DK148544B - FRESH WATER COOLING SYSTEM FOR COMPRESSOR-LED COMBUSTION ENGINES WITH AIR INTERNAL COOLER - Google Patents
FRESH WATER COOLING SYSTEM FOR COMPRESSOR-LED COMBUSTION ENGINES WITH AIR INTERNAL COOLER Download PDFInfo
- Publication number
- DK148544B DK148544B DK440779AA DK440779A DK148544B DK 148544 B DK148544 B DK 148544B DK 440779A A DK440779A A DK 440779AA DK 440779 A DK440779 A DK 440779A DK 148544 B DK148544 B DK 148544B
- Authority
- DK
- Denmark
- Prior art keywords
- cooling
- water
- air
- temperature
- cooling water
- Prior art date
Links
- 238000001816 cooling Methods 0.000 title description 34
- 239000013505 freshwater Substances 0.000 title description 21
- 238000002485 combustion reaction Methods 0.000 title description 3
- 239000000498 cooling water Substances 0.000 description 43
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 24
- 238000013022 venting Methods 0.000 description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 235000012054 meals Nutrition 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P11/00—Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
- F01P11/02—Liquid-coolant filling, overflow, venting, or draining devices
- F01P11/028—Deaeration devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P11/00—Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
- F01P11/02—Liquid-coolant filling, overflow, venting, or draining devices
- F01P11/029—Expansion reservoirs
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P3/00—Liquid cooling
- F01P3/20—Cooling circuits not specific to a single part of engine or machine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P7/00—Controlling of coolant flow
- F01P7/14—Controlling of coolant flow the coolant being liquid
- F01P7/16—Controlling of coolant flow the coolant being liquid by thermostatic control
- F01P7/165—Controlling of coolant flow the coolant being liquid by thermostatic control characterised by systems with two or more loops
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B29/00—Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
- F02B29/04—Cooling of air intake supply
- F02B29/0406—Layout of the intake air cooling or coolant circuit
- F02B29/0437—Liquid cooled heat exchangers
- F02B29/0443—Layout of the coolant or refrigerant circuit
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P2050/00—Applications
- F01P2050/02—Marine engines
- F01P2050/06—Marine engines using liquid-to-liquid heat exchangers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P2060/00—Cooling circuits using auxiliaries
- F01P2060/02—Intercooler
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Supercharger (AREA)
- Compressor (AREA)
- Separation By Low-Temperature Treatments (AREA)
Description
U8564U8564
Opfindelsen angår et ferskvandskølesystem til kompressorfødede forbrændingsmotorer, fortrinsvis af typen medium speed dieselmotorer, hvilket system foruden kølekapperne ved motorens cylindre og en ferskvands køler også omfatter en luftmellemkøler til køling af 5 forbrændingsluften, efter af denne har forladt kompressoren, men før indføringen i de pågældende cylindre, hvilket kølesystem har en højtemperatur kreds, der omfatter motorens kølekapper, og hvori der desuden indgår en i kølevandets cirkulationsretning før motoren anbragt cirkulationspumpe, en lavtemperaturkreds, som omfatter 10 luftmellemkøleren samt en varmevekslerkreds, som omfatter ferskvandskøleren, hvorhos forbindelsen mellem disse forskellige kredse er indrettet på en sådan måde, at det varme kølevand i højtemperaturkredsen, efter at dette har forladt motoren, afgrenes i tre parter, hvoraf den første part via varmevekslerkredsen ledes gennem fersk- 1C * vandskøleren, den anden part via lavtemperatur kredsen ledes gennem luftmellemkøleren, og den tredie part ledes tilbage til motorens kølekapper efter at være blevet blandet med den første og den ånde part.The invention relates to a fresh water cooling system for compressor-fed internal combustion engines, preferably of medium speed diesel engines, which system, in addition to the cooling caps of the engine cylinders and a fresh water cooler, also comprises an air intercooler for cooling the combustion air, after leaving the compressor in said cylinder said cooling system having a high temperature circuit comprising said engine cooling caps, and further comprising a circulation pump disposed in said cooling water direction, a low temperature circuit comprising said air intermediate cooler, and a heat exchanger circuit comprising said fresh water cooler wherein said connection between said various circuits in such a way that the hot cooling water in the high-temperature circuit, after leaving the engine, is branched into three parts, the first part being passed through the heat exchanger circuit through the fresh 1C * water cooler, the second part passing through the low-temperature circuit through the air intermediate cooler, and the third part is returned to the engine cooling shells after being mixed with the first and the breath parts.
