[go: up one dir, main page]

DK177987B1 - Heat exchanger and method and application - Google Patents

Heat exchanger and method and application Download PDF

Info

Publication number
DK177987B1
DK177987B1 DK201300620A DKPA201300620A DK177987B1 DK 177987 B1 DK177987 B1 DK 177987B1 DK 201300620 A DK201300620 A DK 201300620A DK PA201300620 A DKPA201300620 A DK PA201300620A DK 177987 B1 DK177987 B1 DK 177987B1
Authority
DK
Denmark
Prior art keywords
zone
profile
heat exchanger
thermosiphon
siphon
Prior art date
Application number
DK201300620A
Other languages
Danish (da)
Inventor
Morten Espersen
Dennis Waldal Jensen
Original Assignee
Dantherm Cooling As
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dantherm Cooling As filed Critical Dantherm Cooling As
Priority to DK201300620A priority Critical patent/DK177987B1/en
Priority to PCT/DK2014/050280 priority patent/WO2015035998A1/en
Application granted granted Critical
Publication of DK177987B1 publication Critical patent/DK177987B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05383Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

En varmeveksler (1) omfattende mindst ét første termosifonelement (2), som omfatter - en termosifon (3) omfattende fem zoner: - en nedre, isotermisk sifonzone (4), - en øvre, isotermisk sifonzone (5) - en nedre, adiabatisk sifonzone (6), - en øvre, adiabatisk sifonzone (7), og - en crossoverzone (8), som er placeret mellem og forbinder de to nedre sifonzoner (4, 6) med de to øvre sifonzoner (5, 7), og - et hermetisk lukket, kasseformet profil (9) med to sideflader, to kantflader (9a, 9b) og en øvre og en nedre endeflade og et indre volumen, hvor hver af de to sideflader er opdelt i fire profilzoner - en nedre, varmeoptagende, isotermisk profilzone (10), - en øvre, varmeafgivende, isotermisk profilzone (11), - en nedre, adiabatisk profilzone (12), og - og en øvre, adiabatisk profilzone (13), og hvor det kasseformede profil (9) hermetisk omslutter termosifonen (3), som er placeret i profilets (9) indre volumen, således at den nedre, isotermiske profilzone (10) er placeret mod den nedre, isotermiske sifonzone (4), den øvre, isotermiske profilzone (11) er placeret mod den øvre, isotermiske sifonzone (5), den nedre, adiabatiske profilzone (12) er placeret mod den nedre, adiabatiske sifonzone (6), og den øvre, adiabatiske profilzone (13) er placeret mod den øvre, adiabatiske sifonzone (6). Desuden omfatter opfindelsen fremgangsmåde til fremstilling af varmeveksleren (1), samt anvendelse af varmeveksleren (1). Med varmeveksleren (1) ifølge opfindelsen opnås forbedret køling, særligt af elektronikkomponenter.A heat exchanger (1) comprising at least one first thermosiphon element (2) comprising - a thermosiphon (3) comprising five zones: - a lower isothermal siphon zone (4), - an upper, isothermal siphon zone (5) - a lower, adiabatic siphon zone (6), - an upper adiabatic siphon zone (7), and - a crossover zone (8) located between and connecting the two lower siphon zones (4, 6) to the two upper siphon zones (5, 7), and - a hermetically sealed box-shaped profile (9) with two side faces, two edge faces (9a, 9b) and an upper and lower end face and an inner volume, each of the two side faces being divided into four profile zones - a lower, heat absorbing, isothermal profile zone (10), - an upper, heat-emitting, isothermal profile zone (11), - a lower adiabatic profile zone (12), and - and an upper, adiabatic profile zone (13), and wherein the box-shaped profile (9) hermetically encloses the thermosiphon (3) located in the inner volume of the profile (9) so that the lower isothermal profile zone (10) is positioned against the n the lower isothermal siphon zone (4), the upper isothermal profile zone (11) is positioned toward the upper, isothermal siphon zone (5), the lower adiabatic profile zone (12) is positioned toward the lower, adiabatic siphon zone (6), and the upper adiabatic profile zone (13) is positioned against the upper adiabatic siphon zone (6). In addition, the invention comprises processes for producing the heat exchanger (1), as well as using the heat exchanger (1). With the heat exchanger (1) according to the invention, improved cooling is achieved, in particular by electronic components.

Description

Varmeveksler samt fremgangsmåde og anvendelseHeat exchanger and method and application

Opfindelsen angår en varmeveksler som omfatter mindst ét første termosifonelement, som omfatter: en termosifon omfattende fem zoner: - en nedre, isotermisk sifonzone, - en øvre, isotermisk sifonzone - en nedre, adiabatisk sifonzone, - en øvre, adiabatisk sifonzone, og - en crossoverzone, som er placeret mellem de øvre og de nedre sifonzoner, og som forbinder de to nedre sifonzoner med de to øvre sifonzoner.The invention relates to a heat exchanger comprising at least one first thermosiphon element comprising: a thermosiphon comprising five zones: - a lower, isothermal siphon zone, - an upper, isothermal siphon zone, - a lower, adiabatic siphon zone, - an upper, adiabatic siphon zone, and crossover zone, which is located between the upper and lower siphon zones and which connects the two lower siphon zones with the two upper siphon zones.

Desuden angår opfindelsen fremgangsmåde til fremstilling af varmeveksleren.In addition, the invention relates to processes for producing the heat exchanger.

Herudover angår opfindelsen anvendelse af varmeveksleren til køling.In addition, the invention relates to the use of the heat exchanger for cooling.

Princippet i en termosifon (engelsk: ’’thermo siphon”) har været kendt siden midten af 1800-tallet og omfatter, at et hermetisk aflukke er evakueret og derefter fyldt med et egnet fluidum, som i en fordamperdel af termosifonen tilføres varme og fordamper, og siden kondenserer i en kondensatordel af termosifonen og derved afgiver varme. Den kondenserede væske ledes tilbage til fordamperdelen. Varmeledningen ved denne fordampnings- og kondensationsproces er markant større end varmeledningsevnen af fx metaller, og termosifonprincippet er derfor velegnet til varmevekslings- og kølingsformål.The principle of a thermosiphon ("thermo siphon") has been known since the mid-1800s and includes the fact that a hermetic enclosure is evacuated and then filled with a suitable fluid which is supplied to heat and evaporator in an evaporator part of the thermosiphon. and then condenses into a condenser portion of the thermosiphon, thereby emitting heat. The condensed liquid is returned to the evaporator portion. The heat conduction in this evaporation and condensation process is significantly greater than the thermal conductivity of, for example, metals, and the thermosiphon principle is therefore suitable for heat exchange and cooling purposes.

Fluidet i termosifonen kan bestå af en enkelt kemisk specie, eller det kan bestå af en blanding af flere kemiske specier, fx i form af en azeotrop eller nær-azeotrop blanding.The fluid in the thermosiphon may consist of a single chemical species, or it may consist of a mixture of several chemical species, for example in the form of an azeotropic or near-azeotropic mixture.

Termosifonen har en intern geometri omfattende en intern, lukket sløjfe, som muliggør afvikling af den nævnte tofasede kredsproces. Idet en termosifon er et hermetisk lukket tofaset system, og kun ren væske og gas er repræsenteret i det interne hermetiske aflukke, vil fluiden forblive mættet så længe driftsbetingelserne for termosifonen er mellem fluidets triplepunkt og dets kritiske punkt, og termosifonen vil i hele sin udstrækning forblive isotermisk eller nær isotermisk inden for et meget bredt arbejdsområde.The thermosiphon has an internal geometry comprising an internal, closed loop which enables the aforementioned two-phase circuit process to be run. Since a thermosiphon is a hermetically sealed biphasic system and only pure liquid and gas are represented in the internal hermetic enclosure, the fluid will remain saturated as long as the operating conditions of the thermosiphon are between the triple point of the fluid and its critical point and the thermosiphon will remain to its full extent. isothermal or near isothermal within a very wide range of work.

