DK153675B - PROCEDURE FOR MANUFACTURING USE OF A FOAM FABRIC STRENGTHED FIBER ARMED FORM SUCH AS WINGS OR ROTOR LEAVES WITH LARGE LENGTH AND WIDTH DIMENSIONS - Google Patents
PROCEDURE FOR MANUFACTURING USE OF A FOAM FABRIC STRENGTHED FIBER ARMED FORM SUCH AS WINGS OR ROTOR LEAVES WITH LARGE LENGTH AND WIDTH DIMENSIONS Download PDFInfo
- Publication number
- DK153675B DK153675B DK168481AA DK168481A DK153675B DK 153675 B DK153675 B DK 153675B DK 168481A A DK168481A A DK 168481AA DK 168481 A DK168481 A DK 168481A DK 153675 B DK153675 B DK 153675B
- Authority
- DK
- Denmark
- Prior art keywords
- mold body
- foam
- mold
- foam core
- shell
- Prior art date
Links
- 239000006260 foam Substances 0.000 title claims description 27
- 238000000034 method Methods 0.000 title claims description 22
- 238000004519 manufacturing process Methods 0.000 title description 9
- 239000004744 fabric Substances 0.000 title description 2
- 239000000835 fiber Substances 0.000 title 1
- 239000000463 material Substances 0.000 claims description 4
- 239000002657 fibrous material Substances 0.000 claims description 3
- 230000002787 reinforcement Effects 0.000 claims 2
- 229920002430 Fibre-reinforced plastic Polymers 0.000 claims 1
- 239000011151 fibre-reinforced plastic Substances 0.000 claims 1
- 239000000853 adhesive Substances 0.000 description 6
- 230000001070 adhesive effect Effects 0.000 description 6
- 238000003475 lamination Methods 0.000 description 5
- 238000005304 joining Methods 0.000 description 3
- 238000005452 bending Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 238000003801 milling Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 1
- 239000003733 fiber-reinforced composite Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D99/00—Subject matter not provided for in other groups of this subclass
- B29D99/0025—Producing blades or the like, e.g. blades for turbines, propellers, or wings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C44/00—Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
- B29C44/02—Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
- B29C44/12—Incorporating or moulding on preformed parts, e.g. inserts or reinforcements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C44/00—Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
- B29C44/02—Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
- B29C44/12—Incorporating or moulding on preformed parts, e.g. inserts or reinforcements
- B29C44/1223—Joining preformed parts which have previously been filled with foam
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C44/00—Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
- B29C44/34—Auxiliary operations
- B29C44/56—After-treatment of articles, e.g. for altering the shape
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/28—Shaping operations therefor
- B29C70/30—Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
- B29C70/34—Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D99/00—Subject matter not provided for in other groups of this subclass
- B29D99/0025—Producing blades or the like, e.g. blades for turbines, propellers, or wings
- B29D99/0028—Producing blades or the like, e.g. blades for turbines, propellers, or wings hollow blades
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C3/00—Wings
- B64C3/24—Moulded or cast structures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D1/00—Wind motors with rotation axis substantially parallel to the air flow entering the rotor
- F03D1/06—Rotors
- F03D1/065—Rotors characterised by their construction elements
- F03D1/0675—Rotors characterised by their construction elements of the blades
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/06—Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
- B29L2031/08—Blades for rotors, stators, fans, turbines or the like, e.g. screw propellers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
- B29L2031/08—Blades for rotors, stators, fans, turbines or the like, e.g. screw propellers
- B29L2031/082—Blades, e.g. for helicopters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/20—Rotors
- F05B2240/30—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/40—Weight reduction
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Composite Materials (AREA)
- Moulding By Coating Moulds (AREA)
- Wind Motors (AREA)
Description
iin
DK 153675 BDK 153675 B
Opfindelsen angår en fremgangsmåde af den i krav l's indledning angivne art. Der kendes metoder til fremstilling af vinger til svævefly m.m. d.v.s. til relativt små konstruktionselementer. Ved disse kendte me-5 toder skal de anvendte forme være lukkelige, så at der til tilvejebringelse af bjælkekonstruktioner kræves et bekosteligt fremstillingsmateriale. Ved ribbekonstruktioner opstår afpasningsproblemer, og desuden er der ingen mulighed for kontrol under fremstillingen.The invention relates to a method of the kind set out in the preamble of claim 1. Methods are known for making blades for gliders etc. i.e. for relatively small structural elements. In these known methods, the molds used must be closed so that costly manufacturing material is required to provide beam structures. In the case of rib constructions, adjustment problems arise, and in addition there is no possibility of control during manufacture.
