[go: up one dir, main page]

DK154731B - Steam boiler with catalytic flue gas treatment as well as boiler operation - Google Patents

Steam boiler with catalytic flue gas treatment as well as boiler operation Download PDF

Info

Publication number
DK154731B
DK154731B DK225185A DK225185A DK154731B DK 154731 B DK154731 B DK 154731B DK 225185 A DK225185 A DK 225185A DK 225185 A DK225185 A DK 225185A DK 154731 B DK154731 B DK 154731B
Authority
DK
Denmark
Prior art keywords
economizer
boiler
flue gas
valve
load
Prior art date
Application number
DK225185A
Other languages
Danish (da)
Other versions
DK225185D0 (en
DK225185A (en
DK154731C (en
Inventor
Benny Stensboel
Original Assignee
Burmeister & Wains Energi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Burmeister & Wains Energi filed Critical Burmeister & Wains Energi
Priority to DK225185A priority Critical patent/DK154731C/en
Publication of DK225185D0 publication Critical patent/DK225185D0/en
Priority to DE3616095A priority patent/DE3616095C2/en
Priority to SE8602249A priority patent/SE461421B/en
Publication of DK225185A publication Critical patent/DK225185A/en
Publication of DK154731B publication Critical patent/DK154731B/en
Application granted granted Critical
Publication of DK154731C publication Critical patent/DK154731C/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/008Adaptations for flue-gas purification in steam generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D1/00Feed-water heaters, i.e. economisers or like preheaters
    • F22D1/02Feed-water heaters, i.e. economisers or like preheaters with water tubes arranged in the boiler furnace, fire tubes or flue ways
    • F22D1/12Control devices, e.g. for regulating steam temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Description

DK 154731 BDK 154731 B

Opfindelsen angår en dampkedel af den art, hvor et appatat til katalytisk omdannelse af skadelige stoffer, specielt nitrogenoxider, i røggassen er indbygget i en røgafgangspassage fra kedelens fyrrum på nedstrøms-5 siden af en economiser, hvis tilgangs- og afgangsledninger for fødevand er forbundet gennem en ved hjælp af en ventil afspærrelig omløbsledning.BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a steam boiler of a kind in which an apparatus for catalytic conversion of noxious substances, in particular nitrogen oxides, is incorporated into a flue gas passage from the boiler boiler room on the downstream side of an economist whose supply and discharge lines for feed water are connected through one by means of a valve lockable bypass.

Blandt andet ved store kul- og oliefyrede dampkedler i kraftværker eller kraftvarmeværker har kataly-10 tisk virkende apparater af den omhandlede art, der er kendt.under betegnelsen DENOX-units, vist sig effektive til formindskelse af emissionen af ΝΟχ. De kan imidlertid kun fungere tilfredsstillende ved røgtemperaturer inden for et vist interval, typisk mellem ca. 320°C og 15 ca. 400°C. Dette forhold kan blive årsag til et problem, når kedelen skal køre ved dellast, hvor røgtemperaturen er lavere end ved fuldlast. Man kan nemlig ikke kompensere for temperaturfaldet under dellast ved en generel hævning af temperaturniveauet på det pågældende sted, 20 fordi temperaturen ved fuldlast da ville blive for høj, både for katalysatoren og for en normalt efter denne følgende luftforvarmer.Among other things, for large coal and oil-fired steam boilers in power plants or cogeneration plants, catalytic devices of the kind known in the art, known as DENOX units, have proven effective in reducing the emission of ΝΟχ. However, they can only function satisfactorily at smoke temperatures within a certain range, typically between 320 ° C and approx. 400 ° C. This condition can cause a problem when the boiler has to run at partial load, where the smoke temperature is lower than at full load. It is not possible to compensate for the drop in temperature under partial load by a general raising of the temperature level at that location, because the temperature at full load would then be too high, both for the catalyst and for a normal after the following air preheater.