Termosifonen er beslægtet med den enhed, der i dag kendes som heatpipen, idet væsken i termosifonen dog returneres til fordamperdelen alene ved tyngdens indvirkning, mens den i heatpipen returneres i en kapillar struktur ved hjælp af kapillarkræfter.The thermosiphon is akin to the unit known today as the heatpipe, however, the liquid in the thermosiphon is returned to the evaporator portion only by the effect of gravity, while in the heatpipe it is returned to a capillary structure by capillary forces.

Efter oprindeligt at være udviklet til automobilindustrien har konventionelle varmevekslere baseret på termosifonprincippet opnået stor kommerciel udbredelse til køling af elektronik. Princippet har den ubetingede fordel at kredsprocessen kan drives uden behov for bevægelige dele.Originally developed for the automotive industry, conventional heat exchangers based on the thermosiphon principle have achieved wide commercial spread for cooling electronics. The principle has the unconditional advantage that the circular process can be operated without the need for moving parts.

Denne type af varmevekslere er opbygget med vekslersektioner af et antal parallelt arrangerede flade rør, der hver er ekstruderet i et multiport-mønster, hvori fluidet strømmer, og udstyret med korrugerede finner af Louver-typen til varmeudveksling med omgivelserne. De flade rør er alle forbundet til en manifold, betegnet en header, og som hydraulisk forbinder de flade rør med hinanden i den parallelle struktur. Hele konstruktionen er typisk udført i aluminium og kan loddes i en gennemløbsovn i én proces. Konventionelle varmevekslere består typisk af to (eller flere) af sådanne vekslersektioner, hvoraf mindst én sektion fungerer som fordamperdel og mindst én sektion fungerer som kondensatordel, og hvor de to eller flere sektioner er forbundet ved hjælp af mindst ét gasførende rør og mindst ét væskeførende rør.This type of heat exchanger is constructed with exchanger sections of a plurality of parallel arranged flat tubes, each extruded in a multiport pattern in which the fluid flows, and equipped with corrugated Louver-type fins for heat exchange with the surroundings. The flat pipes are all connected to a manifold, designated a header, and which hydraulically connect the flat pipes to each other in the parallel structure. The entire structure is typically made of aluminum and can be soldered in a pass-through furnace in one process. Conventional heat exchangers typically consist of two (or more) of such exchanger sections, of which at least one section acts as an evaporator portion and at least one section acts as a condenser portion, and wherein the two or more sections are connected by at least one gas-conducting pipe and at least one liquid-conducting pipe. .

Den kendte teknologi har flere ulemper: Termodynamisk medfører konstruktionen med en fordamper-sektion og en kondensator-sektion, at dele af varmeveksleren ikke udnyttes tilstrækkeligt effektivt i såvel varmeoptagelses- som varmeafgivelsessammenhæng. Specielt ved køling af hotspots er der således en betydelig risiko for, at den sektionsvise opbygning af varmeveksleren medfører en uhensigtsmæssig og ineffektiv køling, fx fordi de dele af varmeveksleren, som modtager den største varmeflux, og dermed har det største behov for køling, kun køles dårligt.The known technology has several disadvantages: Thermodynamically, the design with an evaporator section and a condenser section means that parts of the heat exchanger are not utilized sufficiently efficiently in both heat absorption and heat dissipation contexts. Thus, especially when cooling hotspots, there is a significant risk that the sectional structure of the heat exchanger results in inappropriate and inefficient cooling, for example because the parts of the heat exchanger which receive the greatest heat flux and thus have the greatest need for cooling are cooled only. bad.

Konstruktions- eller designmæssigt har den kendte teknologi desuden den ulempe, at et flertal af headere skal forbindes med hinanden ved hjælp af rør for at muliggøre væske- og gasflowet i varmeveksleren. Disse forbindelsesrør, som typisk kan være både lange og kringlede, nedsætter kølekapaciteten på mindst to områder: Forbindelsesrørene forøger varmevekslerens volumen uden at bidrage til kølekapaciteten, og nedsætter yderligere denne kapacitet ved at begrænse luftgennemstrømningen omkring varmeveksleren.In terms of construction or design, the prior art also has the disadvantage that a plurality of headers must be connected to each other by means of pipes to enable the liquid and gas flow in the heat exchanger. These connection pipes, which can typically be both long and curly, reduce the cooling capacity in at least two areas: The connection pipes increase the heat exchanger volume without contributing to the cooling capacity, and further reduce this capacity by limiting the air flow around the heat exchanger.

Det forøgede indre volumen øger derudover kravet til fluidmængden i varmeveksleren, hvilke både har både omkostningsmæssige og miljømæssige ulemper.The increased internal volume also increases the demand for the amount of fluid in the heat exchanger, which has both cost and environmental disadvantages.

Den sektionsvise opbygning af varmeveksleren har yderligere de konsekvenser, at én enkelt utæthed i rørsystemet medfører, at varmeveksleren helt kan ophøre med at fungere, samtidig med at en betydelig mængde fluid kan lække til atmosfæren.The sectional structure of the heat exchanger further has the consequences that a single leakage in the piping system can cause the heat exchanger to cease to function at the same time as a significant amount of fluid may leak to the atmosphere.

Fra US5286884 kendes en varmeveksler, som angivet i indledningen. Den omfatter mindst et termisofonelement der bl.a. består af en termisofon med zoner.From US5286884 a heat exchanger is known, as indicated in the introduction. It comprises at least one thermisophone element which includes consists of a thermophone with zones.

Apparatet omfatter en nedstrømnings part, der indeholder et indirekte varmevekslings segment omfattende en flerhed af varmevekslingsrør i fluidforbindelse med det indre af en opretstående part, i hvilken fluid strømmer ned.The apparatus comprises a downflow portion containing an indirect heat exchange segment comprising a plurality of heat exchange tubes in fluid communication with the interior of an upright portion in which fluid flows down.

Apparatet omfatter et øvre isotermisk overgang segment og en nedre overgangs sektion, der fluidmæssigt forbinder varmevekslingsrørene med resten af apparatet.The apparatus comprises an upper isothermal transition segment and a lower transition section which fluidly connect the heat exchange tubes to the rest of the apparatus.

Nedstrømningsparten og et adiabatiske opstrøms ben er forbundet med hinanden ved lateral placeret U-rør.The downstream portion and an adiabatic upstream leg are connected to each other by laterally located U-tubes.

Apparatet er konstrueret, så det fylder meget i forhold til dets kapacitet og har dermed også miljømæssige ulemper.The appliance is designed to take up a lot in terms of its capacity and thus also has environmental disadvantages.

Det er derfor et formål med opfindelsen at anvise en varmeveksler uden de ovennævnte ulemper.It is therefore an object of the invention to provide a heat exchanger without the above disadvantages.

