10-05 2002-08-13 Schlumberger Technology Corporation Reducing sand production from a well formation
US6776236B1 (en) * 2002-10-16 2004-08-17 Halliburton Energy Services, Inc. Methods of completing wells in unconsolidated formations

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3965986A (en) * 1974-10-04 1976-06-29 Texaco Inc. Method for oil recovery improvement
US4732213A (en) * 1986-09-15 1988-03-22 Conoco Inc. Colloidal silica-based fluid diversion
US6450260B1 (en) * 2000-07-07 2002-09-17 Schlumberger Technology Corporation Sand consolidation with flexible gel system
US20030230408A1 (en) * 2002-06-12 2003-12-18 Andrew Acock Method of completing a well in an unconsolidated formation

Also Published As

Publication number Publication date
BRPI0416443A (pt) 2007-02-27
US7013973B2 (en) 2006-03-21
CN103015944A (zh) 2013-04-03
EA200600944A1 (ru) 2006-08-25
US20050098315A1 (en) 2005-05-12
CN1878927A (zh) 2006-12-13
WO2005045186A1 (en) 2005-05-19

Similar Documents

Publication Publication Date Title
EA009172B1 (ru) Способ вскрытия слабо затвердевших формаций
US10077396B2 (en) Reticulated materials for the formation of proppant-free channels
US3861467A (en) Permeable cementing method
US7458424B2 (en) Tight formation water shut off method with silica gel
US9850423B2 (en) Hydrolyzable particle compositions, treatment fluids and methods
CA2739383C (en) Methods for treating a subterranean formation by introducing a treatment fluid containing a proppant and a swellable particulate and subsequently degrading the swellable particulate
US10287867B2 (en) Enhancing complex fracture networks in subterranean formations
US20140290943A1 (en) Stabilized Fluids In Well Treatment
US20140374095A1 (en) Nanoparticle slurries and methods
US9458710B2 (en) Hydraulic fracturing system
CA3027352C (en) Liquid gas treatment fluids for use in subterranean formation operations
CA2941971A1 (en) Well treatment
WO2014039216A1 (en) Well treatment methods and systems
EA013097B1 (ru) Способ закупоривания трещиноватого пласта
WO2011081549A1 (en) Proppant placement
US11447690B2 (en) Enhancing propped fracture conductivity in subterranean wells
WO2015072875A1 (en) Methods of treating a subterranean formations with fluids comprising proppant
US20140345863A1 (en) Electromagnetically active slurries and methods
US11268366B2 (en) Methods of strengthening and consolidating subterranean formations with silicate-aluminum geopolymers
US20170152433A1 (en) Cationic Polymers for Foam Fracturing Applications
CN103080472A (zh) 控制井下产水量的水敏性多孔介质及控制井下产水量的方法
WO2017151124A1 (en) Controlling proppant flowback using resin chemistry for acid fracturing
MX2012010979A (es) Metodos y composiciones para el control de arena en pozos de inyeccion.
US10501681B2 (en) Inorganic clay particulate additive for consolidating treatments
US20230303911A1 (en) Sand Consolidation Compositions And Methods Of Use

Legal Events

Date Code Title Description
MM4A Lapse of a eurasian patent due to non-payment of renewal fees within the time limit in the following designated state(s)

Designated state(s): AM BY KG MD TJ TM

MM4A Lapse of a eurasian patent due to non-payment of renewal fees within the time limit in the following designated state(s)

Designated state(s): AZ KZ RU