Et ferskvandskølesystem af denne art kendes fra beskrivelsenA fresh water cooling system of this kind is known from the specification
POPO
til tysk fremlæggelsesskrift nr. 2.610.378. Ifølge denne kendte teknik deles den første kølevandspart efter at have forladt ferskvandskøleren i to delstrømme, hvoraf den ene ledes direkte tilbage til motorens kølekapper, medens den anden delstrøm ledes til luftmellemkøleren. Før denne anden delstrøm ledes til luftmellemkøleren, 25 blandes den med den anden kølevandspart, der afgrenes direkte fra den fra motorens kølekapper udstrømmende kølevandsstrøm. Denne blanding sker i en ladeluftkølevandsreguleringsventil, der styres af en føler, som aftaster temperaturen af ladeluften efter luftmellemkøleren. Efter det sted, hvor den anden kølevandspart afgrenes fra den 30 fra motorens kølekapper udstrømmende kølevandsstrøm, opdeles resten af denne strøm i den nævnte første og den nævnte tredie kølevandspart ved hjælp af en kølevandsreguleringsventil, der styres af en føler, som aftaster temperaturen af kølevandet, der forlader motorens kølekapper. Den tredie kølevandspart ledes gennem en 35 omløbsledning tilbage til motorens kølekapper, medens den nævnte kølevandspart som nævnt ledes til ferskvands.køleren for derefer at blive opdelt i de to nævnte delstrømme.to German Patent Specification No. 2,610,378. According to this prior art, after leaving the fresh water cooler, the first cooling water part is divided into two partial streams, one of which is directed directly back to the engine cooling sheath, while the other partial flow is directed to the air intermediate cooler. Before passing this second partial flow to the air intermediate cooler, it is mixed with the second cooling water part which is branched directly from the cooling water flow flowing from the engine cooling shells. This mixture takes place in a charge air cooling water control valve controlled by a sensor which senses the temperature of the charge air after the air intermediate cooler. After the location of the second cooling water part is branched from the cooling water stream flowing from the cooling shells of the engine, the remainder of this flow is divided into said first and said third cooling water part by means of a cooling water control valve controlled by a sensor which senses the temperature of the cooling water. leaving the engine cooling hoods. The third cooling water part is passed back to the engine cooling sheath through a 35 bypass line, while the said cooling water part as mentioned is directed to the fresh water cooler for therefrom to be divided into the two mentioned partial streams.
Ferskvandskølesystemet ifølge den foreliggende opfindelse er ejendommeligt ved, at det er således indrettet, at den anden partThe fresh water cooling system of the present invention is peculiar in that it is arranged so that the other party
1485U1485U
2 blandes med den første part efter ferskvandskøleren i proportioner, som bestemmes af en i krydsningen mellem disse to kredse anbragt første temperaturregulator for derefter ved konstant temperatur via lavtemperaturkredsen at blive ledet gennem luftmellemkøieren og 5 derefter ved en anden temperaturregulator at blive blandet med kølevandet fra den tredie af de afgrenede parter fra højtemperaturkredsen i proportioner, som bestemmes af denne anden temperaturregulator for derefter på ny ved konstant temperatur at blive tilført højtemperaturkredsen, og via denne motorens kølekapper.2 is mixed with the first batch after the fresh water cooler in proportions determined by a first temperature regulator located at the intersection of these two circuits, and then, at constant temperature via the low temperature circuit, to be passed through the air intermediary and 5 then by a second temperature regulator to be mixed with the cooling water of the one third of the branched parts of the high temperature circuit in proportions determined by this second temperature controller to then be re-supplied at constant temperature to the high temperature circuit, and via this engine's cooling caps.
10 Herved opnås det, at tilløbstemperaturen af det kølevand, der tilføres luftmellemkøieren og at tilløbstemperaturen af det kølevand, der tilføres motorens kølekapper hele tiden reguleres på en sådan måde, at de holder sig stabile inden for hvert sæt meget begrænsede interval. Værdien af dette kan hvad angår motorslitage ikke overvurderes.Hereby it is obtained that the inlet temperature of the cooling water supplied to the air intermediate bunker and that the inlet temperature of the cooling water supplied to the engine cooling hoods is constantly regulated in such a way that they remain stable within each set of very limited intervals. The value of this in terms of engine wear cannot be overstated.
15 Desuden giver systemet væsentlige fordele ved start af systemet, idet kølevandet da vil blive cirkuleret forbi ferskvandskøieren, indtil driftstemperaturen er opnået. En yderligere fordel ved systemet ifølge opfindelsen består i, at dette bygger på anvendelsen af konventionelle termostatventiler, medens den ladeluftkølevandsregule-20 ringsventil, som ifølge det nævnte tyske skrift styrer temperaturen af det kølevand, som tilføres luftmellemkøieren, og hvis temperatur styres i afhængighed af temperaturen af den luft, som tilføres motoren, skal være af en langt mere kompliceret konstruktion med en i afstand fra selve ventilen anbragt temperaturføler, som på sin side 25 styrer den pågældende ventil.In addition, the system offers significant advantages when starting the system, since the cooling water will then be circulated past the fresh water boiler until the operating temperature is reached. A further advantage of the system according to the invention is that it is based on the use of conventional thermostatic valves, while the charge air cooling water control valve, which according to the said German specification controls the temperature of the cooling water supplied to the air intermediary and whose temperature is controlled depending on the temperature. of the air supplied to the engine must be of a much more complicated construction with a temperature sensor located at a distance from the valve itself, which in turn controls the valve in question.
Opfindelsen skal herefter forklares nærmere under henvisning til tegningen, hvor fig. 1 viser et simplificeret skema over en udførelsesform for kølevandssystemet ifølge opfindelsen, 30 fig. 2 i snit og set fra siden en til systemet hørende kombi neret udluftnings-, ekspansions- og trykholdetank, °9 fig. 3 karakteristikker over hele systemet opmålt ved en speciel motor.The invention will now be explained in more detail with reference to the drawing, in which fig. 1 shows a simplified diagram of an embodiment of the cooling water system according to the invention; FIG. 2 in section and side view a combined ventilation, expansion and pressure holding tank belonging to the system, ° 9 fig. 3 characteristics of the entire system measured by a special engine.