I en fra DE-C1-3344712 kendt kedel af den angivne art er problemet med at opretholde en passende røggas-25 temperatur ved katalysatoren, uanset varierende kedelbelastning, søgt løst på den måde, at en del af den totale fødevandsmængde afgrenes og ledes direkte fra en føde-vandspumpe til kedelens fordamperrør uden om economise-ren. Reduktionen af den vandmængde, som ved dellast 30 strømmer igennem economiseren, reducerer varmeafgivelsen fra røggasserne tilsvarende og fører derved til en højere røggastemperatur ved katalysatorenheden. Så vidt vides har det foreslåede arrangement imidlertid ikke vist sig egnet i praksis.In a boiler known from DE-C1-3344712, the problem of maintaining a suitable flue gas temperature of the catalyst, regardless of varying boiler load, has been solved in such a way that part of the total amount of feed water is branched and directed directly from a feed-water pump for the boiler evaporator pipe outside the economizer. The reduction in the amount of water flowing through the economizer at partial load 30 reduces the heat emission from the flue gases correspondingly and thereby leads to a higher flue gas temperature at the catalyst unit. However, as far as is known, the proposed arrangement has not proved suitable in practice.

35 Nærværende opfindelse tager sigte på at angive en alternativ og konstruktivt enklere løsning af problemetThe present invention aims to provide an alternative and constructively simpler solution to the problem

DK 154731 BDK 154731 B

2 med at opretholde en passende røggastemperatur efter economiseren ved alle lasttilstande, og det karakteristiske for kedelen ifølge opfindelsen består i, at der mellem economiserens tilgangs- og afgangsledninger er en 5 anden omløbsledning med en cirkulationspumpe, hvis suge- og trykside er tilsluttet henholdsvis afgangs- og tilgangsledningen nærmere ved economiseren end den førstnævnte omløbsledning.2 to maintain a suitable flue gas temperature after the economizer in all load conditions, and the characteristic of the boiler according to the invention consists in the fact that there is between the supply and discharge lines of the economizer a second circulation line with a circulation pump whose suction and pressure side are connected respectively to the outlet. and the supply line closer to the economizer than the former orbit.

I modsætning til den før omtalte kendte kedel, 10 hvor den nødvendige reduktion af røggassernes varmeafgivelse i economiseren opnås ved en lastafhængig reduktion af den pr. tidsenhed gennem economiseren strømmende vandmængde, giver opfindelsen mulighed for opretholdelse af en konstant eller i store træk konstant vandgennem-15 strømning i hele det aktuelle lastområde. Denne mulighed beror på, at pumpen i den anden eller yderligere omløbsledning, når den er i gang, cirkulerer en vandmængde, som allerede tidligere er opvarmet i economiseren, tilbage til denne, hvorved vandtemperaturen ved indstrøm-20 ningen i economiserens hedeflader bliver højere end fødevandstemperaturen i tilgangsledningen. Den formindskede temperaturdifferens mellem røgen og vandet i economiseren bevirker en mindre afkøling af røgen og dermed den ønskede hævning af katalysatorens arbejdstemperatur.Contrary to the prior art boiler, 10 where the necessary reduction of the flue gas heat release in the economizer is achieved by a load-dependent reduction of the The unit of time flowing through the economizer flowing water allows the invention to maintain a constant or largely constant flow of water throughout the entire load range. This possibility is due to the pump in the second or additional circulation line, when running, circulates a quantity of water which has already been previously heated in the economizer, to the water, whereby the water temperature at the flow in the economizer's hot surfaces becomes higher than the feed water temperature. in the access line. The reduced temperature difference between the smoke and the water in the economizer causes a less cooling of the smoke and thus the desired raising of the catalyst's working temperature.

25 Når man også ved lav kedellast kører med høj vandmængde gennem economiseren, undgår man endvidere risikoen for dampdannelse i economiseren. Af hensyn til denne risiko har det i den før omtalte kendte kedels afgangsledning fra economiseren været nødvendigt at indbygge en damp-30 separator, hvorfra den dannede damp kan ledes uden om kedelens fordamperhedeflader direkte til en overheder. I ledningen fra dampseparatoren til overhederen har det da været nødvendigt at indbygge en styret ventil for at forebygge risikoen for, at fødevand kan strømme gennem 35 ledningen til overhederen. Det vil ses, at den kendte løsning er mere kompliceret end løsningen ifølge nærværende opfindelse.25 Also, when running at low boiler loads with high water flow through the economizer, the risk of steam generation in the economizer is also avoided. In view of this risk, it has been necessary to incorporate a steam separator from the economizer's exit line of the prior art boiler, from which the steam generated can be directed outside the boiler evaporator surfaces directly to a superheater. In the conduit from the steam separator to the superheater, it has then been necessary to incorporate a controlled valve to prevent the risk of feed water flowing through the conduit to the superheater. It will be seen that the known solution is more complicated than the solution of the present invention.