Opfindelsens formål tilgodeses ved en varmeveksler af den i indledningen til krav 1 angivne type, som er karakteristisk ved, at varmevekslerens termosifonelement yderligere omfatter: et hermetisk lukket, kasseformet profil med to sideflader, to kantflader og en øvre og en nedre endeflade og et indre volumen, hvor hver af de to sideflader er opdelt i fire profilzoner: - en nedre, varmeoptagende, isotermisk profilzone, - en øvre, varmeafgivende, isotermisk profilzone, - en nedre, adiabatisk profilzone, og - og en øvre, adiabatisk profilzone, og hvor det kasseformede profil hermetisk omslutter termosifonen, som er placeret i profilets indre volumen, således at: - den nedre, varmeoptagende, isotermiske profilzone er placeret mod den nedre, isotermiske sifonzone, - den øvre, varmeafgivende, isotermiske profilzone er placeret mod den øvre, isotermiske sifonzone, - den nedre, adiabatiske profilzone er placeret mod den nedre, adiabatiske sifonzone, og - den øvre, adiabatiske profilzone er placeret mod den øvre, adiabatiske sifonzone.The object of the invention is met by a heat exchanger of the type specified in the preamble of claim 1, characterized in that the thermosiphon element of the heat exchanger further comprises: a hermetically sealed, box-shaped profile with two side surfaces, two edge faces and an upper and lower end surface and an inner volume , wherein each of the two side surfaces is divided into four profile zones: - a lower, heat-absorbing, isothermal profile zone, - an upper, heat-emitting, isothermal profile zone, - a lower, adiabatic profile zone, and - and an upper, adiabatic profile zone, and where box-shaped profile hermetically encloses the thermosiphon located in the inner volume of the profile such that: - the lower, heat-absorbing, isothermal profile zone is positioned against the lower, isothermal siphon zone, - the upper, heat-emitting, isothermal profile zone is located against the upper, isothermal siphon zone. - the lower adiabatic profile zone is positioned toward the lower adiabatic siphon zone, and - the upper adiabatic profile zone is located toward the upper adiabatic siphon zone.

Med varmeveksleren med termosifonelementet ifølge opfindelsen er termosifonen således omsluttet af en kasseformet profil, som har en varmeoptagende profilzone og en varmeafgivende profilzone og således er den del af varmeveksleren, som varmeudveksler med omgivelserne. Varmeveksleren med termosifonelementet udgør således et selvfungerende varmevekslermodul, som ikke har de ovennævnte ulemper.Thus, with the heat exchanger with the thermosiphon element according to the invention, the thermosiphon is enclosed by a box-shaped profile having a heat-absorbing profile zone and a heat-emitting profile zone and thus is the part of the heat exchanger which exchanges heat with the surroundings. Thus, the heat exchanger with the thermosiphon element constitutes a self-functioning heat exchanger module which does not have the disadvantages mentioned above.

Varmeveksleren med termosifonelementet ifølge opfindelsen tillader således med sin opbygning som selvfungerende modul, at behovet for det ovenfor omtalte system af forbindelsesrør elimineres med deraf følgende reduceret volumen og reduceret krav til fluidmængde, og følgelig højere specifik kølekapacitet og reduceret miljøbelastning.The heat exchanger with the thermosiphon element according to the invention thus allows, with its structure as a self-functioning module, to eliminate the need for the above-mentioned system of connection pipes with consequent reduced volume and reduced fluid volume requirements, and consequently higher specific cooling capacity and reduced environmental impact.

Varmeveksleren med termosifonelementet ifølge opfindelsen har derudover fordele i form af højere simplicitet og højere fleksibilitet i form af bedre designtilpasning til specifikke kølingsformål, herunder køling af hotspots. Varmeveksleren kan således designes i valgfri højde og bredde.In addition, the heat exchanger with the thermosiphon element according to the invention has advantages in the form of higher simplicity and higher flexibility in the form of better design adaptation for specific cooling purposes, including cooling of hotspots. The heat exchanger can thus be designed in any height and width.

Termosifonelementets termosifon består af 5 sifonzoner, hvoraf to er isotermiske og to er adiabatiske. Den sidste sifonzone betegnes crossoverzonen. Den øvre del af profilet fungerer som kondensatordel mens den nedre del fungerer som fordamperdel, og den interne cirkulation af væske og gas foregår i termosifonen helt uafhængig af både headere og rør. Selve termosifonen har en indre geometri som tillader cirkulationen. Geometrien omfatter således den nedre, isotermiske sifonzone, hvor fluiden fordampes under optagelse af varme. Herfra transporteres den fordampede fluid i form af gas via den øvre, adiabatiske zone til den øvre, isotermiske sifonzone, hvor gassen kondenserer. Herfra transporteres den kondenserede fluid via den nedre, adiabatiske zone, som er en faldkanal, under tyngdepåvirkningen retur til den nedre, isotermiske sifonzone. Crossoverzonen adskiller den nedre fordamperdel fra den øvre kondensatorsdel, og er udformet således at gas- og væskestrømmene ikke foregår i modstrøm og således ikke kolliderer, men i stedet ledes uden om hinanden.The thermosiphon element thermosiphon consists of 5 siphon zones, two of which are isothermal and two are adiabatic. The last siphon zone is called the crossover zone. The upper part of the profile acts as a condenser part while the lower part acts as an evaporator part, and the internal circulation of liquid and gas takes place in the thermosiphon completely independent of both headers and pipes. The thermosiphon itself has an internal geometry that allows circulation. Thus, the geometry comprises the lower isothermal siphon zone where the fluid is evaporated during heat absorption. From here, the evaporated fluid in the form of gas is transported via the upper adiabatic zone to the upper isothermal siphon zone where the gas condenses. From here, the condensed fluid is transported via the lower adiabatic zone, which is a fall channel, under gravity back to the lower isothermal siphon zone. The crossover zone separates the lower evaporator portion from the upper condenser portion, and is designed so that the gas and liquid streams do not run countercurrently and thus do not collide, but are instead directed around each other.

Med varmeveksleren med termosifonelementet ifølge opfindelsen er termosifonen er nu arrangeret i en kasseformet profil med to sideflader, to kantflader og en øvre og en nedre endeflade. Sidefladerne er opdelt i fire profilzoner, som samarbejder med sifonzonerne: - en nedre varmeoptagende, isotermiske profilzone, som er placeret mod den nedre, isotermiske sifonzone, optager varme fra omgivelserne og leder denne varme til sifonzonen, hvor fordampningen foregår under forbrug af varme, - en øvre, adiabatisk profilzone, som er placeret mod den øvre, adiabatiske sifonzone, og som ikke udveksler varme med omgivelserne, - en øvre, varmeafgivende isotermiske profilzone, som er placeret mod den øvre, isotermiske sifonzone, afgiver den varme til omgivelserne, som produceres under kondensationsprocessen i sifonzonen, og - en nedre, adiabatisk profilzone, som er placeret mod den nedre, adiabatiske sifonzone, og som ikke udveksler varme med omgivelserne.With the heat exchanger with the thermosiphon element according to the invention, the thermosiphon is now arranged in a box-shaped profile with two side faces, two edge faces and an upper and a lower end surface. The side surfaces are divided into four profile zones which cooperate with the siphon zones: - a lower heat-absorbing, isothermal profile zone, which is located against the lower, isothermal siphon zone, absorbs heat from the surroundings and conducts this heat to the siphon zone, where evaporation takes place, - an upper adiabatic profile zone which is positioned against the upper adiabatic siphon zone and which does not exchange heat with the surroundings; - an upper, heat-emitting isothermal profile zone located against the upper isothermal siphon zone emits heat to the environment produced; during the condensation process in the siphon zone, and - a lower adiabatic profile zone which is located against the lower adiabatic siphon zone and which does not exchange heat with the surroundings.

Varmeledningen mellem de isotermiske sifonzoner og de tilhørende isotermiske profilzoner sker ved metallisk varmeledning.The heat conduction between the isothermal siphon zones and the associated isothermal profile zones is done by metallic heat conduction.