35 I fig. 1 markerer en streg-prik-linie, hvilke enkeltheder, som er hensigtsmæssige at montere direkte på selve motoren, eller som hensigtsmæssigt kan indgå i denne. Disse leveres altså hensigtsmæssigt som en enhed fra fabrikken. Fra en kølevands kappe 1, hvorfra der i det foreliggende tilfælde udstrømmer fire kølestrømme, følger 3 U8564 kølevandet en hovedstrøm 2 til et udluftningskammer 4, som er anbragt foroven i en kombineret udluftnings-, ekspansions- og trykholdetank 3. Under dette kammer 4 og adskilt fra dette ved hjælp af en skillevæg 5 ligger tankens ekspansions- og trykholdekam-5 mer 6. Den mere detaljerede udformning af tanken vil blive beskrevet nærmere i forbindelse med fig. 2. Efter udluftningen i kammeret 3 forlader kølevandet dette i form af en hovedstrøm 7, som passerer gennem en strømjusteringsanordning i form af en strømjusteringsventil 8. Ved et efter strømjusteringsventilen 8 anbragt første forgre-10 ningspunkt 9 og et i strømningsretningen lidt længere fremme anbragt andet forgreningspunkt 10 deles kølevandstrømmen op i tre parter; nemlig en første part 13, en anden part 11 og en tredie part 15.35 In FIG. 1, a dash-dot line indicates which details are suitable for mounting directly on the motor itself or which may be conveniently included therein. These are therefore conveniently supplied as a unit from the factory. From a cooling water jacket 1, from which in this case four cooling streams flow out, the cooling water 3 follows a main flow 2 to a venting chamber 4 which is placed at the top of a combined venting, expansion and pressure holding tank 3. Below this chamber 4 and separated from this by means of a partition 5 lies the expansion and pressure holding chamber of the tank 6. The more detailed design of the tank will be described in more detail in connection with fig. 2. After the venting in the chamber 3, the cooling water leaves this in the form of a main flow 7 passing through a flow adjustment device in the form of a flow adjustment valve 8. At a first branch point 9 located after the flow adjustment valve 8 and a second further position located in the flow direction. branch point 10, the cooling water flow is divided into three parts; namely, a first party 13, a second party 11, and a third party 15.
Den første part 13 afgrenes i forgreningspunktet 10, hvortil kølevandet ankommer, efter at den anden part 11 er blevet afgrenet i det 15 første forgreningspunkt 9, og den tredie part 15 udgør sammen med den første part 13 det kølevand, der strømmer til det andet forgreningspunkt 10. Den anden part 11 tilføres over en første temperaturregulator T-j en som luftmellemkøler virkende varmeveksler 12. I temperaturregulatoren blandes den anden part 11 med den første 20 part 13, som kommer direkte fra en ferskvandskøler 21, der fortrinsvis er anbragt udenfor motoren. Denne anden part 13 afgrenes som nævnt ved det tidligere omtalte andet forgreningspunkt 10, og føres altså nu tilbage efter passage gennem ferskvandskøleren 21. Temperaturregulatoren T1 er afpasset til vedvarende at tilføre luftmellem-25 køleren 12 en kølevandstrøm 14 med konstant temperatur. Temperaturregulatoren bestemmer altså alene blandingsforholdet mellem den ånde og den første kølevandspart 11 og 13. Ved en anden temperaturregulator Tg, som er anbragt umiddelbart efter luftmel lemkøleren 12, føres kølevandstrømmen fra luftmel lem køleren sammen med den 30 nævnte tredie ved forgreningspunktet 10 afgrenede kølevandspart 15. Kombineret giver kølevandsstrømmen 14 og den tredie kølevandspart 15 påny en hovedstrøm 16 med samme strømningsmængde som den fra motorens kølekapper kommende hovedstrøm 2. Også temperatur regulatoren Tg er tilpasset til indstilling af blandingsforholdet 35 mellem de forskellige tempererede strømme 14 og 15. Motorens kølekappe 1 vil altså vedvarende kunne tilføres kølevand med konstant temperatur. På sin vej til motorens kølekapper passerer kølevandstrømmen 16 en kølevandspumpe 17. Det er denne pumpe, som sammen med den tidligere nævnte strømjusteringsventil 8 bestemmer denThe first part 13 is branched at the branch point 10 to which the cooling water arrives after the second part 11 has been branched at the first branch point 9 and the third part 15 together with the first part 13 constitutes the cooling water flowing to the second branch point 10. The second part 11 is supplied via a first temperature controller Tj an air intercooler heat exchanger 12. In the temperature controller, the second part 11 is mixed with the first 20 part 13, which comes directly from a fresh water cooler 21, which is preferably located outside the engine. This second part 13 is branched as mentioned at the previously mentioned second branch point 10, and is therefore now returned after passage through the fresh water cooler 21. The temperature controller T1 is adapted to continuously supply the air-cooler 12 with a constant temperature cooling water stream 14. Thus, the temperature controller only determines the mixing ratio between the breath and the first cooling water part 11 and 13. At a second temperature controller Tg located immediately after the air cooler cooler 12, the cooling water flow from the air flour cooler is coupled to the third mentioned branch at cooling branch 10. Combined, the cooling water flow 14 and the third cooling water part 15 again give a main flow 16 with the same flow rate as the main flow coming from the engine cooling hoods 2. Also the temperature controller Tg is adapted to adjust the mixing ratio 35 between the different tempered streams 14 and 15. The cooling jacket 1 of the motor will thus continuous water could be fed with constant temperature. On its way to the engine cooling hoods, the cooling water stream 16 passes a cooling water pump 17. It is this pump which together with the aforementioned power adjustment valve 8 determines the
1485U1485U
4 totale kølevandstrøm gennem systemet. Af den i det foregående skitserede opbygning fremgår det, at hver ændring af kølevandstemperaturen ved et eller andet punkt i systemet indebærer en ændring af de forskellige kølevandsparter 11, 13 og 15 hvad angår disses 5 proportionelle størrelse, hvilket giver en konstantholdelse af temperaturen i strømmene 14 og 16.4 total cooling water flow through the system. From the structure outlined above, it will be seen that each change of cooling water temperature at some point in the system involves a change of the different cooling water parts 11, 13 and 15 with respect to their proportional size, which gives a constant holding of the temperature in the currents 14 and 16.