10 De kendte metoder er alene på grund af det dårlige for hold mellem masse og stivhed uegnet til fremstilling af store formlegemer, f.eks. rotorblade til store vind-energianlæg med mere.The known methods are unsuitable only for the production of large molds, for example because of the poor relationship between mass and stiffness. rotor blades for large wind power plants and more.
De omtalte kendte konstruktioner og metoder er således 15 uanvendelige ved fremstilling af vinger eller rotorbla de med store flader, idet de hverken kan anvendes til tilvejebringelse af bjælkekonstruktioner eller til fremstilling af skalkonstruktioner med præfabrikeret skum-stofkerne.Thus, the known constructions and methods are useless in the manufacture of blades or rotor blades with large surfaces, because they can neither be used to provide beam structures nor to make shell structures with prefabricated foam cores.
20 Ved bjælkekonstruktioner er massen ved en given stivhed større end ved skalkonstruktioner, og formene skal på grund af den tyndvæggede skals konturnøjagtighed kunne lukkes, hvorved forbindelsen mellem bjælkerne og den ydre skal tilvejebringes via små, vanskeligt kontrol-25 lerbare klæbeflader.20 For beam structures, the pulp is greater at a given stiffness than for shell structures and the shapes must be able to close due to the contour accuracy of the thin-walled shell, whereby the connection between the beams and the exterior must be provided via small, difficult-to-control adhesive surfaces.
Skalkonstruktioner med præfabrikeret skumstofkerne har i det foreliggende tilfælde følgende mangler:Shell structures with prefabricated foam core have the following shortcomings in the present case:
Skumstofkernen kan på grund af sin størrelse og sin bekostelige geometriske udformning ikke fremstilles 50 økonomisk, og en forbindelse af god kvalitet mellem kernen og skallen kan kun opnås ved hjælp af "våd-i-våd-metod-en" med lukkelige forme.Due to its size and its costly geometric design, the foam core cannot be economically produced and a good quality connection between the core and the shell can only be achieved by the "wet-in-wet method" with closed molds.
22
DK 153675BDK 153675B
Også denne kendte metode er på grund af den store mængde laminat og de bekostelige formværktøjer uanvendelig til det foreslåede formål, især fordi den samlede mængde laminat samtidigt skal være våd. Sammenklæbningen 5 af en kerne med hærdede skaller kan ikke kontrolleres.Also, this known method is unsuitable for the proposed purpose due to the large amount of laminate and the costly molding tools, especially because the total amount of laminate must be wet at the same time. The adhesion 5 of a core with hardened shells cannot be controlled.
Også den kendte metode til fremstilling af skalkonstruktioner med ribber har alvorlige mangler, idet den færdige konstruktionsdels samlede masse øges for meget ved ribbemassen og massen af forbindelseselementerne mellem 10 ribberne og skallen. Desuden er ribbernes indpasning mellem skallerne meget bekostelig. Desuden er en fuldstændig kontrol med sammenklæbningen ikke mulig.Also, the known method for making shell structures with ribs has serious shortcomings, the total mass of the finished structure being increased too much at the rib mass and the mass of the connecting elements between the ribs and the shell. Furthermore, the fit of the ribs between the shells is very expensive. Furthermore, complete control of the adhesive is not possible.
Den foreliggende opfindelse har til formål at tilvejebringe en fremgangsmåde af den angivne art, der ikke 15 er behæftet med de omtalte mangler ved de kendte meto der, og ved hjælp af hvilken der i særskilte, åbne forme kan fremstilles store vinger eller store rotorblade på en sådan måde, at man under fremstillingen fortløbende kan kontrollere den indre struktur og korrigere 20 fejl. Dette opnås på overraskende enkel og tilforlade lig måde ved de i kravene angivne foranstaltninger.The present invention has for its object to provide a method of the kind specified which does not deal with the aforementioned shortcomings of the known methods and by means of which, in separate, open molds, large blades or large rotor blades can be produced on a in such a way that during manufacture, the internal structure can be continuously checked and 20 errors corrected. This is achieved in a surprisingly simple manner and permits equal means by the measures specified in the claims.
