[go: up one dir, main page]

DK153675B - PROCEDURE FOR MANUFACTURING USE OF A FOAM FABRIC STRENGTHED FIBER ARMED FORM SUCH AS WINGS OR ROTOR LEAVES WITH LARGE LENGTH AND WIDTH DIMENSIONS - Google Patents

PROCEDURE FOR MANUFACTURING USE OF A FOAM FABRIC STRENGTHED FIBER ARMED FORM SUCH AS WINGS OR ROTOR LEAVES WITH LARGE LENGTH AND WIDTH DIMENSIONS Download PDF

Info

Publication number
DK153675B
DK153675B DK168481AA DK168481A DK153675B DK 153675 B DK153675 B DK 153675B DK 168481A A DK168481A A DK 168481AA DK 168481 A DK168481 A DK 168481A DK 153675 B DK153675 B DK 153675B
Authority
DK
Denmark
Prior art keywords
mold body
foam
mold
foam core
shell
Prior art date
Application number
DK168481AA
Other languages
Danish (da)
Other versions
DK153675C (en
DK168481A (en
Inventor
Michael Hahn
Peter-Martin Wackerle
Original Assignee
Messerschmitt Boelkow Blohm
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Messerschmitt Boelkow Blohm filed Critical Messerschmitt Boelkow Blohm
Publication of DK168481A publication Critical patent/DK168481A/en
Publication of DK153675B publication Critical patent/DK153675B/en
Application granted granted Critical
Publication of DK153675C publication Critical patent/DK153675C/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D99/00Subject matter not provided for in other groups of this subclass
    • B29D99/0025Producing blades or the like, e.g. blades for turbines, propellers, or wings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • B29C44/12Incorporating or moulding on preformed parts, e.g. inserts or reinforcements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • B29C44/12Incorporating or moulding on preformed parts, e.g. inserts or reinforcements
    • B29C44/1223Joining preformed parts which have previously been filled with foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/56After-treatment of articles, e.g. for altering the shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/34Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D99/00Subject matter not provided for in other groups of this subclass
    • B29D99/0025Producing blades or the like, e.g. blades for turbines, propellers, or wings
    • B29D99/0028Producing blades or the like, e.g. blades for turbines, propellers, or wings hollow blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • B64C3/24Moulded or cast structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • F03D1/0675Rotors characterised by their construction elements of the blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/08Blades for rotors, stators, fans, turbines or the like, e.g. screw propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/08Blades for rotors, stators, fans, turbines or the like, e.g. screw propellers
    • B29L2031/082Blades, e.g. for helicopters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/40Weight reduction

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Composite Materials (AREA)
  • Moulding By Coating Moulds (AREA)
  • Wind Motors (AREA)

Description

iin

DK 153675 BDK 153675 B

Opfindelsen angår en fremgangsmåde af den i krav l's indledning angivne art. Der kendes metoder til fremstilling af vinger til svævefly m.m. d.v.s. til relativt små konstruktionselementer. Ved disse kendte me-5 toder skal de anvendte forme være lukkelige, så at der til tilvejebringelse af bjælkekonstruktioner kræves et bekosteligt fremstillingsmateriale. Ved ribbekonstruktioner opstår afpasningsproblemer, og desuden er der ingen mulighed for kontrol under fremstillingen.The invention relates to a method of the kind set out in the preamble of claim 1. Methods are known for making blades for gliders etc. i.e. for relatively small structural elements. In these known methods, the molds used must be closed so that costly manufacturing material is required to provide beam structures. In the case of rib constructions, adjustment problems arise, and in addition there is no possibility of control during manufacture.

10 De kendte metoder er alene på grund af det dårlige for hold mellem masse og stivhed uegnet til fremstilling af store formlegemer, f.eks. rotorblade til store vind-energianlæg med mere.The known methods are unsuitable only for the production of large molds, for example because of the poor relationship between mass and stiffness. rotor blades for large wind power plants and more.

De omtalte kendte konstruktioner og metoder er således 15 uanvendelige ved fremstilling af vinger eller rotorbla de med store flader, idet de hverken kan anvendes til tilvejebringelse af bjælkekonstruktioner eller til fremstilling af skalkonstruktioner med præfabrikeret skum-stofkerne.Thus, the known constructions and methods are useless in the manufacture of blades or rotor blades with large surfaces, because they can neither be used to provide beam structures nor to make shell structures with prefabricated foam cores.