Dette indebærer, at der opnås en på det nærmeste konstant lufttemperatur af den i motoren inddrevne luft afhængigt af en ' passende valgt pumpekarakteristik, kombination og valg af termostat-10 ventilernes reguleringsområder samt valg af køleareal og K-værdika-rakteristik for fuftmellemkøleren (se den vedføjede karakteristik i fig. 3).This means that a near-constant air temperature of the air driven into the engine is obtained, depending on an appropriately selected pump characteristic, combination and selection of the thermostat-10 valves' control ranges, as well as the choice of cooling area and K-value characteristics of the moisture intermediate cooler (see the attached characteristics in Fig. 3).
I fig. 1 findes der endvidere en trykholdeforbindelse 18 og to udluftningsforbindelser henholdsvis 19 og 20 til luftmellemkøleren 12 15 og ferskvandskøleren 21. En råvandsledning til ferskvandskøieren 21 er betegnet med 22. I råvandskredsen indgår der naturligvis såvel en cirkulationspumpe som hensigtsmæssige komponenter til styring af råvandstrømmen, men disse er ikke medtaget på tegningen, da denne først og fremmest har til formål at illustrere ferskvandskølesystemet.In FIG. 1, there is also a pressure holding connection 18 and two venting connections 19 and 20 respectively for the air intermediate cooler 12 15 and the fresh water cooler 21. A raw water line for the fresh water cooler 21 is designated 22. The raw water circuit includes both a circulation pump and suitable components for controlling the raw water flow. is not included in the drawing, since it is primarily intended to illustrate the fresh water cooling system.
20 Pi samme måde er smøreoliekølere og diverse sikkerheds- og kontrolsystemer, der som regel indgår i en motorinstallation af denne type, udeladt for at gøre figuren så tydelig som mulig.20 Pi the same way, lubricating oil coolers and various safety and control systems, which are usually included in an engine installation of this type, are omitted to make the figure as clear as possible.
På tegningen er der imidlertid antydet en kølevandsforvarmer 25, som er indkoblet i sin egen cirkulationskreds 23 med separat 25 køfevandspumpe 24.In the drawing, however, there is indicated a cooling water preheater 25, which is connected in its own circulation circuit 23 with separate 25 cooling water pump 24.
Denne kreds anvendes under varmholdelse og, alternativt, i et kort tidsrum før start af motoren ved ekstremt kolde forhold.This circuit is used during heat retention and, alternatively, for a short time before starting the engine in extremely cold conditions.
Den i fig. 2 viste kombinerede udluftnings-, ekspansions- og trykholdetank 3 består som tidligere nævnt af et øverste udluftnings-30 kammer 4 og et nederste ekspansions- og trykholdekammer 6, som er adskilt af en skillevæg 5. Kammeret 6 er tilgængeligt udefra gennem et tryktæt låg 26, som er anbragt ovenpå tanken, og som er forsynet med en trykregulator, og som endvidere er anbragt over et stjgrør 27, som fører gennem det øverste kammer 4 og ned til det 35 nederste kammer. Den normale vandoverflade i det nederste kammer er tegnet på tegningen. Det foroven anbragte udluftningskammer er, således som det fremgår af tegningen, helt fyldt med kølevand i det normale tilfælde.The FIG. 2, as previously mentioned, consists of an upper venting chamber 4 and a lower expansion and pressure holding chamber 6 which is separated by a partition 5. The chamber 6 is accessible from the outside through a pressure-tight lid 26 , which is disposed on top of the tank, and which is provided with a pressure regulator, and which is further arranged over a nozzle 27 which passes through the upper chamber 4 and down to the lower chamber. The normal water surface in the lower chamber is drawn in the drawing. The vent chamber located above is, as shown in the drawing, completely filled with cooling water in the normal case.
Det øverste kammer 4 har et tilløb 28 og et udløb 29. Tilløbet 148544 5 og udløbet udmunder i forskellige dele af kammeret, og mellem disse er der anbragt en styreflade 30, som forløber på tværs af kammeret.The upper chamber 4 has an inlet 28 and an outlet 29. The inlet 148544 5 and the outlet open into different parts of the chamber, and between them is arranged a guide surface 30 extending transversely of the chamber.