I det følgende forklares opfindelsen nærmere ved hjælp af tegningen, hvor fig. 1 viser et partielt tværsnit i et efter fremgangs-25 måden ifølge opfindelsen fremstillet stort rotorblad, fig. 2 perspektivisk og set fra oven en suge-tryk-side-skal til fremstilling af det i fig. 1 viste rotorblad, fig. 3 det i sideskallen anbragte rotorblads indre opbygning,In the following, the invention is explained in more detail with reference to the drawing, in which fig. 1 is a partial cross-sectional view of a large rotor blade manufactured according to the invention; FIG. 2 is a perspective view of a suction-pressure side shell for preparing the embodiment of FIG. 1; FIG. 3 shows the inner structure of the rotor blade arranged in the side shell,
DK 153675 BDK 153675 B
3 fig. 4 et partielt tværsnit i en skumstofkerne og bag-kantskumstof med overmål, fig. 5 et partielt tværsnit ifølge fig. 4 efter bearbejdning til færdiggørelse, og 5 fig. 6 partielle tværsnit i to rotorbladdele under dis ses sammenføjning.3 FIG. 4 is a partial cross-sectional view of a foam core and backside foam fabric with oversize; FIG. 5 is a partial cross-sectional view of FIG. 4 after machining for completion, and 5 fig. 6 partial cross sections in two rotor blade parts during disassembly joining.
I fig. 1 ses et i sin helhed med 10 betegnet formstofle-geme i form af et stort rotorblad, der er fremstillet efter fremgangsmåden ifølge opfindelsen på følgende måde: 10 først lamineres en ydre rotorbladsskal 11 som formlege me bestående af to særskilte halvparter 10a og 10b af et fiberarmeret sammensat materiale, hvorefter skallen II varm- eller koldhærdes, idet formlegemer med store flader fortrinsvis varmhærdes på grund af den lange 15 forarbejdningstid ved koldhærdningen. Skallens nedre torsionshalvpart 10b har som vist i fig. 2 et ydre dia-gonallaminatlag og et tilsvarende indre lag 14 samt et mellem disse beliggende unidirektionallaminatlag 12 til optagelse af bøjningskræfterne hidrørende fra 20 bøjning og fra centrifugalkraften. Unidirektionallami- natlaget 12, der strækker sig i bladets samlede længde, kan være fordelt over det samlede profiltværsnit eller kan kun være indlamineret i bestemte områder. Disse områder er afhængige af den forventelige belastning 25 henholdsvis de kræfter, der skal optages. Tykkelsen og beliggenheden er afhængige af de nødvendige masser, stivheden, styrken og tyngdepunkterne. Som oftest ønskes f.eks. i profilets bageste område, den såkaldte fane, en let struktur. Hertil foreslår opfindelsen en selvbæ-30 rende sandwich-struktur. De foreslåede laminater kan som regel fremstilles efter håndlamineringsmetoden eller som. såkaldte prepregs eller endog efter vakuumin-In FIG. 1, a fully-formed plastic body 10, in the form of a large rotor blade made according to the method according to the invention, is shown as follows: 10 first, an outer rotor blade shell 11 is laminated as a mold consisting of two separate half-parts 10a and 10b of a fiber-reinforced composite material, after which the shell II is hot or cold hardened, with large body molds preferably hot hardened due to the long processing time of the cold hardening. The lower torsion half of the shell 10b, as shown in FIG. 2 shows an outer diagonal laminate layer and a corresponding inner layer 14 and a unidirectional laminate layer 12 located therebetween for absorbing the bending forces resulting from bending and from the centrifugal force. The unidirectional laminate layer 12, which extends throughout the length of the blade, may be distributed over the overall profile cross-section or may be laminated only in certain areas. These areas are dependent on the expected load and the forces to be absorbed, respectively. The thickness and location depend on the masses needed, the stiffness, the strength and the center of gravity. Most often, e.g. in the back area of the profile, the so-called tab, a lightweight structure. To this end, the invention proposes a self-supporting sandwich structure. The proposed laminates can usually be made by the hand lamination method or as. so-called prepregs or even after vacuum injection.