20 Ved bjælkekonstruktioner er massen ved en given stivhed større end ved skalkonstruktioner, og formene skal på grund af den tyndvæggede skals konturnøjagtighed kunne lukkes, hvorved forbindelsen mellem bjælkerne og den ydre skal tilvejebringes via små, vanskeligt kontrol-25 lerbare klæbeflader.20 For beam structures, the pulp is greater at a given stiffness than for shell structures and the shapes must be able to close due to the contour accuracy of the thin-walled shell, whereby the connection between the beams and the exterior must be provided via small, difficult-to-control adhesive surfaces.

Skalkonstruktioner med præfabrikeret skumstofkerne har i det foreliggende tilfælde følgende mangler:Shell structures with prefabricated foam core have the following shortcomings in the present case:

Skumstofkernen kan på grund af sin størrelse og sin bekostelige geometriske udformning ikke fremstilles 50 økonomisk, og en forbindelse af god kvalitet mellem kernen og skallen kan kun opnås ved hjælp af "våd-i-våd-metod-en" med lukkelige forme.Due to its size and its costly geometric design, the foam core cannot be economically produced and a good quality connection between the core and the shell can only be achieved by the "wet-in-wet method" with closed molds.

22

DK 153675BDK 153675B

Også denne kendte metode er på grund af den store mængde laminat og de bekostelige formværktøjer uanvendelig til det foreslåede formål, især fordi den samlede mængde laminat samtidigt skal være våd. Sammenklæbningen 5 af en kerne med hærdede skaller kan ikke kontrolleres.Also, this known method is unsuitable for the proposed purpose due to the large amount of laminate and the costly molding tools, especially because the total amount of laminate must be wet at the same time. The adhesion 5 of a core with hardened shells cannot be controlled.

Også den kendte metode til fremstilling af skalkonstruktioner med ribber har alvorlige mangler, idet den færdige konstruktionsdels samlede masse øges for meget ved ribbemassen og massen af forbindelseselementerne mellem 10 ribberne og skallen. Desuden er ribbernes indpasning mellem skallerne meget bekostelig. Desuden er en fuldstændig kontrol med sammenklæbningen ikke mulig.Also, the known method for making shell structures with ribs has serious shortcomings, the total mass of the finished structure being increased too much at the rib mass and the mass of the connecting elements between the ribs and the shell. Furthermore, the fit of the ribs between the shells is very expensive. Furthermore, complete control of the adhesive is not possible.

Den foreliggende opfindelse har til formål at tilvejebringe en fremgangsmåde af den angivne art, der ikke 15 er behæftet med de omtalte mangler ved de kendte meto der, og ved hjælp af hvilken der i særskilte, åbne forme kan fremstilles store vinger eller store rotorblade på en sådan måde, at man under fremstillingen fortløbende kan kontrollere den indre struktur og korrigere 20 fejl. Dette opnås på overraskende enkel og tilforlade lig måde ved de i kravene angivne foranstaltninger.The present invention has for its object to provide a method of the kind specified which does not deal with the aforementioned shortcomings of the known methods and by means of which, in separate, open molds, large blades or large rotor blades can be produced on a in such a way that during manufacture, the internal structure can be continuously checked and 20 errors corrected. This is achieved in a surprisingly simple manner and permits equal means by the measures specified in the claims.

I det følgende forklares opfindelsen nærmere ved hjælp af tegningen, hvor fig. 1 viser et partielt tværsnit i et efter fremgangs-25 måden ifølge opfindelsen fremstillet stort rotorblad, fig. 2 perspektivisk og set fra oven en suge-tryk-side-skal til fremstilling af det i fig. 1 viste rotorblad, fig. 3 det i sideskallen anbragte rotorblads indre opbygning,In the following, the invention is explained in more detail with reference to the drawing, in which fig. 1 is a partial cross-sectional view of a large rotor blade manufactured according to the invention; FIG. 2 is a perspective view of a suction-pressure side shell for preparing the embodiment of FIG. 1; FIG. 3 shows the inner structure of the rotor blade arranged in the side shell,

DK 153675 BDK 153675 B

3 fig. 4 et partielt tværsnit i en skumstofkerne og bag-kantskumstof med overmål, fig. 5 et partielt tværsnit ifølge fig. 4 efter bearbejdning til færdiggørelse, og 5 fig. 6 partielle tværsnit i to rotorbladdele under dis ses sammenføjning.3 FIG. 4 is a partial cross-sectional view of a foam core and backside foam fabric with oversize; FIG. 5 is a partial cross-sectional view of FIG. 4 after machining for completion, and 5 fig. 6 partial cross sections in two rotor blade parts during disassembly joining.