Kølevandet tvinges derved til at følge den vej, som er antydet på tegningen med en stiplet pillinie. Ved at vandstrømmens impuls 5 nedsættes af den retningsændring, som styrepladen giver anledning til, og i kraft af forandringen til et større tværsnitsareal i tanken sker der en overgang til laminar strømning, hvorved der opnås en effektiv udluftning af kølevandstrømmen.The cooling water is thereby forced to follow the path indicated in the drawing with a dashed pill line. By lowering the impulse 5 of the water flow by the change of direction caused by the control plate, and by the change to a larger cross-sectional area in the tank, a transition to laminar flow is achieved, thereby providing an efficient venting of the cooling water flow.
Udskilt luft vil samle sig i kammerets øverste del og har gennem TO et udluftningsrør 31 passagemulighed til tankens nederste kammer. Rørledningen 31 har en åbning 32 i kammeret 4's øverste del og en åbning 33 under væskeoverfladen i kammeret 6. Pi tegningen er der også tegnet en renseprop 34. I tilløbet 28 findes der et udluftningshul 35 for at forhindre en luftansamling i rørbøjningen under påfyid-15 ning af systemet. I tankens nederste kammer 6, hvis gasdel (luft) altså komprimeres og optager udvidelsen, når vandet i systemet opvarmes, udmunder trykholdeledningen 18 samt udluftningsiednin-gerne henholdsvis 19 og 20 fra henholdsvis luftmel lemkøleren 12 og ferskvandskøleren 21 (jfr. fig. 1).Exhausted air will collect in the upper part of the chamber and, through TO, a vent pipe 31 has access to the tank's lower chamber. The conduit 31 has an opening 32 in the upper part of the chamber 4 and an opening 33 below the liquid surface in the chamber 6. In the drawing, a cleaning plug 34 is also drawn. In the inlet 28 there is a vent hole 35 for preventing an air accumulation in the pipe bend during the pipes 15 system. Thus, in the lower chamber 6 of the tank, whose gas part (air) is compressed and accommodates the expansion as the water in the system is heated, the pressure holding line 18 and the vent seals 19 and 20, respectively, from the air-meal cooler 12 and fresh water cooler 21 (cf. Fig. 1).
20 I de i fig. 1 ikke nærmere viste sikkerhedssystemer indgår der, at væskeoverfladen i ekspansions- og trykholdekammeret 6 skal holdes indenfor begrænsede variationer. I tanken kan der med dette formål for øje indkobles en svømmer 36, der ved lavt niveau slutter en niveaukontakt for tilførsel af yderligere kølevand til systemet fra 25 en konventionel grentank (ikke vist) og en anden svømmer 37, der ved opnåelse af normalt niveau bryder niveau kontakten og endelig en alarmsvømmer 38, der ved ekstremt lavt niveau udløser en alarm.20 In the FIG. 1, the safety surface of the expansion and pressure holding chamber 6 is not shown in further detail, which must be kept within limited variations. In the tank, for this purpose, a float 36 can be connected which at a low level closes a level switch for supplying additional cooling water to the system from a conventional branch tank (not shown) and another swimmer 37 which, at normal level, breaks the level switch and finally an alarm swimmer 38 which at an extremely low level triggers an alarm.
I fig. 2 er der vist en niveauskala 39 ved siden af tanken 3.In FIG. 2, a level scale 39 is shown next to the tank 3.
Denne niveauskala svarer til et på tanken 3's yderside anbragt 30 niveauaflæsningsrør, som er forbundet med ekspansions- og trykholdekammeret. Udluftningskammeret 4 er endvidere forsynet med en luftudløbsventil 40. Niveauskalaen 39 har tre markeringer "lav", "høj" og "fyldn.". Ved normal drift skal kammeret 6's niveau ligge indenfor det normale driftsområde mellem markeringerne for højt 35 henholdsvis lavt vandniveau. Niveaumarkeringen "fyldn." anvendes ved fyldning af et tomt system, hvor også luftudløbsventilen 40 skal være åben. Når kølevand er fyldt op til dette niveau og ventilen 40 er blevet lukket og systemet startes, omfordeles vandet i systemet, således at det øverste kammer 4 fyldes og der dannes et luftfyldt 6 148544 ekspansionsrum i det nederste kammer 6,This level scale corresponds to a 30 level reading tube located on the outside of the tank 3 which is connected to the expansion and pressure holding chamber. The vent chamber 4 is further provided with an air outlet valve 40. The level scale 39 has three markings "low", "high" and "fill". In normal operation, the level of the chamber 6 must be within the normal operating range between the markings for high 35 and low water level respectively. The level mark "fill." is used in filling an empty system where the air outlet valve 40 must also be open. When cooling water is filled up to this level and valve 40 is closed and the system is started, the water in the system is redistributed so that the upper chamber 4 is filled and an air-filled expansion space is formed in the lower chamber 6.
Hvad angår den generelle virkemåde af ferskvandskølesystemet ifølge opfindelsen kan det iøvrigt bemærkes, at vandpumpen 17's kapacitet indstilles ved hjælp af strømjusteringsventilen 8, således at 5 . der opnås en ønsket temperaturstigning over motoren ved fuld effekt.Moreover, as regards the general operation of the fresh water cooling system of the invention, it can be noted that the capacity of the water pump 17 is adjusted by the flow adjustment valve 8 such that 5. a desired temperature rise over the engine is achieved at full power.