Fluidet i varmeveksleren ifølge opfindelsen er fortrinsvis kulbrinter, fluorerede kulbrinter, vand, ammoniak, alkoholer eller acetone, eller azeotrope eller nær-azeotrope blandinger heraf.The fluid in the heat exchanger according to the invention is preferably hydrocarbons, fluorinated hydrocarbons, water, ammonia, alcohols or acetone, or azeotropic or near-azeotropic mixtures thereof.

Når der i konteksten af opfindelsen refereres til ’’øvre” og ’’nedre” zoner, henholdsvis, omfatter dette at en ’’øvre” zone af en given type, fx en øvre sifonzone eller profilzone, er placeret på et højere niveau end den tilsvarende ’’nedre” zone, dvs. den tilsvarende sifonzone eller profilzone. Dette omfatter at termosifonelementet kan operere lodretstående, eller kan operere vinklet i en vinkel, således at den ’’øvre” zone befinder sig højere end den ’’nedre” zone, men ikke nødvendigvis lodret derover, men dog således at tyngdekraften er tilstrækkelig til at drive flowet i termosifonelementet.When in the context of the invention reference is made to "" upper "and" "lower" zones, respectively, this means that an "" upper "zone of a given type, e.g., an upper siphon zone or profile zone, is located at a higher level than the corresponding '' lower 'zone, ie the corresponding siphon zone or profile zone. This includes that the thermosiphon element can operate vertically, or can operate at an angle so that the "upper" zone is higher than the "lower" zone, but not necessarily vertical above, but so that gravity is sufficient to drive the flow of the thermosiphon element.

Det skal ligeledes forstås, at crossoverzonen adskiller ’’øvre” zoner fra ’’nedre” zoner. Således er alle ’’øvre” zoner - dvs. sifonzoner og profilzoner - placeret over crossoverzonen og afgrænset mod ’’nedre” zoner heraf, mens alle ’’nedre” zoner - dvs. sifonzoner og profilzoner - er placeret under crossoverzonen og afgrænset mod ’’øvre” zoner heraf.It should also be understood that the crossover zone separates '' upper 'zones from' 'lower' zones. Thus, all "upper" zones - ie siphon zones and profile zones - located above the crossover zone and bounded against the '' lower 'zones thereof, while all' 'lower' zones - ie. siphon zones and profile zones - are located below the crossover zone and bounded against its '' upper '' zones.

I konteksten af opfindelsen skal ’’isotermisk” forstås som isotermisk, dvs. ved samme temperatur, eller som nær isotermisk, dvs. ved tilnærmelsesvis samme temperatur. Tilsvarende skal ’’adiabatisk” i konteksten af opfindelsen forstås som adiabatisk, dvs. uden varmeudveksling med omgivelserne, eller nær adiabatisk, dvs. tilnærmelsesvis uden varmeudveksling med omgivelserne.In the context of the invention, "isothermal" is to be understood as isothermal, i.e. at the same temperature or as near isothermal, i.e. at approximately the same temperature. Similarly, "adiabatic" in the context of the invention is to be understood as adiabatic, i.e. without heat exchange with the surroundings, or near adiabatic, ie. almost without heat exchange with the surroundings.

For funktionaliteten af termosifonelementet er det afgørende, at gassen køles så lidt som muligt i den øvre, adiabatiske sifonzone, idet kondensation på dette sted vil føre til dråbedannelse og risiko for blokering af gasgennemstrømningen.For the functionality of the thermosiphon element, it is imperative that the gas is cooled as little as possible in the upper adiabatic siphon zone, as condensation at this location will lead to drip formation and the risk of blocking the gas flow.

Tilsvarende er det afgørende, at fluidet varmes så lidt som muligt i den nedre, adiabatiske sifonzone, idet fordampning på dette sted vil føre til gasdannelse og risiko for begrænsning af væskegennemstrømningen.Similarly, it is essential that the fluid be heated as little as possible in the lower adiabatic siphon zone, as evaporation at this location will lead to gas formation and the risk of fluid flow limitation.

Termosifonens nedre, isotermiske sifonzone og termosifonens øvre, adiabatiske sifonzone kan med fordel vende mod profilets ene kantflade, mens termosifonen nedre, adiabatiske sifonzone og termosifonens øvre, isotermiske sifonzone vender mod profilets anden kantflade.The lower isothermal siphon zone of the thermosiphon and the upper, adiabatic siphon zone of the thermosiphon may advantageously face one edge surface of the profile, while the lower, adiabatic siphon zone and the upper, isothermal siphon zone face the other edge surface of the profile.

Med denne geometri af termosifonen sikres et hensigtsmæssigt flow af gas og væske i termosifonen, idet crossoverzonen kan udføres simplest muligt med henblik på uhindret og uafhængigt, ikke-krydsende gas- og væskeflow.With this geometry of the thermosiphon, an appropriate flow of gas and liquid in the thermosiphon is ensured, since the crossover zone can be performed as simple as possible for unobstructed and independent, non-intersecting gas and liquid flow.

Profilets isotermiske profilzoner kan være dækket af finner, fortrinsvis af Louverfinner.The profile isothermal profile zones may be covered by fins, preferably by Louver fins.

Med sådanne finner opnås en effektiv varmeudveksling med omgivelserne, dvs. henholdsvis et effektivt varmeoptag fra omgivelserne i den nedre, varmeoptagende, isotermiske profilzone og en effektiv varmeafgivelse til omgivelserne i den øvre, varmeafgivende, isotermiske profilzone.With such fins, an efficient heat exchange with the environment is achieved, ie. respectively, an efficient heat absorption from the surroundings of the lower, heat-absorbing, isothermal profile zone and an efficient heat release to the surroundings of the upper, heat-giving, isothermal profile zone.

Louverfinner har en høj overflade og tillader dermed en særlig god varmeudveksling med omgivelserne.Louver fins have a high surface area and thus allow a particularly good heat exchange with the surroundings.

Mens profilets isotermiske profilzoner således fortrinsvis er dækket af finner, er profilets adiabatiske profilzoner fortrinsvis ikke dækket af sådanne finner. Derved begrænses varmeudvekslingen med omgivelserne fra disse profilzoner.Thus, while the profile isothermal profile zones are preferably covered with fins, the profile's adiabatic profile zones are preferably not covered by such fins. This limits the heat exchange with the surroundings from these profile zones.

I en alternativ udførelsesform er varmeveksleren med termosifonelementet ifølge opfindelsen ikke dækket af finner, fx i forbindelse med hotspotkøling.In an alternative embodiment, the heat exchanger with the thermosiphon element according to the invention is not covered by fins, for example in connection with hot spot cooling.

Varmeudvekslingen med omgivelserne kan således ske ved ledning, konvektion, stråling eller en kombination heraf.Thus, the heat exchange with the surroundings can be by conduction, convection, radiation or a combination thereof.

Varmevekslerens termosifon kan være udført i et aluminium-baseret materiale, som er billigt og let af forarbejde.The heat exchanger thermosiphon may be made of an aluminum-based material which is cheap and easy to process.

Varmevekslerens termosifon kan med fordel udføres i et Al-Si-cladding-materiale, som er billigt og let at forarbejde, eller udføres vha. silflux eller composite alloy flux teknologi.The heat exchanger thermosiphon can advantageously be made in an Al-Si cladding material which is inexpensive and easy to process, or carried out using sieve flux or composite alloy flux technology.

Varmevekslerens profil kan med fordel udføres i aluminium, som er billigt og let at forarbejde, og som nemt kan sammenføjes med en tilsvarende aluminiumbaseret termosifon.The profile of the heat exchanger can advantageously be made of aluminum which is cheap and easy to process and which can easily be joined with a corresponding aluminum-based thermosiphon.