33

DK 154731 BDK 154731 B

Når afspærringsventilen i den førstnævnte omløbsledning er en modulerende ventil, er det muligt at lade pumpen i den anden omløbsledning køre med konstant eller i det væsentlige konstant leveringsmængde i hele det 5 lastinterval, hvor ventilen er åben og pumpen i gang. Tilpasningen af forholdet mellem den delstrøm af det tilstrømmende "kolde" vand, som by-passer economiseren via ventilen, og den delstrøm, der efter blanding med den "forvarmede" recirkulationsstrøm fortsætter til eco-10 nomiseren, sker da alene ved justering af ventilens åbningsgrad eller gennemstrømningstværsnit styret, direkte eller indirekte, af røggastemperaturen efter economiseren. Styringen af cirkulationspumpen kan være den enklest mulige, idet pumpen blot skal startes henholds-15 vis standses, når røggastemperatueen passerer en forud fastlagt mindsteværdi i henholdsvis nedad- og opadgående retning.When the shut-off valve in the first by-pass line is a modulating valve, it is possible to allow the pump in the second by-pass line to run at a constant or substantially constant delivery rate throughout the load interval where the valve is open and the pump is running. The adjustment of the ratio of the sub-flow of the "cold" flowing water which bypasses the economizer through the valve and the sub-flow which, after mixing with the "preheated" recirculation stream, continues to the economizer, is only done by adjusting the opening degree of the valve. or flow cross sections controlled, directly or indirectly, by the flue gas temperature of the economizer. The control of the circulation pump can be the simplest possible, since the pump only has to be started or stopped when the flue gas temperature passes a predetermined minimum value in the downward and upward directions respectively.

Opfindelsen forklares i det følgende nærmere under henvisning til tegningen, på hvilken 20 fig. 1 helt skematisk og stærkt forenklet anskue liggør en udførelsesform for en som tvangsgennemløbskedel (once-through boiler) konstrueret dampkedel ifølge opfindelsen, fig. 2 tilsvarende i helt skematisk form viser 25 kedelens economiser med tilhørende omløbsledninger, og fig. 3 er et diagram til belysning af sammenhængen mellem røgtemperatur og kedellast i en konkret udførelsesform for arrangementet ifølge fig. 2.The invention will now be explained in more detail with reference to the drawing, in which: 1 shows a schematic and greatly simplified view of one embodiment of a once-through boiler designed steam boiler according to the invention; 2 is a similar schematic diagram showing the economizer of the boiler with associated circulation lines; and FIG. 3 is a diagram for illustrating the relationship between smoke temperature and boiler load in a concrete embodiment of the arrangement of FIG. 2nd

En i fig. 1 skematisk vist Benson-kedel 1 har 30 et lodret strålingsfyrrum 2, hvis vægge er beklædt med fordamperrør, som blot er antydet med en enkelt skrueviklet rørslange 3. Den i fordamperrørene 3 udviklede og normalt også overhedede damp leveres fra kedelen gennem en fremløbsledning 4 til en ikke vist forbruger, 35 eksempelvis en turbine. Efter energiafgivelse og kondensation strømmer arbejdsmediet i form af vand tilbage 4 DKISlIil! gennem en returledning 5 til en economiser 6, som i fig. 1 er vist indbygget i et på fyrrummet 2 følgende konvektionstræk 7, hvor fødevandet forvarmes ved optagelse af varmeenergi fra røggasserne. Fra economiseren 5 6 løber fødevandet gennem en ledning 8 til fordamper rørene 3. Arbejdsmediets cirkulation understøttes af en pumpe 9 i ledningen 5.One in FIG. 1 schematically shown Benson boiler 1 has a vertical radiant firing chamber 2, the walls of which are lined with evaporator pipes, which is merely indicated by a single screw-wound pipe hose 3. The steam and steam, which is developed in the evaporator pipes 3 and is normally also superheated, is supplied through a supply line 4 to a consumer not shown, for example a turbine. After energy release and condensation, the working medium flows back in the form of water 4 DKISlIil! through a return line 5 to an economizer 6, as in FIG. 1 is shown built into a convection feature 7 following the boiler room 2, where the feed water is preheated by the absorption of heat energy from the flue gases. From the economizer 5 6, the feed water runs through a conduit 8 to the evaporator tubes 3. The circulation of the working medium is supported by a pump 9 in the conduit 5.