DK 153675BDK 153675B
4 j ektionsmetoden.The 4 jection method.
Fig. 2 illustrerer fremstillingsprocessen og sugetryk-sideskallens opbygning, idet bladets ydre skallag lægges på et formebord 100 og lamineres.FIG. 2 illustrates the manufacturing process and the suction pressure side shell structure, the outer shell layer of the blade being laid on a forming table 100 and laminated.
5 Fig. 3 viser opbygningen af et blads eller en vinges indre dele henholdsvis fremstillingen af den såkaldte skumstofkerne. Også kernen fremstilles af to halvparter i hver sin halvpart af lamineringsformen 100.FIG. 3 shows the structure of the inner parts of a blade or wing and the manufacture of the so-called foam core, respectively. Also the core is made of two halves in each half of the laminating mold 100.
Skumstofkernens halvparter kan være sammensat af stang-10 formede skumstofelementer 15a, d.v.s. af plademateriale med en tykkelse på ca. 80 cm, der danner skiver og sammenklæbes. Skiverne svarer til de indlaminerede skal-halvparters indre kontur. Den nøjagtige kontur kan opnås ved indpasning, idet hver forudgående skumstofski-15 ve eller hvert forudgående stangformede skumstofelement 15a tjener som skabelon for en næste spalte, der fremkommer ved grov indpasning, og som lukkes ved hjælp af et opskummeligt klæbemiddel. På denne måde fås en lukket skumstofkerne, der kun skal bearbejdes i skille-20 planet 21, fig. 4. Dette gælder for begge formlegeme- halvparter 10a og 10b. De udragende skumstofdele ved 15 og 17, fig. 4, skilles fra ved hjælp af et styret skæreorgan. De således bearbejdede vinge- eller blad-halvparter, d.v.s. overskallen 10a og underskallen 10b 25 som formlegemehalvparter sammenklæbes ved deres fælles skilleplan 21.The foam core halves may be composed of rod-shaped foam elements 15a, i.e. of sheet material with a thickness of approx. 80 cm, forming slices and glued together. The slices correspond to the inner contour of the laminated shell half. The exact contour can be obtained by fitting, with each preceding foam disc or each prior rod shaped foam element 15a serving as a template for a next coarse slit, which is closed by a foamable adhesive. In this way, a closed foam core is obtained, which is only to be processed in the separator plane 21, fig. 4. This is true for both mold body parts 10a and 10b. The protruding foam parts at 15 and 17, fig. 4, is separated by a controlled cutting means. The wing or blade halves thus processed, i.e. the upper shell 10a and the lower shell 10b 25 are adhered to each other by means of their common separation plane 21.
Fremstillingsprocessen forløber således: I lamineringsformen for den nedre formlegemehalvpart 10b, også kaldet underskallen, og i lamineringsformen 30 for den øvre formlegemehalvpart 10a, også kaldet over skallen, fremstilles bladets ydre lamineringslag afThe manufacturing process proceeds as follows: In the lamination mold for the lower mold half 10b, also called the undercoat, and in the lamination mold 30 for the upper mold half half 10a, also called over the shell, the outer lamination layer of the sheet is made of
DK 153675BDK 153675B
5 et sammensat fibermateriale i diagonallaminat, hvorefter laminatlaget 12 påføres i formlegemets samlede længde og enten over det samlede profiltværsnit eller kun i delområder af dette. Dernæst indlægges i profilfanens område skumplader 13, der tilpasses, hvorefter det indre 3 laminatlag 14 lamineres. Også dette lag 14 er et diago nallaminat og består af et sammensat fibermateriale.5 shows a composite fiber material in diagonal laminate, after which the laminate layer 12 is applied in the total length of the mold body and either over the entire profile section or only in sub-regions thereof. Then, in the area of the profile tab, foam sheets 13 are fitted which are adapted, after which the inner 3 laminate layer 14 is laminated. Also this layer 14 is a diago nal laminate and consists of a composite fiber material.