Varmevekslerens profil kan ligeledes udføres i et Al-Si-cladding-materiale, som er billigt og let at forarbejde, eller udføres vha. silflux eller composite alloy flux teknologi.The profile of the heat exchanger can also be made in an Al-Si cladding material which is inexpensive and easy to process, or carried out using sieve flux or composite alloy flux technology.

Varmeveksleren ifølge opfindelsen kan med fordel omfatte mindst ét andet termosifonelement.The heat exchanger according to the invention may advantageously comprise at least one other thermosiphon element.

Ifølge denne foretrukne udførelsesform af opfindelsen omfatter varmeveksleren således to eller flere termosifonelementer. Varmeveksleren er ifølge denne udførelsesform af opfindelsen modulopbygget med et flertal af moduler, og den kan på denne måde designes frit efter specifikke kølingskrav og dimensionskrav ved at anvende et givent antal moduler i en given størrelse.Thus, according to this preferred embodiment of the invention, the heat exchanger comprises two or more thermosiphon elements. According to this embodiment of the invention, the heat exchanger is modularly constructed with a plurality of modules, and in this way it can be designed freely according to specific cooling requirements and dimension requirements by using a given number of modules in a given size.

Varmeveksleren ifølge opfindelsen kan med fordel udformes, således at termosifonelementerne er stakkede, således at en sideflade fra det første termosifonelement vender mod en sideflade fra det andet termosifonelement.The heat exchanger according to the invention can advantageously be designed so that the thermosiphon elements are stacked so that a side surface of the first thermosiphon element faces a side surface of the second thermosiphon element.

På denne måde opnås et tæt arrangement af termosifonelementerne og en deraf følgende høj specifik kølekapacitet for varmeveksleren. Stakkede termosifonelementer kan endvidere arrangeres, således at to naboelementer er placeret med et enkelt finnesystem imellem sig, således at begge naboelementer kan udnytte finnesystemet.In this way, a close arrangement of the thermosiphon elements and a resultant high specific cooling capacity for the heat exchanger are obtained. Stacked thermosiphon elements can also be arranged so that two adjacent elements are located with a single founding system in between, so that both neighboring elements can utilize the founding system.

Varmeveksleren ifølge opfindelsen kan med fordel yderligere omfatte en første header, som er placeret mod de to øvre eller de to nedre endeflader af det første og det andet termosifonelement.The heat exchanger according to the invention may advantageously further comprise a first header positioned against the two upper or two lower end faces of the first and second thermosiphon elements.

Ifølge opfindelsen er en sådan header et kontinuert bånd, som fastholder termosifonelementerne og således alene tjener et montageformål for termosifonelementerne. Det skal således i konteksten af opfindelsen forstås, at en sådan header i modsætning til konventionelle headere er uden fluidførende indre volumen.According to the invention, such a header is a continuous band which holds the thermosiphon elements and thus serves only a mounting purpose for the thermosiphon elements. Thus, it is to be understood in the context of the invention that, unlike conventional headers, such a header is devoid of fluid carrying internal volume.

Varmeveksleren kan omfatte yderligere en anden header, således at den første header er placeret mod de to øvre endeflader af det første og det andet termosifonelement, og den anden header er placeret mod de to nedre endeflader af det første og det andet termosifonelement.The heat exchanger may comprise a further second header such that the first header is positioned against the two upper end faces of the first and second thermosiphon elements, and the second header is positioned against the two lower end faces of the first and second thermosiphon elements.

Med et arrangement af headere i begge ender af termosifonelementerne kan disse fastholdes i en yderligere stabil opbygning, som tilbyder en yderligere designfrihed for varmeveksleren ifølge opfindelsen.With an arrangement of headers at both ends of the thermosiphon elements, these can be retained in a further stable structure which offers a further freedom of design for the heat exchanger according to the invention.

Et andet aspekt af opfindelsen omfatter en fremgangsmåde til fremstilling af varmeveksleren ifølge opfindelsen, hvori termosifonen fremstilles i én procesgang, fortrinsvis ved en stanseproces.Another aspect of the invention comprises a method of producing the heat exchanger of the invention, wherein the thermosiphon is produced in one process, preferably by a punching process.

Selve termosifonen kan således med fordel udføres i et, typisk tyndvægget, plademateriale og frembringes i et værktøj, fortrinsvis ved en stanseproces, således at alle termosifonens zoner fremstilles i en enkelt procesgang.Thus, the thermosiphon itself can advantageously be formed in a, typically thin-walled, sheet material and produced in a tool, preferably by a punching process, so that all the zones of the thermosiphon are produced in a single process.

Fremgangsmåden til fremstilling af varmeveksleren kan omfatte, at termosifonen og den kasseformede profil sammenføjes ved en sammenføjningsteknik fra gruppen af sammenføjningsteknikker omfattende Al-Si-cladding, silflux og composite alloy flux.The method of producing the heat exchanger may comprise joining the thermosiphon and box-shaped profile by a joining technique from the group of joining techniques comprising Al-Si cladding, strain flux and composite alloy flux.

Alle disse teknikker er baseret på, at aluminium med et vist, beskedent, indhold af silicium har et lidt lavere smeltepunkt end den rene aluminium, og at aluminiumsbaserede elementer med et lille indhold i silicium i eller på overfladen således kan sammenføjes vha. en loddeproces ved en temperatur, som er lidt lavere end smeltepunktet for selve elementet. Processen kan derved gennemføres i én procesgang, fx i en gennemløbsovn.All of these techniques are based on the fact that aluminum with a certain, modest content of silicon has a slightly lower melting point than pure aluminum, and that aluminum-based elements with a small content of silicon in or on the surface can thus be joined by a soldering process at a temperature slightly lower than the melting point of the element itself. The process can thereby be carried out in one process, for example in a through oven.

Med aluminium-silicium cladding er elementerne udført i et multilags-komposit-materiale, hvor kernen har et mindre siliciumindhold end overfladelagene. Smeltetemperaturen for det yderste lag er typisk i niveauet 577-610°C, mens kernematerialets smeltepunkt typisk er i niveauet mellem 630-660°C. Hensigten er at det yderste lag smelter og på denne måde fungerer som loddemateriale, mens kernematerialet forbliver på fast form. Inden komponenterne loddes sammen i en ovn kan materialernes oxidlag fjernes (’’strippes”) fx ved oversprøjtning med en flux.With aluminum-silicon cladding, the elements are made of a multilayer composite material, the core having a lower silicon content than the surface layers. The melting temperature of the outermost layer is typically in the level of 577-610 ° C, while the melting point of the core material is typically in the level between 630-660 ° C. The outer layer is intended to melt and in this way act as solder while the core material remains in solid form. Before the components are soldered together in an oven, the oxide layers of the materials can be removed ('' stripped '') for example by spraying with a flux.

Silflux er modsat Al-Si Cladding en silicium-holdig pasta, der påføres mindst et af de konstruktionselementer, der sammenføjes ved at elementerne presses sammen inden de loddes i en gennemløbsovn.Silflux, unlike Al-Si Cladding, is a silicon-containing paste that is applied to at least one of the structural members joined by compressing the elements before soldering in a pass-through furnace.

Denne metode har den fordel, at materialeanvendelsen kan begrænses til påføring udelukkende på de områder af elementerne, som skal sammenføjes, idet den strippende flux er integreret i silfluxpastaen. Composite alloy flux har en tilsvarende virkemåde.This method has the advantage that the material use can be limited to application only in the areas of the elements to be joined, the stripping flux being integrated into the sieve flux paste. Composite alloy flux has a similar mode of operation.