I fig. 1 ses et i sin helhed med 10 betegnet formstofle-geme i form af et stort rotorblad, der er fremstillet efter fremgangsmåden ifølge opfindelsen på følgende måde: 10 først lamineres en ydre rotorbladsskal 11 som formlege me bestående af to særskilte halvparter 10a og 10b af et fiberarmeret sammensat materiale, hvorefter skallen II varm- eller koldhærdes, idet formlegemer med store flader fortrinsvis varmhærdes på grund af den lange 15 forarbejdningstid ved koldhærdningen. Skallens nedre torsionshalvpart 10b har som vist i fig. 2 et ydre dia-gonallaminatlag og et tilsvarende indre lag 14 samt et mellem disse beliggende unidirektionallaminatlag 12 til optagelse af bøjningskræfterne hidrørende fra 20 bøjning og fra centrifugalkraften. Unidirektionallami- natlaget 12, der strækker sig i bladets samlede længde, kan være fordelt over det samlede profiltværsnit eller kan kun være indlamineret i bestemte områder. Disse områder er afhængige af den forventelige belastning 25 henholdsvis de kræfter, der skal optages. Tykkelsen og beliggenheden er afhængige af de nødvendige masser, stivheden, styrken og tyngdepunkterne. Som oftest ønskes f.eks. i profilets bageste område, den såkaldte fane, en let struktur. Hertil foreslår opfindelsen en selvbæ-30 rende sandwich-struktur. De foreslåede laminater kan som regel fremstilles efter håndlamineringsmetoden eller som. såkaldte prepregs eller endog efter vakuumin-In FIG. 1, a fully-formed plastic body 10, in the form of a large rotor blade made according to the method according to the invention, is shown as follows: 10 first, an outer rotor blade shell 11 is laminated as a mold consisting of two separate half-parts 10a and 10b of a fiber-reinforced composite material, after which the shell II is hot or cold hardened, with large body molds preferably hot hardened due to the long processing time of the cold hardening. The lower torsion half of the shell 10b, as shown in FIG. 2 shows an outer diagonal laminate layer and a corresponding inner layer 14 and a unidirectional laminate layer 12 located therebetween for absorbing the bending forces resulting from bending and from the centrifugal force. The unidirectional laminate layer 12, which extends throughout the length of the blade, may be distributed over the overall profile cross-section or may be laminated only in certain areas. These areas are dependent on the expected load and the forces to be absorbed, respectively. The thickness and location depend on the masses needed, the stiffness, the strength and the center of gravity. Most often, e.g. in the back area of the profile, the so-called tab, a lightweight structure. To this end, the invention proposes a self-supporting sandwich structure. The proposed laminates can usually be made by the hand lamination method or as. so-called prepregs or even after vacuum injection.

DK 153675BDK 153675B

4 j ektionsmetoden.The 4 jection method.

Fig. 2 illustrerer fremstillingsprocessen og sugetryk-sideskallens opbygning, idet bladets ydre skallag lægges på et formebord 100 og lamineres.FIG. 2 illustrates the manufacturing process and the suction pressure side shell structure, the outer shell layer of the blade being laid on a forming table 100 and laminated.

5 Fig. 3 viser opbygningen af et blads eller en vinges indre dele henholdsvis fremstillingen af den såkaldte skumstofkerne. Også kernen fremstilles af to halvparter i hver sin halvpart af lamineringsformen 100.FIG. 3 shows the structure of the inner parts of a blade or wing and the manufacture of the so-called foam core, respectively. Also the core is made of two halves in each half of the laminating mold 100.