Derved forøges også trykniveauet i kappekølingen, således at temperaturgrænsen for dampdannelse forøges, hvorved en sådan dampdannelse kan undgås på motorens stærkt varmeafgivende flader. Strøm-justeringsventilen 8 kan bestå af en låselig drøvleventil eller en fast 10 drøvleskive.This also increases the pressure level in the jacket cooling, so that the temperature limit for vapor formation is increased, thereby avoiding such vapor formation on the highly heat-generating surfaces of the engine. The flow adjustment valve 8 may consist of a lockable throttle valve or a fixed 10 throttle disk.
Temperatur regulatoren blander højtemperaturvand med koldt vand fra ferskvandskøleren 21 til konstant indløbstemperatur for luftmellemkøleren 12.The temperature controller mixes high-temperature water with cold water from the fresh water cooler 21 to constant inlet temperature for the air intermediate cooler 12.
Temperaturregulatoren Tg blander høj- og lavtemperaturvand til 15 konstant indløbstemperatur i højtemperaturkredsen (kappekølingen).The temperature controller Tg mixes high and low temperature water to 15 constant inlet temperature in the high temperature circuit (jacket cooling).
Når motoren startes, styrer temperaturregulatoren Tg i kort tid vandcirkulationen alene gennem højtemperaturkredsen, indtil driftstemperaturen er opnået.When the engine is started, the temperature controller Tg briefly controls water circulation through the high-temperature circuit alone until the operating temperature is reached.
En vis forvarmningseffekt i luftmellemkøleren 12 opnås dog dels 20 ved et lille forbindelseshul i temperaturregulatorernes elementer og dels gennem luftmellemkølerens 12 udluftningsledning 19. Så snart motoren har nået normal arbejdstemperatur, styrer temperaturregulatorerne Tg og T1 også vandet gennem lavtemperaturkredsen (luftmellemkøleren), hvorved indsugningsluften tempereres, d.v.s. køles 25 ned, hvis belastningen kræver dette, eller forvarmes, hvis dette kræves.However, some preheating effect in the air intercooler 12 is achieved partly by a small connection hole in the elements of the temperature controllers and partly by the air intercooler 12's vent line 19. As soon as the engine has reached normal operating temperature, the temperature controllers Tg and T1 also control the water through the low-temperature aircooler, ie cool down 25 if the load requires it, or preheat if required.
Når driftstemperaturen også er opnået i lavtemperaturkredsen, begynder temperaturregulatoren T^ ved øget belastning at spæde - - vand fra ferskvandskøleren 21 ind i lavtemperatur kredsen og give 30 øget køleeffekt til luftmellemkøleren 21. Som det fremgår, er arrangementet et sådant, at forøget køleeffekt opnås i luftmellemkøleren 12 for stigende belastning i motoren, hvilket fører til, at motorens termiske belastning holdes nede.When the operating temperature is also obtained in the low temperature circuit, the temperature regulator T ^ begins to dilute, at increased load, - water from the fresh water cooler 21 into the low temperature circuit and to give an increased cooling effect to the air intermediate cooler 21. As can be seen, the arrangement is such that increased cooling power is obtained in the air intercooler 12 for increasing load in the motor, causing the motor thermal load to be held down.
Trykhotdelsen i systemet udgøres af vandets statiske niveau i 35 det nederste kammer sammen med trykstigningen i kraft af vandets ekspansion og virker gennem trykholdeiedningen 18, som forbinder det nederste kammer 6 med pumpen 17's sugeside, hvilket garanterer, at der ikke fremkommer forstyrrelser (kavitation) i pumpen. Alternativt kan et ydre tryk sluttes til stigrøret 27. Dette stigrør, 148544 7 som udgår fra det nederste kammer 6, er endvidere forsynet med et tryktæt låg 26, hvori der indgår en trykregulator, som dels åbner ved et bestemt overtryk (sikkerhedsfunktion), og dels åbner umiddelbart under atmosfærelinien (vacuumfunktion).The pressure relief in the system is constituted by the static level of the water in the lower chamber together with the pressure rise by virtue of the expansion of the water and acts through the pressure holding conduit 18, which connects the lower chamber 6 with the suction side of the pump 17, which guarantees that no disturbances (cavitation) occur in the pump. Alternatively, an external pressure may be connected to the riser 27. This riser, which originates from the lower chamber 6, is further provided with a pressure-tight lid 26, which includes a pressure regulator which partly opens at a certain overpressure (safety function), and partly opens immediately below the atmospheric line (vacuum function).
5 Endvidere skal det bemærkes, at gennemskylningen i udluft ningsrøret 31 fra det øverste kammer til det nederste (ekspansionsdelen), udmunder under vandniveauet, således at der ikke sker nogen gennembrusning af ekspansionsdelen og hvilket sikrer minimal ilttilsætning til systemvandet. Udluftningsrøret 31 's føring indebærer 10 desuden, at ingen luftlommer trækkes op til det øverste kammer, når motoren standses, hvorved bedømmelsen af væskeniveauet også bliver sikrere.In addition, it should be noted that the flushing in the vent pipe 31 from the upper chamber to the bottom (the expansion part), opens below the water level, so that no expansion of the expansion part occurs, which ensures minimal oxygen addition to the system water. In addition, the vent pipe 31 guide means that no air pockets are drawn up to the upper chamber when the engine is stopped, thereby making the assessment of the liquid level also safer.