Fremgangsmåden til fremstilling af varmeveksleren kan desuden omfatte, at den kasseformede profil sammenføjes med mindst en header ved en sammenføjningsteknik fra gruppen af sammenføjningsteknikker omfattende Al-Si-cladding, silflux og composite alloy flux.The method of producing the heat exchanger may further comprise the box-shaped profile being joined to at least one header by a joining technique from the group of joining techniques comprising Al-Si cladding, strain flux and composite alloy flux.

Ifølge denne udførelsesform kan alle elementer af varmeveksleren ifølge opfindelsen, inklusive en eller flere headere, som typisk er aluminiumsbaserede, således sammenføjes i én procesgang med anvendelse af sammenføjningsteknikker som beskrevet ovenfor.According to this embodiment, all elements of the heat exchanger according to the invention, including one or more headers, which are typically aluminum-based, can thus be joined in one process using jointing techniques as described above.

Et tredje aspekt af opfindelsen omfatter anvendelse af varmeveksleren ifølge opfindelsen til køling, fortrinsvist til køling af elektronikkomponenter.A third aspect of the invention comprises using the heat exchanger of the invention for cooling, preferably for cooling electronic components.

Opfindelsen skal herefter nærmere forklares under henvisning til tegningerne, på hvilke:The invention will now be explained in more detail with reference to the drawings, in which:

Fig. 1 viser en varmeveksler ifølge opfindelsen.FIG. 1 shows a heat exchanger according to the invention.

Fig. 2 viser en termosifon i varmeveksleren ifølge opfindelsen.FIG. 2 shows a thermosiphon in the heat exchanger according to the invention.

Fig. 3 viser en varmeveksler med to stakkede termosifonelementer ifølge opfindelsen.FIG. 3 shows a heat exchanger with two stacked thermosiphon elements according to the invention.

Fig. 4, omfattende fig. 4a og fig. 4b, viser en anvendelse af en varmeveksler fra den kendte teknologi og en varmeveksler ifølge opfindelsen.FIG. 4, comprising FIG. 4a and fig. 4b, shows an application of a heat exchanger of the prior art and a heat exchanger according to the invention.

På fig. 1 er med 1 betegnet varmeveksleren ifølge opfindelsen. Varmeveksleren 1 omfatter et termosifonelement 2, som omfatter en termosifon 3 omfattende en nedre, isotermisk sifonzone 4, en øvre, isotermisk sifonzone 5, en nedre, adiabatisk sifonzone 6, en øvre, adiabatisk sifonzone 7 og en crossoverzone 8, som er placeret mellem de øvre sifonzoner 5 og 7 og de nedre sifonzoner 4 og 6, og som forbinder de to nedre sifonzoner 4 og 6 med de to øvre sifonzoner 5 og 7. Termosifonelementet omfatter desuden en hermetisk lukket, kasseformet profil 9 (her vist gennemskåret) med to sideflader, to kantflader (9a, 9b) og en øvre og en nedre endeflade og et indre volumen, hvor hver af de to sideflader er opdelt i fire profilzoner omfattende en nedre, varmeoptagende, isotermisk profilzone 10, en øvre, varmeafgivende, isotermisk profilzone (ikke vist), en nedre, adiabatisk profilzone 12, og en øvre, adiabatisk profilzone (ikke vist).In FIG. 1 is denoted by 1 the heat exchanger according to the invention. The heat exchanger 1 comprises a thermosiphon element 2 comprising a thermosiphon 3 comprising a lower isothermal siphon zone 4, an upper isothermal siphon zone 5, a lower adiabatic siphon zone 6, an upper adiabatic siphon zone 7 and a crossover zone 8 located between the two. upper siphon zones 5 and 7 and the lower siphon zones 4 and 6, which connect the two lower siphon zones 4 and 6 with the two upper siphon zones 5 and 7. The thermosiphon element further comprises a hermetically sealed box-shaped profile 9 (shown here cut through) with two side faces , two edge faces (9a, 9b) and an upper and a lower end face and an inner volume, each of the two side faces being divided into four profile zones comprising a lower, heat absorbing, isothermal profile zone 10, an upper, heat emitting, isothermal profile zone (not shown), a lower adiabatic profile zone 12, and an upper adiabatic profile zone (not shown).

Det kasseformede profil 9 omslutter hermetisk termosifonen 3, som er placeret i profilets indre volumen, således at den nedre, varmeoptagende, isotermiske profilzone 10 er placeret mod den nedre, isotermiske sifonzone 4, den øvre, varmeafgivende, isotermiske profilzone (ikke vist) er placeret mod den øvre, isotermiske sifonzone 5, den nedre, adiabatiske profilzone 12 er placeret mod den nedre, adiabatiske sifonzone 6, og den øvre, adiabatiske profilzone (ikke vist) er placeret mod den øvre, adiabatiske sifonzone 7. Desuden viser figuren to headere 14 og 14a til at sammenholde termosifonelementerne 2.The box-shaped profile 9 hermetically encloses the thermosiphon 3, which is located in the inner volume of the profile, so that the lower, heat-absorbing, isothermal profile zone 10 is positioned against the lower, isothermal siphon zone 4, the upper, heat-emitting, isothermal profile zone (not shown). toward the upper, isothermal siphon zone 5, the lower adiabatic profile zone 12 is positioned toward the lower, adiabatic siphon zone 6, and the upper, adiabatic profile zone (not shown) is positioned toward the upper, adiabatic siphon zone 7. In addition, the figure shows two headers 14 and 14a for comparing the thermosiphon elements 2.

Kølemidlet i termosifonelementet 2 er en fluoreret kulbrinte.The refrigerant in the thermosiphon element 2 is a fluorinated hydrocarbon.

Fig. 2 viser termosifonen 3 i varmeveksleren 1 ifølge opfindelsen. Termosifonen 3 er udstanset i én procesgang i ét stykke aluminium-silicium-cladding plade, og omfatter termosifon 3 omfattende en nedre, isotermisk sifonzone 4, hvor fordampningen foregår, en øvre, isotermisk sifonzone 5, hvor kondensationen foregår, en nedre, adiabatisk sifonzone 6, samt en øvre, adiabatisk sifonzone 7, som begge er transportzoner for væske og gas, henholdsvis, og en crossoverzone 8, som er placeret mellem de øvre sifonzoner 5 og 7 og de nedre sifonzoner 4 og 6, og som forbinder de to nedre sifonzoner 4 og 6 med de to øvre sifonzoner 5 og 7, og som er udformet, således at gasstrømmen og væskestrømmen adskilles.FIG. 2 shows the thermosiphon 3 in the heat exchanger 1 according to the invention. The thermosiphon 3 is die cut in one process in one piece of aluminum-silicon cladding plate, and comprises thermosiphon 3 comprising a lower isothermal siphon zone 4 where the evaporation takes place, an upper isothermal siphon zone 5 where the condensation takes place, a lower adiabatic siphon zone 6 and an upper adiabatic siphon zone 7, both of which are liquid and gas transport zones, respectively, and a crossover zone 8 located between the upper siphon zones 5 and 7 and the lower siphon zones 4 and 6, which connect the two lower siphon zones 4 and 6 with the two upper siphon zones 5 and 7, which are configured to separate the gas stream and the liquid stream.