Skumstofkernens halvparter kan være sammensat af stang-10 formede skumstofelementer 15a, d.v.s. af plademateriale med en tykkelse på ca. 80 cm, der danner skiver og sammenklæbes. Skiverne svarer til de indlaminerede skal-halvparters indre kontur. Den nøjagtige kontur kan opnås ved indpasning, idet hver forudgående skumstofski-15 ve eller hvert forudgående stangformede skumstofelement 15a tjener som skabelon for en næste spalte, der fremkommer ved grov indpasning, og som lukkes ved hjælp af et opskummeligt klæbemiddel. På denne måde fås en lukket skumstofkerne, der kun skal bearbejdes i skille-20 planet 21, fig. 4. Dette gælder for begge formlegeme- halvparter 10a og 10b. De udragende skumstofdele ved 15 og 17, fig. 4, skilles fra ved hjælp af et styret skæreorgan. De således bearbejdede vinge- eller blad-halvparter, d.v.s. overskallen 10a og underskallen 10b 25 som formlegemehalvparter sammenklæbes ved deres fælles skilleplan 21.The foam core halves may be composed of rod-shaped foam elements 15a, i.e. of sheet material with a thickness of approx. 80 cm, forming slices and glued together. The slices correspond to the inner contour of the laminated shell half. The exact contour can be obtained by fitting, with each preceding foam disc or each prior rod shaped foam element 15a serving as a template for a next coarse slit, which is closed by a foamable adhesive. In this way, a closed foam core is obtained, which is only to be processed in the separator plane 21, fig. 4. This is true for both mold body parts 10a and 10b. The protruding foam parts at 15 and 17, fig. 4, is separated by a controlled cutting means. The wing or blade halves thus processed, i.e. the upper shell 10a and the lower shell 10b 25 are adhered to each other by means of their common separation plane 21.

Fremstillingsprocessen forløber således: I lamineringsformen for den nedre formlegemehalvpart 10b, også kaldet underskallen, og i lamineringsformen 30 for den øvre formlegemehalvpart 10a, også kaldet over skallen, fremstilles bladets ydre lamineringslag afThe manufacturing process proceeds as follows: In the lamination mold for the lower mold half 10b, also called the undercoat, and in the lamination mold 30 for the upper mold half half 10a, also called over the shell, the outer lamination layer of the sheet is made of

DK 153675BDK 153675B

5 et sammensat fibermateriale i diagonallaminat, hvorefter laminatlaget 12 påføres i formlegemets samlede længde og enten over det samlede profiltværsnit eller kun i delområder af dette. Dernæst indlægges i profilfanens område skumplader 13, der tilpasses, hvorefter det indre 3 laminatlag 14 lamineres. Også dette lag 14 er et diago nallaminat og består af et sammensat fibermateriale.5 shows a composite fiber material in diagonal laminate, after which the laminate layer 12 is applied in the total length of the mold body and either over the entire profile section or only in sub-regions thereof. Then, in the area of the profile tab, foam sheets 13 are fitted which are adapted, after which the inner 3 laminate layer 14 is laminated. Also this layer 14 is a diago nal laminate and consists of a composite fiber material.

Vingens eller rotorbladets indre kernedel fremstilles for begge forhalvparters vedkommende efter samme metode: skumstofbjælken fremstilles af enkelte skumstofbjælke-10 elementer 15a, hvis øvre kantflade rager op over det såkaldte skilleplan 21. Dernæst fastklæbes disse elementer som vist i fig. 3 på torsionsskallen 11, 12, 13, 14 eller indlægges, hvorefter endekantlaminatet 16 til-fræses i faneområdet.The inner core portion of the blade or rotor blade is manufactured for both halves by the same method: the foam bar is made of single foam bar elements 15a, the upper edge of which protrudes above the so-called separating plane 21. Next, these elements are adhered as shown in FIG. 3 on the torsion shell 11, 12, 13, 14 or inserted, and the end edge laminate 16 is milled in the tab area.