I konvektionstrækket 7 er der efter economiseren 6 indbyget en katalysatorenhed 10, som tjener til 10 omdannelse af uønskede komponenter i røggassen, specielt til reduktion af nitrogenoxider, inden røggassen slippes ud i atmosfæren. Normalt vil der også være indbygget en luftforvarmer i røggassernes strømningspassage efter katalysatorenheden 10, men da en sådan forvarmer ikke 15 udgør nogen del af nærværende opfindelse er den ikke vist på tegningen.In the convection feature 7, after the economizer 6, there is incorporated a catalyst unit 10, which serves to convert 10 undesirable components in the flue gas, especially for the reduction of nitrogen oxides, before the flue gas is released into the atmosphere. Normally, an air preheater will also be built into the flue gas flow passage of the catalyst unit 10, but since such preheater 15 does not form part of the present invention, it is not shown in the drawing.

I fig. 2 er selve economiseren 6, hvis indre opbygning er opfindelsen uvedkommende, vist rent skematisk som i fig. 1, og gennemstrømningsretningen for røggas-20 serne er antydet med åbne pile 11. Strømningsretningerne for fødevandet i ledningen 5, der er tilgangsledning for economiseren, og afgangsledningen 8 fra economiseren til fordamperrørene 3 samt i de to viste omløbsledninger 12 og 14 mellem ledningerne 5 og 8 er 25 angivet med udfyldte pile.In FIG. 2, the economizer 6, whose internal structure is the invention irrelevant, is shown schematically as in FIG. 1, and the flow direction of the flue gases is indicated by open arrows 11. The flow directions of the feed water in line 5, which is the supply line for the economizer, and the outlet line 8 from the economizer for the evaporator pipes 3, and in the two shown bypass lines 12 and 14 between lines 5 and 8 are 25 indicated by filled arrows.

Den første omløbsledning 12 indeholder en ventil 13, der fortrinsvis er modulerende, dvs. har kontinuerligt variabelt gennemstrømningstværsnit. Den anden omløbsledning 14, der er tilsluttet de to ledninger 5 30 og 8 mellem den første omløbsledning 12 og selve economiseren, indeholder en pumpe 15, fortrinsvis en centrifugalpumpe, som transporterer vand fra ledningen 8 til ledningen 5, når den er i gang.The first bypass line 12 contains a valve 13 which is preferably modulating, i.e. has continuously variable flow cross section. The second bypass line 14, which is connected to the two lines 5 30 and 8 between the first bypass line 12 and the economizer itself, contains a pump 15, preferably a centrifugal pump, which transports water from line 8 to line 5 as it is running.

Fig. 3 omfatter tre kurver I, II og III, af 35 hvilke kurven I viser afhængigheden mellem kedelbelastningen (som abscisse) og temperaturen af røggasserne 5FIG. 3 comprises three curves I, II and III, of which curve I shows the dependence between the boiler load (as abscissa) and the temperature of the flue gases 5

DK 154731 BDK 154731 B

i gaspassagen 7 på economiseren 6's røgtilgangsside (som ordinat). Kurven II viser tilsvarende det lastafhængige forløb af røggastemperaturen på economiserens røgafgangsside med arrangementet ifølge fig. 2 ude af 5 drift, dvs. med ventilen 13 lukket og pumpen 15 standset. Endelig viser kurven III forløbet af røggastemperaturen efter economiseren i lastområdet mellem 40% og 70%, når pumpen 15 er i gang og ventilen 13 åben.in gas passage 7 on economizer 6's smoke access side (as ordinate). Curve II similarly shows the load-dependent course of the flue gas temperature on the economizer's smoke discharge side with the arrangement of FIG. 2 out of 5 operation, ie. with valve 13 closed and pump 15 stopped. Finally, curve III shows the evolution of the flue gas temperature after the economizer in the load range between 40% and 70% when pump 15 is running and valve 13 is open.