Fig. 3 viser varmeveksleren 1 med to stakkede termosifonelementer 2 i ifølge opfindelsen. På figuren ses hvorledes den nedre, varmeoptagende, isotermiske profilzone 10 er forsynet med varmeoptagende Louverfinner 15 til varmeoptagelse fra omgivelser, og hvordan den øvre, varmeafgivende, isotermisk profilzone 11, ligeledes er forsynet med varmeafgivende Louverfinner 16 til varmeafgivelse til omgivelserne. Figuren viser ligeledes at hverken den nedre, adiabatiske profilzone 12, eller den øvre, adiabatiske profilzone 13 er forsynet med finner.FIG. 3 shows the heat exchanger 1 with two stacked thermosiphon elements 2 in accordance with the invention. The figure shows how the lower, heat-absorbing, isothermal profile zone 10 is provided with heat-absorbing Louver fins 15 for heat absorption from ambient, and how the upper, heat-emitting, isothermal profile zone 11 is also provided with heat-emitting Louverfins 16 for heat-emitting to the surroundings. The figure also shows that neither the lower adiabatic profile zone 12 nor the upper adiabatic profile zone 13 are provided with fins.

Fig. 4 viser i fig. 4a, hvorledes en konventionel varmeveksler 21 er placeret i en strømningskanal 22, hvor varmeveksleren 21 med et omfattende rørsystem 23 optager en stor del af strømningskanalens 22 tværsnit og derved reducerer luftgennemstrømningen.FIG. 4 shows in FIG. 4a, how a conventional heat exchanger 21 is located in a flow duct 22, wherein the heat exchanger 21 with an extensive pipe system 23 occupies a large portion of the cross-section of the flow duct 22, thereby reducing the air flow.

På fig. 4b vises, hvorledes varmeveksleren 1 ifølge opfindelsen, her bestående af tre termosifonelementer 2 og med samme kølekapacitet som varmeveksleren 21, optager langt mindre af strømningskanalens 22 tværsnit og dermed sikrer et bedre luftgennemstrømning.In FIG. 4b shows how the heat exchanger 1 according to the invention, here consisting of three thermosiphon elements 2 and with the same cooling capacity as the heat exchanger 21, takes up much less of the cross-section of the flow duct 22 and thus ensures a better air flow.

Claims (14)

1. En varmeveksler (1) omfattende mindst ét første termosifonelement (2) , som omfatter: en termosifon (3) omfattende fem zoner: - en nedre, isotermisk sifonzone (4), - en øvre, isotermisk sifonzone (5) - en nedre, adiabatisk sifonzone (6), - en øvre, adiabatisk sifonzone (7), og - en crossoverzone (8), som er placeret mellem de øvre (5, 7) og de nedre sifonzoner (4, 6) , og som forbinder de to nedre sifonzoner (4, 6) med de to øvre sifonzoner (5, 7), kendetegnet ved at termosifonelementet (2) yderligere omfatter: et hermetisk lukket, kasseformet profil (9) med to sideflader, to kantflader (9a, 9b) og en øvre og en nedre endeflade og et indre volumen, hvor hver af de to sideflader er opdelt i fire profilzoner: - en nedre, varmeoptagende, isotermisk profilzone (10), - en øvre, varmeafgivende, isotermisk profilzone (11), - en nedre, adiabatisk profilzone (12), og - og en øvre, adiabatisk profilzone (13), og hvor det kasseformede profil (9) hermetisk omslutter termosifonen (3) , som er placeret i profilets (9) indre volumen, således at: - den nedre, varmeoptagende, isotermiske profilzone (10) er placeret mod den nedre, isotermiske sifonzone (4), - den øvre, varmeafgivende, isotermiske profilzone (11) er placeret mod den øvre, isotermiske sifonzone (5), - den nedre, adiabatiske profilzone (12) er placeret mod den nedre, adiabatiske sifonzone (6), og - den øvre, adiabatiske profilzone (13) er placeret mod den øvre, adiabatiske sifonzone (6).A heat exchanger (1) comprising at least one first thermosiphon element (2) comprising: a thermosiphon (3) comprising five zones: - a lower isothermal siphon zone (4), - an upper, isothermal siphon zone (5) - a lower , an adiabatic siphon zone (6), - an upper, adiabatic siphon zone (7), and - a crossover zone (8) located between the upper (5, 7) and the lower siphon zones (4, 6) and connecting the two lower siphon zones (4, 6) with the two upper siphon zones (5, 7), characterized in that the thermosiphon element (2) further comprises: a hermetically sealed box-shaped profile (9) with two side faces, two edge faces (9a, 9b) and an upper and a lower end surface and an inner volume, each of the two side surfaces being divided into four profile zones: - a lower, heat absorbing, isothermal profile zone (10), - an upper, heat-emitting, isothermal profile zone (11), - a lower , adiabatic profile zone (12), and - and an upper adiabatic profile zone (13), and wherein the box-shaped profile (9) hermetically encloses thermos the casing (3) located in the inner volume of the profile (9) so that: - the lower, heat absorbing, isothermal profile zone (10) is positioned against the lower, isothermal siphon zone (4), - the upper, heat-emitting, isothermal profile zone (11) is positioned toward the upper isothermal siphon zone (5), - the lower adiabatic profile zone (12) is positioned toward the lower adiabatic siphon zone (6), and - the upper adiabatic profile zone (13) is positioned toward the upper adiabatic siphon zone (6). 2. Varmeveksler (1) ifølge krav 1, kendetegnet ved at termosifonens nedre, isotermiske sifonzone (4) og termosifonens øvre, adiabatiske sifonzone (6) vender mod profilets ene kantflade (9a), mens termosifonen nedre, adiabatiske sifonzone (7) og termosifonens øvre, isotermiske sifonzone (5) vender mod profilets anden kantflade (9b).Heat exchanger (1) according to claim 1, characterized in that the lower, isothermal siphon zone (4) of the thermosiphon and the upper, adiabatic siphon zone (6) face one edge surface (9a) of the profile, while the lower, adiabatic siphon zone (7) and the thermosiphon upper isothermal siphon zone (5) faces the second edge surface (9b) of the profile. 3. Varmeveksler (1) ifølge krav 1 eller 2, kendetegnet ved, at profilets (9) isotermiske profilzoner (10, 11) er dækket af finner (15, 16), fortrinsvis af Louverfinner.Heat exchanger (1) according to claim 1 or 2, characterized in that the isothermal profile zones (10, 11) of the profile (9) are covered by fins (15, 16), preferably by Louver fins. 4. Varmeveksler (1) ifølge et eller flere af kravene 1 -3, kendetegnet ved at termosifonen (3) er udført i et aluminium-baseret materiale.Heat exchanger (1) according to one or more of claims 1 to 3, characterized in that the thermosiphon (3) is made of an aluminum-based material. 5. Varmeveksler (1) ifølge krav 4, kendetegnet ved at termosifonen (3) er udført i et Al-Si-cladding-materiale.Heat exchanger (1) according to claim 4, characterized in that the thermosiphon (3) is made of an Al-Si cladding material. 6. Varmeveksler (1) ifølge et eller flere af kravene 1 -5, kendetegnet ved at profilet (9) er udført i aluminium.Heat exchanger (1) according to one or more of claims 1-5, characterized in that the profile (9) is made of aluminum. 7. Varmeveksler (1) ifølge et eller flere af kravene 1 -6, kendetegnet ved at varmeveksleren (1) omfatter yderligere mindst ét andet termosifonelement (2).Heat exchanger (1) according to one or more of claims 1 to 6, characterized in that the heat exchanger (1) further comprises at least one other thermosiphon element (2). 8. Varmeveksler (1) ifølge krav 7, kendetegnet ved at termosifonelementerne (2) er stakkede, således at en sideflade fra det første termosifonelement (2) vender mod en sideflade fra det andet termosifonelement (2).Heat exchanger (1) according to claim 7, characterized in that the thermosiphon elements (2) are stacked so that a side surface of the first thermosiphon element (2) faces a side surface of the second thermosiphon element (2). 9. Varmeveksler (1) ifølge krav 8, kendetegnet ved at varmeveksleren (1) yderligere omfatter en første header (14), som er placeret mod de to øvre eller de to nedre endeflader af det første og det andet termosifonelement (2).Heat exchanger (1) according to claim 8, characterized in that the heat exchanger (1) further comprises a first header (14) which is positioned against the two upper or two lower end faces of the first and second thermosiphon elements (2). 10. Varmeveksler (1) ifølge krav 9, kendetegnet ved at varmeveksleren (1) omfatter yderligere en anden header (14a), således at den første header (14) er placeret mod de to øvre endeflader af det første og det andet termosifonelement (2), og den anden header (14a) er placeret mod de to nedre endeflader af det første og det andet termosifonelement (2).Heat exchanger (1) according to claim 9, characterized in that the heat exchanger (1) further comprises a second header (14a) such that the first header (14) is positioned against the two upper end faces of the first and second thermosiphon elements (2). ), and the second header (14a) is positioned against the two lower end faces of the first and second thermosiphon elements (2). 11. Fremgangsmåde til fremstilling af varmeveksleren (1) ifølge et eller flere af kravene 1-10, kendetegnet ved, termosifonen (3) fremstilles i én procesgang, fortrinsvis ved en stanseproces.Process for producing the heat exchanger (1) according to one or more of claims 1 to 10, characterized in that the thermosiphon (3) is manufactured in one process, preferably by a punching process. 12. Fremgangsmåde til fremstilling af varmeveksleren (1) ifølge et eller flere af kravene 1-11, kendetegnet ved, at termosifonen (3) og den kasseformede profil (9) sammenføjes ved en sammenføjningsteknik fra gruppen af sammenføjningsteknikker omfattende Al-Si-cladding, silflux og composite alloy flux.Method for producing the heat exchanger (1) according to one or more of claims 1-11, characterized in that the thermosiphon (3) and the box-shaped profile (9) are joined together by a joining technique from the group of joining techniques comprising Al-Si cladding, sieve flux and composite alloy flux. 13. Fremgangsmåde til fremstilling af varmeveksleren (1) ifølge krav 9 eller 10, kendetegnet ved at den kasseformede profil (9) sammenføjes med mindst en header (14, 14a) ved en sammenføjningsteknik fra gruppen af sammenføjningsteknikker omfattende Al-Si-cladding, silflux og composite alloy flux.Process for producing the heat exchanger (1) according to claim 9 or 10, characterized in that the box-shaped profile (9) is joined by at least one header (14, 14a) by a joining technique from the group of joining techniques comprising Al-Si cladding, silflux and composite alloy flux. 14. Anvendelse af varmeveksleren (1) ifølge et eller flere af kravene 1 -13 til køling, fortrinsvist til køling af elektronikkomponenter.Use of the heat exchanger (1) according to one or more of claims 1 to 13 for cooling, preferably for cooling of electronic components.
DK201300620A 2013-09-16 2013-11-01 Heat exchanger and method and application DK177987B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DK201300620A DK177987B1 (en) 2013-09-16 2013-11-01 Heat exchanger and method and application
PCT/DK2014/050280 WO2015035998A1 (en) 2013-09-16 2014-09-10 Heat exchanger and methode and use