15 På tilfræsningsarealet 16 påklæbes skumstofplader 17, der ligeledes rager uden for skilleplanet 21. Ved hjælp af et styret skære-,eller fræseorgan overskæres eller affræses skumstofdele 15 og de ved bagkanten anbragte skumstofplader 17 nøjagtigt i skilleplanet 21. Dernæst 20 indføres henholdsvis lamineres et indskydningslaminat 18 og et bagkantvæv 19 umiddelbart inden sammenføjningen af de to formlegemehalvparter 10a, 10b. Til slut indklæbes afstivningsvinkler 20, der sikrer en effektiv fiksering og fastholdelse af de stangformede skumstof-25 elementer 15a i deres korrekte stilling.15 On the milling area 16, foam sheets 17, which also protrude outside the dividing plane 21. are adhered to, by means of a controlled cutting or milling means, foam parts 15 are cut or milled and the foam sheets 17 placed at the trailing edge exactly in the separating plane 21. Next, laminating 20 is inserted respectively 18 and a trailing edge web 19 immediately prior to joining the two mold body half portions 10a, 10b. Finally, stiffening angles 20 are adhered to ensure effective fixation and retention of the rod-shaped foam elements 15a in their proper position.

Fig. 6 viser arbejdsstadiet umiddelbart inden sammenføjningen af de to formlegemehalvparter 10a, 10b. På alle i skilleplanet beliggende flader på delene 10a, 10b og 19 påføres et skumstofklæbemiddel, hvorefter 30 de to formlegemehalvparter sammenføjes. Hærdningen un der lamineringsprocesserne er omtalt i det foregående.FIG. 6 shows the working stage immediately before the joining of the two mold body halves 10a, 10b. A foam adhesive is applied to all surfaces of the parts 10a, 10b and 19 on the parting plane, after which 30 the two mold body halves are joined together. The cure during which the lamination processes are discussed above.

Udhærde- og tørretiden ved klæbning er afhængig af det anvendte skumstofklæbemiddels beskaffenhed.The curing and drying time of adhesive is dependent on the nature of the foam adhesive used.

Claims (6)

1. Fremgangsmåde til fremstilling af ved hjælp af en 15 skumstofkerne (15) afstivede, fiberarmerede formstof- formlegemer (10) såsom vinger eller rotorblade med store længde- og breddedimensioner i åbne forme, hvor form-legemets (10) skal (11) lamineres og hærdes i to adskilte skalhalvparter (11a, 11b) af et lamineret fibermate-20 riale, kendetegnet ved, at a) skumstofkernen (15) fremstilles direkte i hver af de to skalhalvparter (11a, 11b) ved, at den sammensættes af på tværs af formlegemets længderetning forløbende og sammenklæbede ribbeformede skumstof- 25 elementer (15a), og b) formlegemehalvparterne (10a, 10b), der er fyldt med skumstofkernen, planfræses i deres skilleplaner (21) og sammenlimes ved disse.A method of producing, by means of a foam core (15), stiffened, fiber-reinforced plastics mold bodies (10) such as blades or rotor blades with large length and width dimensions in open molds, wherein the mold body (10) is to be laminated (11) and cured in two separate shell halves (11a, 11b) of a laminated fiber material, characterized in that a) the foam core (15) is made directly in each of the two shell halves (11a, 11b) by being composed of transversely longitudinally extending and adhering ribbed foam elements (15a) along the longitudinal direction of the mold body, and b) the mold body half portions (10a, 10b) filled with the foam core are planed in their separating planes (21) and bonded thereto. 2. Fremgangsmåde ifølge krav 1,.kendetegnet 30 ved, at skumstofkernens (15) materiale forbindes med DK 153675B skalhalvparterne (11a, 11b).The method according to claim 1, characterized in that the material of the foam core (15) is connected to the shell half portions (11a, 11b). 3. Fremgangsmåde ifølge krav 1 og 2, kendetegnet ved, at formlegemet (10) i sin samlede længde forsynes med et over det samlede profiltværsnit fordelt 5 unidirektionallaminat (12).Method according to claims 1 and 2, characterized in that the mold body (10) is provided with a unidirectional laminate (12) distributed over its total profile cross-section over its entire length. 4. Fremgangsmåde ifølge krav 1 og 2, kendetegne t ved, at formlegemet (10) i sin samlede længde, men kun i dele af profiltværsnittet forsynes med et unidirektionallaminat (12).Method according to claims 1 and 2, characterized in that the mold body (10) is provided with a unidirectional laminate (12) in its overall length, but only in parts of the profile cross-section. 5. Fremgangsmåde ifølge krav 1 til 4, kendeteg net ved, at formlegemets (10) bageste profilområde udformes som selvbærende sandu/ichstruktur.Method according to claims 1 to 4, characterized in that the rear profile area of the mold body (10) is formed as a self-supporting sand structure. 6. Fremgangsmåde ifølge krav 1-5, kendetegnet ved, at det fra formen fjernede formlegeme (10) forsy-15 nes med en næse forstærkning (25) og en endekantforstærk- ning {26).Method according to claims 1-5, characterized in that the mold body (10) removed from the mold is provided with a nose reinforcement (25) and an end edge reinforcement (26).
DK168481A 1980-04-15 1981-04-14 PROCEDURE FOR MANUFACTURING USE OF A FOAM FABRIC STRENGTHED FIBER ARMED FORM SUCH AS WINGS OR ROTOR LEAVES WITH LARGE LENGTH AND WIDTH DIMENSIONS DK153675C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3014347A DE3014347C2 (en) 1980-04-15 1980-04-15 Process for the production of foam core-supported, fiber-reinforced plastic moldings such as blades, rotor blades, etc., of great length and width
DE3014347 1980-04-15