Vingens eller rotorbladets indre kernedel fremstilles for begge forhalvparters vedkommende efter samme metode: skumstofbjælken fremstilles af enkelte skumstofbjælke-10 elementer 15a, hvis øvre kantflade rager op over det såkaldte skilleplan 21. Dernæst fastklæbes disse elementer som vist i fig. 3 på torsionsskallen 11, 12, 13, 14 eller indlægges, hvorefter endekantlaminatet 16 til-fræses i faneområdet.The inner core portion of the blade or rotor blade is manufactured for both halves by the same method: the foam bar is made of single foam bar elements 15a, the upper edge of which protrudes above the so-called separating plane 21. Next, these elements are adhered as shown in FIG. 3 on the torsion shell 11, 12, 13, 14 or inserted, and the end edge laminate 16 is milled in the tab area.
15 På tilfræsningsarealet 16 påklæbes skumstofplader 17, der ligeledes rager uden for skilleplanet 21. Ved hjælp af et styret skære-,eller fræseorgan overskæres eller affræses skumstofdele 15 og de ved bagkanten anbragte skumstofplader 17 nøjagtigt i skilleplanet 21. Dernæst 20 indføres henholdsvis lamineres et indskydningslaminat 18 og et bagkantvæv 19 umiddelbart inden sammenføjningen af de to formlegemehalvparter 10a, 10b. Til slut indklæbes afstivningsvinkler 20, der sikrer en effektiv fiksering og fastholdelse af de stangformede skumstof-25 elementer 15a i deres korrekte stilling.15 On the milling area 16, foam sheets 17, which also protrude outside the dividing plane 21. are adhered to, by means of a controlled cutting or milling means, foam parts 15 are cut or milled and the foam sheets 17 placed at the trailing edge exactly in the separating plane 21. Next, laminating 20 is inserted respectively 18 and a trailing edge web 19 immediately prior to joining the two mold body half portions 10a, 10b. Finally, stiffening angles 20 are adhered to ensure effective fixation and retention of the rod-shaped foam elements 15a in their proper position.
Fig. 6 viser arbejdsstadiet umiddelbart inden sammenføjningen af de to formlegemehalvparter 10a, 10b. På alle i skilleplanet beliggende flader på delene 10a, 10b og 19 påføres et skumstofklæbemiddel, hvorefter 30 de to formlegemehalvparter sammenføjes. Hærdningen un der lamineringsprocesserne er omtalt i det foregående.FIG. 6 shows the working stage immediately before the joining of the two mold body halves 10a, 10b. A foam adhesive is applied to all surfaces of the parts 10a, 10b and 19 on the parting plane, after which 30 the two mold body halves are joined together. The cure during which the lamination processes are discussed above.
Udhærde- og tørretiden ved klæbning er afhængig af det anvendte skumstofklæbemiddels beskaffenhed.The curing and drying time of adhesive is dependent on the nature of the foam adhesive used.