Fordelene ved systemet ifølge opfindelsen skulle kunne resumeres som følger: 15 - Kun et kølesystem til både kappe- og luftmellemkøiing, hvor samtlige funktioner findes indbygget på motoren med undtagelse af ferskvandskøleren.The advantages of the system according to the invention should be summarized as follows: 15 - Only a cooling system for both jacket and air intermediate cooling, where all functions are built into the engine with the exception of the fresh water cooler.
Luftmel lem køl ingens effektivitet stiger med stigende motorbelastning, hvilket holder motorens termiske belastning 20 nede.Air meal limiting cooling efficiency increases with increasing engine load, keeping engine thermal load 20 down.
Forvarmning (temperering) af indsugningsluften sker ved start og ved drift under arktiske forhold (kondensdannelse undgås).Preheating (tempering) of the suction air takes place at the start and during operation under Arctic conditions (condensation is avoided).
Kontinuerlig udluftning (afgasning) sikres.Continuous venting (degassing) is ensured.
25 - Korrosionssikkert system, da ilttilsætning af vandet ikke sker.25 - Corrosion-proof system as oxygen addition of water does not occur.
Mere enhedsmæssige og billigere materialer til rør, armaturer og luftmel lemkølere kan anvendes (sammenlignet med råtvandskøling).More uniform and cheaper materials for pipes, luminaires and air meal limb chillers can be used (compared to raw water cooling).
30 - Simplificeret betjening.30 - Simplified operation.
- Væsentligt simplificeret motorinstallation.- Essentially simplified engine installation.
Ferskvandskølesystemet ifølge opfindelsen er endvidere i fig. 3 eksemplificeret med relevante data for et sådant kølesystem ved en kompressorfødet luftmellemkølet "medium speed" dieselmotor med 35 udviklet effekt og omdrejningstal ifølge propellerloven. Den aktuelle motor var, således som det fremgår af diagrammet, forsynet med en direkte drevet vandpumpe. Motorens omdrejningstal er markeret på X-aksen og iøvrigt turde de forskellige kurver tale for sig selv.Furthermore, the fresh water cooling system according to the invention is shown in FIG. 3 exemplified with relevant data for such a cooling system by a compressor-fed air-cooled "medium speed" diesel engine with 35 developed power and rpm according to the propeller law. The current motor, as shown in the diagram, was equipped with a directly powered water pump. The engine speed is marked on the X-axis and, moreover, the different curves dare speak for themselves.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE7810997 | 1978-10-23 | ||
SE7810997A SE413427B (en) | 1978-10-23 | 1978-10-23 | FRESHWATER COOLING SYSTEM FOR COMPRESSOR-EASY INTERMEDIATE COMBUSTION ENGINES |
Publications (3)
Publication Number | Publication Date |
---|---|
DK440779A DK440779A (en) | 1980-04-24 |
DK148544B true DK148544B (en) | 1985-07-29 |
DK148544C DK148544C (en) | 1986-01-13 |
Family
ID=20336162
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DK440779A DK148544C (en) | 1978-10-23 | 1979-10-18 | FRESH WATER COOLING SYSTEM FOR COMPRESSOR-LED COMBUSTION ENGINES WITH AIR INTERNAL COOLER |
Country Status (5)
Country | Link |
---|---|
DE (1) | DE2953216A1 (en) |
DK (1) | DK148544C (en) |
NO (1) | NO153743C (en) |
SE (1) | SE413427B (en) |
WO (1) | WO1980000863A1 (en) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE425514B (en) * | 1981-05-08 | 1982-10-04 | Nohab Diesel Ab | SETTING TO TEMPERATURE REGULATE A FRESHWATER COOLING SYSTEM FOR COMPRESSOR-LATED COMBUSTION ENGINES WITH AIR INTERNAL COOLER AND FRESHWATER COOLING SYSTEM ACCORDING TO THE SET |
EP0143326B1 (en) * | 1983-10-25 | 1990-10-03 | Nissan Motor Co., Ltd. | Cooling system for automotive engine or the like |
DE3575451D1 (en) * | 1984-02-23 | 1990-02-22 | Nissan Motor | COOLING PROCESS AND COOLING SYSTEM FOR INTERNAL COMBUSTION ENGINES. |
US4697551A (en) * | 1985-06-18 | 1987-10-06 | Paccar Inc | Quick-response control system for low-flow engine coolant systems |
DE3824412C1 (en) * | 1988-07-19 | 1989-08-24 | Mtu Friedrichshafen Gmbh | |
DE4035284A1 (en) * | 1990-02-09 | 1991-08-14 | Iveco Magirus | COMPENSATORY TANK FOR THE COOLANT LIQUID-COOLED INTERNAL COMBUSTION ENGINE |
FR2680618B1 (en) * | 1991-08-19 | 1993-11-19 | Sgs Thomson Microelectronics Sa | METHOD AND CIRCUIT FOR ADAPTING COEFFICIENT IN A MODEM EQUALIZER. |
FR2706531B1 (en) * | 1993-06-10 | 1995-08-18 | Valeo Thermique Moteur Sa | Expansion tank for thermal engine cooling circuit. |
DK172262B1 (en) * | 1995-10-10 | 1998-02-09 | Man B & W Diesel Gmbh | Multi-engine system with common fresh water cooling system |