Publications (3)

Publication Number Publication Date
DK168481A DK168481A (en) 1981-10-16
DK153675B true DK153675B (en) 1988-08-15
DK153675C DK153675C (en) 1988-12-27

Family

ID=6100012

Family Applications (1)

Application Number Title Priority Date Filing Date
DK168481A DK153675C (en) 1980-04-15 1981-04-14 PROCEDURE FOR MANUFACTURING USE OF A FOAM FABRIC STRENGTHED FIBER ARMED FORM SUCH AS WINGS OR ROTOR LEAVES WITH LARGE LENGTH AND WIDTH DIMENSIONS

Country Status (3)

Country Link
EP (1) EP0037987B1 (en)
DE (1) DE3014347C2 (en)
DK (1) DK153675C (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101844387A (en) * 2010-05-28 2010-09-29 无锡韦伯风能技术有限公司 Foam sandwich composite material blade and manufacturing process thereof
CN102251935A (en) * 2010-05-21 2011-11-23 西门子公司 Blade of a wind turbine

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3113079C2 (en) * 1981-04-01 1985-11-21 Messerschmitt-Bölkow-Blohm GmbH, 8000 München Large aerodynamic wing and process for its manufacture
FR2602739B1 (en) * 1986-07-28 1988-11-18 Aerospatiale BLADE OF COMPOSITE MATERIALS, WITH TWO-WELL STRUCTURE AND TWO-WAY BIRTH, AND HAVING A HONEYCOMB SANDWICH COATING, AND METHOD FOR THE PRODUCTION THEREOF
DE3924990C3 (en) * 1989-06-13 1996-11-21 Man Ceramics Gmbh Process for the production of a hip joint prosthesis socket
US5100255A (en) * 1989-12-13 1992-03-31 The Boeing Company Graphite fittings for graphite tubing
DE4335221C1 (en) * 1993-10-15 1995-03-16 Deutsche Forsch Luft Raumfahrt Rotor blade for wind power systems
DE19644264A1 (en) * 1996-10-24 1998-05-07 Manfred Grefe Rotor blade for wind power generator
DE19833869C5 (en) * 1998-07-22 2004-07-01 EUROS Entwicklungsgesellschaft für Windkraftanlagen Device for the production of rotor blades
AU2001262891A1 (en) * 2000-04-28 2001-11-12 Arcelik, A.S. Method of producing a refrigerator cabinet and door
DK200201743A (en) * 2002-11-12 2004-05-13 Lm Glasfiber As Shaping device with closing mechanism
CN1867770A (en) * 2003-02-28 2006-11-22 维斯塔斯风力系统有限公司 Method for manufacturing a wind turbine blade, wind turbine blade, front cover and use of a front cover
DE10330733A1 (en) * 2003-07-07 2005-02-17 Eew Maschinenbau Gmbh Rotor blade for wind turbines
DE102004049098A1 (en) * 2004-10-08 2006-04-13 Eew Maschinenbau Gmbh Rotor blade for a wind energy plant
DE102004057979C5 (en) * 2004-11-30 2019-09-26 Senvion Gmbh rotor blade
DK176418B1 (en) * 2004-12-22 2008-01-21 Lm Glasfiber As Process for producing a fiber-reinforced part for a wind power plant
MX2007009390A (en) * 2005-02-03 2008-02-14 Vestas Wind Sys As Method of manufacturing a wind turbine blade shell member.
DE102005051931B4 (en) * 2005-10-29 2007-08-09 Nordex Energy Gmbh Rotor blade for wind turbines
US7895745B2 (en) * 2007-03-09 2011-03-01 General Electric Company Method for fabricating elongated airfoils for wind turbines
EP2225458B1 (en) * 2007-11-14 2011-06-22 Vestas Wind Systems A/S Wind turbine blade and method for manufacturing a wind turbine blade
DE102008022548A1 (en) 2008-05-07 2009-11-12 Nordex Energy Gmbh Rotor blade for a wind energy plant
FI20085570A0 (en) * 2008-06-10 2008-06-10 Deep Sea Engineering A process for making technical composite products comprising epoxy resins and carbon nanotubes