Claims (6)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3014347A DE3014347C2 (en) | 1980-04-15 | 1980-04-15 | Process for the production of foam core-supported, fiber-reinforced plastic moldings such as blades, rotor blades, etc., of great length and width |
DE3014347 | 1980-04-15 |
Publications (3)
Publication Number | Publication Date |
---|---|
DK168481A DK168481A (en) | 1981-10-16 |
DK153675B true DK153675B (en) | 1988-08-15 |
DK153675C DK153675C (en) | 1988-12-27 |
Family
ID=6100012
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DK168481A DK153675C (en) | 1980-04-15 | 1981-04-14 | PROCEDURE FOR MANUFACTURING USE OF A FOAM FABRIC STRENGTHED FIBER ARMED FORM SUCH AS WINGS OR ROTOR LEAVES WITH LARGE LENGTH AND WIDTH DIMENSIONS |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0037987B1 (en) |
DE (1) | DE3014347C2 (en) |
DK (1) | DK153675C (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101844387A (en) * | 2010-05-28 | 2010-09-29 | 无锡韦伯风能技术有限公司 | Foam sandwich composite material blade and manufacturing process thereof |
CN102251935A (en) * | 2010-05-21 | 2011-11-23 | 西门子公司 | Blade of a wind turbine |
Families Citing this family (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3113079C2 (en) * | 1981-04-01 | 1985-11-21 | Messerschmitt-Bölkow-Blohm GmbH, 8000 München | Large aerodynamic wing and process for its manufacture |
FR2602739B1 (en) * | 1986-07-28 | 1988-11-18 | Aerospatiale | BLADE OF COMPOSITE MATERIALS, WITH TWO-WELL STRUCTURE AND TWO-WAY BIRTH, AND HAVING A HONEYCOMB SANDWICH COATING, AND METHOD FOR THE PRODUCTION THEREOF |
DE3924990C3 (en) * | 1989-06-13 | 1996-11-21 | Man Ceramics Gmbh | Process for the production of a hip joint prosthesis socket |
US5100255A (en) * | 1989-12-13 | 1992-03-31 | The Boeing Company | Graphite fittings for graphite tubing |
DE4335221C1 (en) * | 1993-10-15 | 1995-03-16 | Deutsche Forsch Luft Raumfahrt | Rotor blade for wind power systems |
DE19644264A1 (en) * | 1996-10-24 | 1998-05-07 | Manfred Grefe | Rotor blade for wind power generator |
DE19833869C5 (en) * | 1998-07-22 | 2004-07-01 | EUROS Entwicklungsgesellschaft für Windkraftanlagen | Device for the production of rotor blades |
AU2001262891A1 (en) * | 2000-04-28 | 2001-11-12 | Arcelik, A.S. | Method of producing a refrigerator cabinet and door |
DK200201743A (en) * | 2002-11-12 | 2004-05-13 | Lm Glasfiber As | Shaping device with closing mechanism |
CN1867770A (en) * | 2003-02-28 | 2006-11-22 | 维斯塔斯风力系统有限公司 | Method for manufacturing a wind turbine blade, wind turbine blade, front cover and use of a front cover |
DE10330733A1 (en) * | 2003-07-07 | 2005-02-17 | Eew Maschinenbau Gmbh | Rotor blade for wind turbines |
DE102004049098A1 (en) * | 2004-10-08 | 2006-04-13 | Eew Maschinenbau Gmbh | Rotor blade for a wind energy plant |
DE102004057979C5 (en) * | 2004-11-30 | 2019-09-26 | Senvion Gmbh | rotor blade |
DK176418B1 (en) * | 2004-12-22 | 2008-01-21 | Lm Glasfiber As | Process for producing a fiber-reinforced part for a wind power plant |
MX2007009390A (en) * | 2005-02-03 | 2008-02-14 | Vestas Wind Sys As | Method of manufacturing a wind turbine blade shell member. |
DE102005051931B4 (en) * | 2005-10-29 | 2007-08-09 | Nordex Energy Gmbh | Rotor blade for wind turbines |
US7895745B2 (en) * | 2007-03-09 | 2011-03-01 | General Electric Company | Method for fabricating elongated airfoils for wind turbines |
EP2225458B1 (en) * | 2007-11-14 | 2011-06-22 | Vestas Wind Systems A/S | Wind turbine blade and method for manufacturing a wind turbine blade |
DE102008022548A1 (en) | 2008-05-07 | 2009-11-12 | Nordex Energy Gmbh | Rotor blade for a wind energy plant |
FI20085570A0 (en) * | 2008-06-10 | 2008-06-10 | Deep Sea Engineering | A process for making technical composite products comprising epoxy resins and carbon nanotubes |