Under de konstruktive og driftsmæssige forhold, 10 som ligger til grund for kurverne i fig. 3, aftager røggastemperaturen før economiseren 6 fra ca. 425°C ved 100% last til ca. 365°C ved 40% last. Tilsvarende ville røggastemperaturen efter economiseren falde fra godt 360°C til lidt over 290°C i et konventionelt arrange-15 ment, dvs. uden de to i fig. 2 viste ledninger 12 og 14. I lastområdet ned til ca. 70% ville dette temperaturforløb være acceptabelt, idet røgens indgangstemperatur i enheden 10 da stadig ville være mindst ca.Under the constructive and operational conditions 10 underlying the curves of FIG. 3, the flue gas temperature before economizer 6 decreases from approx. 425 ° C at 100% load to approx. 365 ° C at 40% load. Similarly, after the economizer, the flue gas temperature would drop from just over 360 ° C to just over 290 ° C in a conventional arrangement, ie. without the two in FIG. 2 in the load area down to approx. 70% would be acceptable, since the smoke input temperature of the unit 10 would still be at least approx.

330°C, og i intervallet fra 100% til 70% kan man derfor 20 køre kedelen konventionelt, dvs. med ventilen 13 lukket og pumpen 15 standset.Therefore, in the range of 100% to 70%, the boiler can be operated conventionally, ie. with valve 13 closed and pump 15 stopped.

Når en på et passende sted i konvektionstrækket 7 placeret temperaturføler indicerer, at temperaturen er faldet i nærheden af undergrænsen for enheden 10's 25 funktionsduelighed, startes til at begynde med pumpen 15, medens ventilen 13 foreløbig forbliver lukket.When a temperature sensor located at a suitable location in the convection feature 7 indicates that the temperature has dropped near the lower limit of the unit 10's operability, the pump 15 is initially started, while the valve 13 remains closed for the time being.

Pumpen recirkulerer derved en del af det fra economiseren til ledningen 8 udstrømmende vand tilbage til economiserens indgang, hvorved temperaturen her hæves grad- 30 vis, medens tilsvarende røggassens varmeafgivelse i economiseren falder og røgens afgangstemperatur stiger.The pump thereby recirculates part of the water flowing from the economizer to the conduit 8 to the economizer's inlet, thereby raising the temperature here gradually, while correspondingly the flue gas heat release in the economizer decreases and the smoke outlet temperature rises.

Efter forløbet af et tidsrum, som bestemmes af det i øvrigt ikke nærmere beskrevne styresystem, begynder ventilen 13 at åbne, hvorved en del af det fra forbruge-35 ren gennem ledningen 5 tilbagestrømmende fødevand bypasser economiseren via ledningen 12 til ledningen 8 og derfra videre til kedelens fordamperrør.After a period of time determined by the control system not otherwise described, the valve 13 begins to open, whereby a portion of the food flowing back through the conduit 5 passes the economizer via the conduit 12 to the conduit 8 and from there to the boiler evaporator tube.

DK 154731BDK 154731B

66

Styringen kan være udformet således, at den ved hjælp af pumpen 15 recirkulerede mængdestrøm er helt eller næsten konstant, uafhængig af lastprocenten, og udgør en relativt høj andel af den totale mængdestrøm 5 gennem economiseren 6. I modsætning hertil varierer mængdestrømmen gennem omløbsledningen 12 stærkt med' kedellasten. I et konkret eksempel med relation til kurverne i fig. 3 varierede mængdestrømmen i ledningerne 5 og 8 mellem ca. 215 kg/s ved 70% last og ca. 120 kg/s 10 ved 40% last. Ved begge lasttilstande var pumpen 15's leveringsmængde 150 kg/s og mængdestrømmen gennem economiseren 6 var ca. 165 kg/s. Svarende hertil strømmede der pr. sekund ca. 200 kg gennem ventilen 13 ved 70% og ca. 105 kg ved 40% last. Som det ses af kurven III i 15 fig. 3 opnåede man herved en røgtemperatur mellem economiseren og katalysatorenheden på ca. 370°C ved 70% last (mod kun ca. 330° i et konventionelt system) og knap 330°C ved 40% last, altså stadig i passende afstand fra den nedre grænse for katalysatorens virkeområde.The control may be designed such that the volume flow recycled by the pump 15 is wholly or almost constant, independent of the load percentage, and constitutes a relatively high proportion of the total flow rate 5 through the economizer 6. In contrast, the flow rate through the bypass line 12 varies greatly with 'boiler load. In a concrete example related to the curves of FIG. 3, the flow rate in lines 5 and 8 varied between approx. 215 kg / s at 70% load and approx. 120 kg / s 10 at 40% load. In both load conditions, the delivery volume of the pump 15 was 150 kg / s and the flow rate through the economizer 6 was approx. 165 kg / s. Correspondingly, there was a current flow. second approx. 200 kg through valve 13 at 70% and approx. 105 kg at 40% load. As seen from curve III in FIG. 3, a smoke temperature was obtained between the economizer and the catalyst unit of approx. 370 ° C at 70% load (against only about 330 ° in a conventional system) and just under 330 ° C at 40% load, thus still at a suitable distance from the lower limit of the catalyst's operating range.