US8092187B2 (en) * 2008-12-30 2012-01-10 General Electric Company Flatback insert for turbine blades
WO2010100066A2 (en) * 2009-03-05 2010-09-10 Kress-Haase, Michaela Wind power plant and related production method
DE102009024324A1 (en) * 2009-05-29 2010-12-02 Nordex Energy Gmbh Method and device for mounting a rotor blade for a wind energy plant
EP2275673B1 (en) 2009-07-17 2018-01-24 Vestas Wind Systems A/S Manufacturing WTG blade having a spar
US8043066B2 (en) * 2010-06-08 2011-10-25 General Electric Company Trailing edge bonding cap for wind turbine rotor blades
US7988422B2 (en) * 2010-06-25 2011-08-02 General Electric Company Wind turbine blades with improved bond line
CN102985241B (en) 2010-07-21 2016-01-06 西门子公司 The method of closing of die assembly and die assembly
ITBO20100462A1 (en) * 2010-07-22 2012-01-23 Benini Nabore AIRCRAFT AND METHOD TO REALIZE IT
DE102010055874B3 (en) * 2010-12-24 2012-04-05 Aerodyn Engineering Gmbh Method for producing a rotor blade of a wind energy plant
EP2524794A1 (en) 2011-05-18 2012-11-21 EUROCOPTER DEUTSCHLAND GmbH Foam or honeycomb core, rotor blade with foam or honeycomb cores and method of manufacturing such a rotor blade
DE102011077609B4 (en) * 2011-06-16 2015-01-22 Senvion Se Production of a rotor blade shell
DE102011080497A1 (en) * 2011-08-05 2013-02-07 Wobben Properties Gmbh Forming process for hot forming a steel sheet of a rotor blade of a wind turbine to be produced
US9139287B2 (en) * 2012-06-26 2015-09-22 Hamilton Sundstrand Corporation Propeller blade with carbon foam spar core
EP2749764A1 (en) * 2012-12-27 2014-07-02 Siemens Aktiengesellschaft Turbine blade, manufacturing of the turbine blade and use of the turbine blade
DE102013212884A1 (en) * 2013-07-02 2015-01-08 Wobben Properties Gmbh Test specimen, test method, wind turbine
DE102014203936B4 (en) 2014-03-04 2016-03-24 Senvion Gmbh Method for producing a rotor blade of a wind energy plant, rotor blade and wind energy plant
EP2915656B1 (en) 2014-03-06 2020-07-22 Siemens Gamesa Renewable Energy A/S A method for manufacturing a component for a wind turbine
DK3533816T3 (en) 2014-11-10 2024-08-19 Polytech As PREFORMED PROTECTIVE COVER AND WINDMILL BLADE
DE102016011757A1 (en) * 2016-09-22 2018-03-22 Senvion Gmbh Rotor blade with end bar
DE102017001404A1 (en) * 2017-02-14 2018-08-16 Senvion Gmbh Rotor blade trailing edge Verklebewinkel
AT519620B1 (en) * 2017-02-14 2018-11-15 Hilitech Gmbh FOAM PLATE
DE102017006036A1 (en) * 2017-06-27 2018-12-27 Senvion Gmbh Method for positioning fiber components
CN109591322B (en) * 2019-01-25 2020-09-22 中国航发北京航空材料研究院 A kind of preparation method of resin-based composite fan adjustable blade
FR3100741B1 (en) * 2019-09-13 2021-09-10 Safran HOLLOW PART MANUFACTURING DEVICE
US12116121B2 (en) 2021-04-26 2024-10-15 Rohr, Inc. Airfoil system with embedded electric device
US11498656B1 (en) * 2021-04-26 2022-11-15 Rohr, Inc. Airfoil system with embedded electric device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1045810B (en) * 1957-05-17 1958-12-04 Allgaier Werke G M B H Bodies made of fiber-reinforced plastic shells or plates, in particular support or drive wings, and method and tool for its manufacture
FR2186380A1 (en) * 1972-05-31 1974-01-11 United Aircraft Corp