US8092187B2 (en) * | 2008-12-30 | 2012-01-10 | General Electric Company | Flatback insert for turbine blades |
WO2010100066A2 (en) * | 2009-03-05 | 2010-09-10 | Kress-Haase, Michaela | Wind power plant and related production method |
DE102009024324A1 (en) * | 2009-05-29 | 2010-12-02 | Nordex Energy Gmbh | Method and device for mounting a rotor blade for a wind energy plant |
EP2275673B1 (en) | 2009-07-17 | 2018-01-24 | Vestas Wind Systems A/S | Manufacturing WTG blade having a spar |
US8043066B2 (en) * | 2010-06-08 | 2011-10-25 | General Electric Company | Trailing edge bonding cap for wind turbine rotor blades |
US7988422B2 (en) * | 2010-06-25 | 2011-08-02 | General Electric Company | Wind turbine blades with improved bond line |
CN102985241B (en) | 2010-07-21 | 2016-01-06 | 西门子公司 | The method of closing of die assembly and die assembly |
ITBO20100462A1 (en) * | 2010-07-22 | 2012-01-23 | Benini Nabore | AIRCRAFT AND METHOD TO REALIZE IT |
DE102010055874B3 (en) * | 2010-12-24 | 2012-04-05 | Aerodyn Engineering Gmbh | Method for producing a rotor blade of a wind energy plant |
EP2524794A1 (en) | 2011-05-18 | 2012-11-21 | EUROCOPTER DEUTSCHLAND GmbH | Foam or honeycomb core, rotor blade with foam or honeycomb cores and method of manufacturing such a rotor blade |
DE102011077609B4 (en) * | 2011-06-16 | 2015-01-22 | Senvion Se | Production of a rotor blade shell |
DE102011080497A1 (en) * | 2011-08-05 | 2013-02-07 | Wobben Properties Gmbh | Forming process for hot forming a steel sheet of a rotor blade of a wind turbine to be produced |
US9139287B2 (en) * | 2012-06-26 | 2015-09-22 | Hamilton Sundstrand Corporation | Propeller blade with carbon foam spar core |
EP2749764A1 (en) * | 2012-12-27 | 2014-07-02 | Siemens Aktiengesellschaft | Turbine blade, manufacturing of the turbine blade and use of the turbine blade |
DE102013212884A1 (en) * | 2013-07-02 | 2015-01-08 | Wobben Properties Gmbh | Test specimen, test method, wind turbine |
DE102014203936B4 (en) | 2014-03-04 | 2016-03-24 | Senvion Gmbh | Method for producing a rotor blade of a wind energy plant, rotor blade and wind energy plant |
EP2915656B1 (en) | 2014-03-06 | 2020-07-22 | Siemens Gamesa Renewable Energy A/S | A method for manufacturing a component for a wind turbine |
DK3533816T3 (en) | 2014-11-10 | 2024-08-19 | Polytech As | PREFORMED PROTECTIVE COVER AND WINDMILL BLADE |
DE102016011757A1 (en) * | 2016-09-22 | 2018-03-22 | Senvion Gmbh | Rotor blade with end bar |
DE102017001404A1 (en) * | 2017-02-14 | 2018-08-16 | Senvion Gmbh | Rotor blade trailing edge Verklebewinkel |
AT519620B1 (en) * | 2017-02-14 | 2018-11-15 | Hilitech Gmbh | FOAM PLATE |
DE102017006036A1 (en) * | 2017-06-27 | 2018-12-27 | Senvion Gmbh | Method for positioning fiber components |
CN109591322B (en) * | 2019-01-25 | 2020-09-22 | 中国航发北京航空材料研究院 | A kind of preparation method of resin-based composite fan adjustable blade |
FR3100741B1 (en) * | 2019-09-13 | 2021-09-10 | Safran | HOLLOW PART MANUFACTURING DEVICE |
US12116121B2 (en) | 2021-04-26 | 2024-10-15 | Rohr, Inc. | Airfoil system with embedded electric device |
US11498656B1 (en) * | 2021-04-26 | 2022-11-15 | Rohr, Inc. | Airfoil system with embedded electric device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1045810B (en) * | 1957-05-17 | 1958-12-04 | Allgaier Werke G M B H | Bodies made of fiber-reinforced plastic shells or plates, in particular support or drive wings, and method and tool for its manufacture |
FR2186380A1 (en) * | 1972-05-31 | 1974-01-11 | United Aircraft Corp |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3055437A (en) * | 1957-10-15 | 1962-09-25 | Doman Helicopters Inc | Moisture proof helicopter blade |
GB963213A (en) * | 1959-09-25 | 1964-07-08 | Erecon Ltd | Improvements in or relating to the manufacture of hollow poles in reinforced synthetic resin |