FR2866064B1 (en) * | 2004-02-11 | 2008-05-16 | Trelleborg Fluid Systems Geie | DEVICE FOR CONTROLLING THE LIQUID PHASE OF A COOLING CIRCUIT OF A THERMAL MOTOR, IN PARTICULAR FOR A MOTOR VEHICLE |
DE102005004518A1 (en) * | 2005-01-31 | 2006-10-12 | Behr Gmbh & Co. Kg | Expansion tank for a coolant for a cooling circuit, in particular for a low temperature circuit for indirect charge air cooling for an internal combustion engine, cooling circuit, in particular low temperature circuit for indirect charge air cooling for an internal combustion engine, method for cooling a hot component, in particular an internal combustion engine |
FR2955148B1 (en) * | 2010-01-11 | 2012-05-11 | Trelleborg Fluid & Acoustic Solutions Tfas | DEVICE FOR CONTROLLING THE LIQUID PHASE OF A COOLING CIRCUIT OF A THERMAL ENGINE |
CN102562259A (en) * | 2012-02-14 | 2012-07-11 | 潍柴动力股份有限公司 | Air inlet temperature control system of engine |
US9091201B1 (en) * | 2014-03-07 | 2015-07-28 | Filip Kristani | Two-cycle internal combustion engine with pre-stage cooled compression |
DE102015212554A1 (en) * | 2015-07-06 | 2017-01-12 | Bayerische Motoren Werke Aktiengesellschaft | Motor vehicle with at least one coolant circuit |
DE102015111407B4 (en) | 2015-07-14 | 2024-08-14 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Cooling system for a vehicle |
JP6681950B2 (en) * | 2018-07-27 | 2020-04-15 | 三桜工業株式会社 | Cooling system |
US11618343B2 (en) * | 2020-11-04 | 2023-04-04 | Ford Global Technologies, Llc | Deaeration devices for electrified vehicle thermal management systems |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2245257B2 (en) * | 1972-09-15 | 1974-06-27 | Motoren- Und Turbinen-Union Friedrichshafen Gmbh, 7990 Friedrichshafen | Cooling device for a supercharged internal combustion engine |
DE2523436C3 (en) * | 1975-05-27 | 1978-05-24 | Kloeckner-Humboldt-Deutz Ag, 5000 Koeln | Liquid cooling system for an internal combustion engine |
DE2527872C2 (en) * | 1975-06-23 | 1983-08-04 | Klöckner-Humboldt-Deutz AG, 5000 Köln | Liquid cooling system for an internal combustion engine |
-
1978
- 1978-10-23 SE SE7810997A patent/SE413427B/en not_active IP Right Cessation
-
1979
- 1979-10-18 DK DK440779A patent/DK148544C/en not_active IP Right Cessation
- 1979-10-22 WO PCT/SE1979/000214 patent/WO1980000863A1/en unknown
- 1979-10-22 DE DE792953216A patent/DE2953216A1/en not_active Ceased
- 1979-10-22 NO NO793389A patent/NO153743C/en unknown
Also Published As
Publication number | Publication date |
---|---|
DE2953216A1 (en) | 1980-12-04 |
NO153743C (en) | 1986-05-21 |
NO793389L (en) | 1980-04-24 |
WO1980000863A1 (en) | 1980-05-01 |
SE413427B (en) | 1980-05-27 |
DK148544C (en) | 1986-01-13 |
DK440779A (en) | 1980-04-24 |
SE7810997L (en) | 1980-04-24 |
NO153743B (en) | 1986-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DK148544B (en) | FRESH WATER COOLING SYSTEM FOR COMPRESSOR-LED COMBUSTION ENGINES WITH AIR INTERNAL COOLER | |
US2255292A (en) | Aie condraoning system | |
KR830008014A (en) | Chiller of double coolant engine | |
US2729203A (en) | Coolant system | |
US2051240A (en) | Heating and lighting equipment | |
US5740677A (en) | Method and plant for use in stand-alone plants, preferably a wind/diesel plant | |
US4498525A (en) | Fuel/oil heat exchange system for an engine | |
US2063436A (en) | Multiflow cooling for internal combustion engines | |
US2372272A (en) | Apparatus for controlling temperature of boosted charge of internal-combustion engines | |
US2070092A (en) | Oil cooling system | |
DK153238B (en) | PROCEDURES FOR REGULATING THE TEMPERATURE IN FRESHWATER COOLING SYSTEMS FOR COMPRESSOR-FOUND COMBUSTION ENGINES AND FRESHWATER COOLING SYSTEMS | |
US3986846A (en) | Fuel supply apparatus | |
JPH03500436A (en) | Cooling system for supercharged piston internal combustion engine | |
DK172262B1 (en) | Multi-engine system with common fresh water cooling system | |
US1145995A (en) | Circulating system for internal-combustion engines. | |
DK155339B (en) | PROCEDURE AND APPARATUS FOR OPERATING A COOLING SYSTEM, PRIOR TO COOLING MACHINES IN SHIPS | |
US2075521A (en) | Multiflow cooling system for internal combustion engines | |
US2021282A (en) | Lubricating system | |
US2164718A (en) | Heating and air conditioning system | |
US4049047A (en) | Liquid heat exchange system with separately compartmented make-up tanks | |
RU66428U1 (en) | INSTALLATION OF AUTONOMOUS HEAT AND POWER SUPPLIES | |
US1790372A (en) | Engine-lubricating system | |
US2103835A (en) | Steam heating system | |
US2129202A (en) | Air conditioning system | |
US2086440A (en) | High temperature cooling system for internal combustion engines |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PBP | Patent lapsed |