20 25 30 3520 25 30 35

Claims (5)

1. Dampkedel af den art, hvor et apparat (10) til katalytisk omdannelse af skadelige stoffer, specielt nitrogenoxider, i røggassen er indbygget i en røgaf- 5 gangspassage (7) fra kedelens fyrrum (2) på nedstrømssi-den af en economiser (6), hvis tilgangs- og afgangsledninger (5, 8) for fødevand er forbundet gennem en ved hjælp af en ventil (13) afspærrelig omløbsledning (12), kendetegnet ved, at der mellem economiserens 10 tilgangs- og afgangsledninger (5, 8) er en anden omløbsledning (14) med en cirkulationspumpe (15), hvis suge-og trykside er tilsluttet henholdsvis afgangs- og tilgangsledningen (8, 5) nærmere ved economiseren end den førstnævnte omløbsledning (12).1. A steam boiler of the kind in which an apparatus (10) for the catalytic conversion of harmful substances, in particular nitrogen oxides, is incorporated into the flue gas into a smoke outlet passage (7) from the boiler room (2) on the downstream side of an economizer ( 6) if supply and discharge lines (5, 8) for feed water are connected through a by-pass (13) bypass valve (12), characterized in that between the supply and discharge lines (5, 8) of the economizer 10 is a second inlet line (14) with a circulation pump (15), the suction and pressure side of which are respectively connected to the outlet and inlet line (8, 5) closer to the economizer than the first mentioned inlet line (12). 2. Kedel ifølge krav l, kendetegnet ved, at afspærringsventilen (13) er en modulerende ventil.Boiler according to claim 1, characterized in that the shut-off valve (13) is a modulating valve. 3. Kedel ifølge krav 1 eller 2, kendetegne t ved, at cirkulationspumpen (15) er en centrifu- 2. galpumpe.Boiler according to claim 1 or 2, characterized in that the circulation pump (15) is a centrifugal pump. 4. Fremgangsmåde ved drift af en kedel ifølge ethvert af kravene 1-3, kendetegnet ved, at cirkulationspumpen (15) startes og afspærringsventilen (13) åbnes, når røggastemperaturen ved afgangen fra eco- 25 nomiseren (6) falder under en forudbestemt værdi.Method of operating a boiler according to any one of claims 1-3, characterized in that the circulation pump (15) is started and the shut-off valve (13) is opened when the flue gas temperature at the exit of the economizer (6) falls below a predetermined value. 5. Fremgangsmåde ifølge krav 4, kendetegnet ved, at den gennem den anden omløbsledning (14) recirkulerede vandmængde holdes helt eller i det væsentlige konstant i det lastområde, hvor cirkulationspumpen 30 (15) er i gang.Method according to claim 4, characterized in that the quantity of water recirculated through the second by-pass line (14) is kept fully or substantially constant in the load area where the circulation pump 30 (15) is running.
DK225185A 1985-05-21 1985-05-21 Steam boiler with catalytic flue gas treatment as well as boiler operation DK154731C (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DK225185A DK154731C (en) 1985-05-21 1985-05-21 Steam boiler with catalytic flue gas treatment as well as boiler operation
DE3616095A DE3616095C2 (en) 1985-05-21 1986-05-13 Steam generator with catalytic flue gas treatment and method for operating the steam generator
SE8602249A SE461421B (en) 1985-05-21 1986-05-16 OPERATOR WITH CATALYTIC SMOKE GAS TREATMENT AND PROCEDURE FOR OPERATING THE BOILER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DK225185A DK154731C (en) 1985-05-21 1985-05-21 Steam boiler with catalytic flue gas treatment as well as boiler operation
DK225185 1985-05-21

Publications (4)