-
1980
- 1980-04-15 DE DE3014347A patent/DE3014347C2/en not_active Expired
-
1981
- 1981-04-03 EP EP81102524A patent/EP0037987B1/en not_active Expired
- 1981-04-14 DK DK168481A patent/DK153675C/en active IP Right Grant
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1045810B (en) * | 1957-05-17 | 1958-12-04 | Allgaier Werke G M B H | Bodies made of fiber-reinforced plastic shells or plates, in particular support or drive wings, and method and tool for its manufacture |
FR2186380A1 (en) * | 1972-05-31 | 1974-01-11 | United Aircraft Corp |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102251935A (en) * | 2010-05-21 | 2011-11-23 | 西门子公司 | Blade of a wind turbine |
CN102251935B (en) * | 2010-05-21 | 2015-04-22 | 西门子公司 | Blade of a wind turbine |
CN101844387A (en) * | 2010-05-28 | 2010-09-29 | 无锡韦伯风能技术有限公司 | Foam sandwich composite material blade and manufacturing process thereof |
CN101844387B (en) * | 2010-05-28 | 2013-04-10 | 无锡韦伯风能技术有限公司 | Foam sandwich composite material blade and manufacturing process thereof |
Also Published As
Publication number | Publication date |
---|---|
DK153675C (en) | 1988-12-27 |
EP0037987A2 (en) | 1981-10-21 |
EP0037987A3 (en) | 1984-10-10 |
DE3014347C2 (en) | 1983-05-26 |
DE3014347A1 (en) | 1981-10-22 |
DK168481A (en) | 1981-10-16 |
EP0037987B1 (en) | 1987-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DK153675B (en) | PROCEDURE FOR MANUFACTURING USE OF A FOAM FABRIC STRENGTHED FIBER ARMED FORM SUCH AS WINGS OR ROTOR LEAVES WITH LARGE LENGTH AND WIDTH DIMENSIONS | |
US9669581B2 (en) | Method for manufacturing an aeronautical torsion box, torsion box and tool for manufacturing an aeronautical torsion box | |
US4732542A (en) | Large airfoil structure and method for its manufacture | |
US5547629A (en) | Method for manufacturing a one-piece molded composite airfoil | |
US1469220A (en) | Structural element and method of making the same | |
JP2003312590A (en) | Reinforcement body for aircraft skin panel and manufacturing method for skin panel provided with reinforcement body | |
US9096021B2 (en) | Method and shaping device for producing a composite fiber component for air and space travel | |
JP2001253393A (en) | Composite panel and method of manufacturing the same | |
US2155375A (en) | Pressed article, particularly airscrew blade, of laminated wood, and method of manufacture | |
EP2886311A1 (en) | Three-dimensional reuseable curing caul for use in curing integrated composite components and methods of making the same | |
JPH0629999U (en) | Rotor blades for aircraft | |
US2482798A (en) | Aircraft wing and method of manufacture | |
KR20150003781A (en) | Method of making a 3d object from composite material | |
KR101864051B1 (en) | Manufacturing Method of Light-weight Wing and Blades Using Composite Materials | |
CN105034403A (en) | Method for manufacturing composite shell | |
US11760041B2 (en) | Wind turbine blade manufacture | |
CN112238551A (en) | Multi-part integrated forming assembly die and forming assembly method for composite wing | |
EP3894189B1 (en) | Wind turbine blade shear web, method of manufacture and wind turbine blade | |
CN110712324B (en) | A composite material wing forming and assembling integrated mold | |
EP0089954B1 (en) | Composite structural skin spar joint and method of making | |
WO1984004905A1 (en) | Composite aircraft wing and method of making | |
US2951781A (en) | Method of making making mandrel sets for molded airfoils | |
WO2020046166A1 (en) | Sparless helicopter rotor blade and method for manufacturing same | |
DK177291B1 (en) | A wind turbine blade | |
CN118438580A (en) | Forming die of composite material tail wing and integrated manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
B1 | Patent granted (law 1993) |