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3055437A (en) * 1957-10-15 1962-09-25 Doman Helicopters Inc Moisture proof helicopter blade
GB963213A (en) * 1959-09-25 1964-07-08 Erecon Ltd Improvements in or relating to the manufacture of hollow poles in reinforced synthetic resin

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1045810B (en) * 1957-05-17 1958-12-04 Allgaier Werke G M B H Bodies made of fiber-reinforced plastic shells or plates, in particular support or drive wings, and method and tool for its manufacture
FR2186380A1 (en) * 1972-05-31 1974-01-11 United Aircraft Corp

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102251935A (en) * 2010-05-21 2011-11-23 西门子公司 Blade of a wind turbine
CN102251935B (en) * 2010-05-21 2015-04-22 西门子公司 Blade of a wind turbine
CN101844387A (en) * 2010-05-28 2010-09-29 无锡韦伯风能技术有限公司 Foam sandwich composite material blade and manufacturing process thereof
CN101844387B (en) * 2010-05-28 2013-04-10 无锡韦伯风能技术有限公司 Foam sandwich composite material blade and manufacturing process thereof

Also Published As

Publication number Publication date
DK153675C (en) 1988-12-27
EP0037987A2 (en) 1981-10-21
EP0037987A3 (en) 1984-10-10
DE3014347C2 (en) 1983-05-26
DE3014347A1 (en) 1981-10-22
DK168481A (en) 1981-10-16
EP0037987B1 (en) 1987-10-07

Similar Documents

Publication Publication Date Title
DK153675B (en) PROCEDURE FOR MANUFACTURING USE OF A FOAM FABRIC STRENGTHED FIBER ARMED FORM SUCH AS WINGS OR ROTOR LEAVES WITH LARGE LENGTH AND WIDTH DIMENSIONS
US9669581B2 (en) Method for manufacturing an aeronautical torsion box, torsion box and tool for manufacturing an aeronautical torsion box
US4732542A (en) Large airfoil structure and method for its manufacture
US5547629A (en) Method for manufacturing a one-piece molded composite airfoil
US1469220A (en) Structural element and method of making the same
JP2003312590A (en) Reinforcement body for aircraft skin panel and manufacturing method for skin panel provided with reinforcement body
US9096021B2 (en) Method and shaping device for producing a composite fiber component for air and space travel
JP2001253393A (en) Composite panel and method of manufacturing the same
US2155375A (en) Pressed article, particularly airscrew blade, of laminated wood, and method of manufacture
EP2886311A1 (en) Three-dimensional reuseable curing caul for use in curing integrated composite components and methods of making the same
JPH0629999U (en) Rotor blades for aircraft
US2482798A (en) Aircraft wing and method of manufacture
KR20150003781A (en) Method of making a 3d object from composite material
KR101864051B1 (en) Manufacturing Method of Light-weight Wing and Blades Using Composite Materials
CN105034403A (en) Method for manufacturing composite shell
US11760041B2 (en) Wind turbine blade manufacture
CN112238551A (en) Multi-part integrated forming assembly die and forming assembly method for composite wing
EP3894189B1 (en) Wind turbine blade shear web, method of manufacture and wind turbine blade
CN110712324B (en) A composite material wing forming and assembling integrated mold
EP0089954B1 (en) Composite structural skin spar joint and method of making
WO1984004905A1 (en) Composite aircraft wing and method of making
US2951781A (en) Method of making making mandrel sets for molded airfoils
WO2020046166A1 (en) Sparless helicopter rotor blade and method for manufacturing same
DK177291B1 (en) A wind turbine blade
CN118438580A (en) Forming die of composite material tail wing and integrated manufacturing method

Legal Events

Date Code Title Description
B1 Patent granted (law 1993)