Publication Number Publication Date
DK225185D0 DK225185D0 (en) 1985-05-21
DK225185A DK225185A (en) 1986-11-22
DK154731B true DK154731B (en) 1988-12-12
DK154731C DK154731C (en) 1989-05-08

Family

ID=8111089

Family Applications (1)

Application Number Title Priority Date Filing Date
DK225185A DK154731C (en) 1985-05-21 1985-05-21 Steam boiler with catalytic flue gas treatment as well as boiler operation

Country Status (3)

Country Link
DE (1) DE3616095C2 (en)
DK (1) DK154731C (en)
SE (1) SE461421B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0549522B1 (en) * 1991-12-23 1996-05-08 ABB Management AG Method of operating a forced circulation steam generator and forced circulation steam generator therefor
DE4218016A1 (en) * 1992-06-01 1993-12-02 Siemens Ag Method and device for controlling the flue gas temperature at the outlet of a steam generator
EP0582898A1 (en) * 1992-08-10 1994-02-16 Siemens Aktiengesellschaft Method of operating a steam and gas turbine system and system for carrying out the method
EP0595009B1 (en) * 1992-09-30 1996-01-10 Siemens Aktiengesellschaft Method of operating a power plant and power plant working according to this method
US5361827A (en) * 1992-12-29 1994-11-08 Combustion Engineering, Inc. Economizer system for vapor generation apparatus
DE4310009C2 (en) * 1993-03-27 1996-04-04 Muellkraftwerk Schwandorf Betr Method and device for generating steam in a thermal power station
DE19929088C1 (en) * 1999-06-24 2000-08-24 Siemens Ag Fossil fuel heated steam generator e.g. for power station equipment
DE102013001440A1 (en) * 2013-01-29 2014-07-31 Rwe Power Aktiengesellschaft Method for controlling flue gas temperature at brown coal boiler with downstream wet flue gas desulphurization, involves directly introducing cooling fluid into flue gas flow when actual temperature of flue gas exceeds reference value

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3818872A (en) * 1973-06-29 1974-06-25 Combustion Eng Economizer bypass for increased furnace wall protection
DE3344712C1 (en) * 1983-12-10 1985-04-18 Balcke-Dürr AG, 4030 Ratingen Steam generator

Also Published As

Publication number Publication date
SE8602249D0 (en) 1986-05-16
DE3616095C2 (en) 1993-11-25
DK225185D0 (en) 1985-05-21
DE3616095A1 (en) 1986-11-27
DK225185A (en) 1986-11-22
DK154731C (en) 1989-05-08
SE8602249L (en) 1986-11-22
SE461421B (en) 1990-02-12

Similar Documents

Publication Publication Date Title
JP5450642B2 (en) Operation method of exhaust heat recovery boiler
JP4786504B2 (en) Heat medium supply facility, solar combined power generation facility, and control method thereof
US4572110A (en) Combined heat recovery and emission control system
JPS6249443B2 (en)
JPH06229209A (en) Gas-steam turbine composite equipment and operating method thereof
US4745757A (en) Combined heat recovery and make-up water heating system
DK154731B (en) Steam boiler with catalytic flue gas treatment as well as boiler operation
JP2004526900A (en) Gas turbine coolant cooling system and gas / steam combined turbine equipment
JPH11510241A (en) Starting method of once-through boiler and its starting system
US4487166A (en) Start-up system for once-through boilers
CS33090A3 (en) Steam generator and method of its intermediate superheater temperature control
CA1241881A (en) Start-up control system and vessel for lmfbr
AU715484B2 (en) Waste heat boiler with variable output
US3003479A (en) Steam and air boiler with heating surface of smallest load
JPH0765721B2 (en) Exhaust heat recovery heat exchange device
EP0011104B1 (en) Flue gas reheat system
US3508526A (en) Flow-through steam generator
US3434460A (en) Multicircuit recirculation system for vapor generating power plant
JP2000257806A (en) Drain recovery system for heat exchanger
US3467067A (en) Recirculating type once-through steam generator
JP2686264B2 (en) Waste heat recovery boiler
JPS6152361B2 (en)
JP2625422B2 (en) Boiler control device
JP2686260B2 (en) Operating method of once-through boiler
JPH07122485B2 (en) Steamer steam prevention device for once-through thermal power generation boiler system

Legal Events

Date Code Title Description
PUP Patent expired