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DK201300527 2013-09-16
DKPA201300527 2013-09-16
DK201300620 2013-11-01
DK201300620A DK177987B1 (en) 2013-09-16 2013-11-01 Heat exchanger and method and application

Publications (1)

Publication Number Publication Date
DK177987B1 true DK177987B1 (en) 2015-02-16

Family

ID=52465102

Family Applications (1)

Application Number Title Priority Date Filing Date
DK201300620A DK177987B1 (en) 2013-09-16 2013-11-01 Heat exchanger and method and application

Country Status (2)

Country Link
DK (1) DK177987B1 (en)
WO (1) WO2015035998A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220146122A1 (en) * 2019-02-27 2022-05-12 Dantherm Cooling, Inc. Passive heat exchanger with single microchannel coil

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5286884A (en) * 1992-07-24 1994-02-15 Texaco Chemical Company Thermosyphonic reaction of propylene with tertiary butyl hydroperoxide and reactor
WO1994028363A1 (en) * 1993-05-26 1994-12-08 Erickson Donald C Rotary multimodular sorption heat pump with embedded thermosyphons
WO2010079148A1 (en) * 2009-01-12 2010-07-15 Heatmatrix Group B.V. Thermosiphon evaporator
WO2012174418A1 (en) * 2011-06-15 2012-12-20 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for removing carbon dioxide from a gas stream using desublimation

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7650928B2 (en) * 2007-03-30 2010-01-26 Coolit Systems Inc. High performance compact thermosiphon with integrated boiler plate
WO2010150064A1 (en) * 2009-05-18 2010-12-29 Huawei Technologies Co. Ltd. Heat spreading device and method therefore
US8773854B2 (en) * 2011-04-25 2014-07-08 Google Inc. Thermosiphon systems for electronic devices
EP2552182A1 (en) * 2011-07-29 2013-01-30 ABB Research Ltd. Double-loop thermosiphon for cooling of electric and electronic components

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5286884A (en) * 1992-07-24 1994-02-15 Texaco Chemical Company Thermosyphonic reaction of propylene with tertiary butyl hydroperoxide and reactor
WO1994028363A1 (en) * 1993-05-26 1994-12-08 Erickson Donald C Rotary multimodular sorption heat pump with embedded thermosyphons
WO2010079148A1 (en) * 2009-01-12 2010-07-15 Heatmatrix Group B.V. Thermosiphon evaporator
WO2012174418A1 (en) * 2011-06-15 2012-12-20 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for removing carbon dioxide from a gas stream using desublimation

Also Published As

Publication number Publication date
WO2015035998A1 (en) 2015-03-19

Similar Documents

Publication Publication Date Title
CN106033749B (en) Parallel Parallel Microchannel Multi-Chip Heat Sink
US8621875B2 (en) Method of removing heat utilizing geometrically reoriented low-profile phase plane heat pipes
US7369410B2 (en) Apparatuses for dissipating heat from semiconductor devices
EP3907455B1 (en) Phase-change heat dissipation device
CN101819000B (en) Disconnect-type phase transition heat exchanger
WO2017148197A1 (en) Heat-dissipation apparatus
CN101377392A (en) Heat exchanger
EP3839400B1 (en) Vapor chamber heatsink assembly
CN111800984B (en) Heat exchanger device and method for producing a heat exchanger device
US11913726B2 (en) Vapor chamber heatsink assembly
CN106766404B (en) Micro-channel condenser
CN104197612A (en) High-efficiency cooling assembly of semiconductor refrigerator
DK177987B1 (en) Heat exchanger and method and application
JP2015185708A (en) Cooling device and data center having the same
CN214199797U (en) An air-cooled heat pipe radiator for electronic components
WO2021189726A1 (en) Radiator and air conditioner outdoor unit
US20140338194A1 (en) Heat dissipation device and manufacturing method thereof
JP2014115054A (en) Self-excited vibration type heat pipe
CN214891554U (en) Radiator and air conditioner outdoor unit
KR20110121078A (en) Heat pipe assembly of heat exchanger for waste heat recovery
JPS6111591A (en) Heat pipe heat exchanger
CN108323099B (en) Fin type heat pipe coupling radiator
JP2015140949A (en) Cooling device and data center including the same
TWI618207B (en) Cooling chip device with high heat exchange rate
WO2023276940A1 (en) Thermal device cooling heat sink

Legal Events

Date Code Title Description
PBP Patent lapsed

Effective date: 20161130