DK145353B - Combustion engine system with a pressurized, water-cooled engine - Google Patents
Combustion engine system with a pressurized, water-cooled engine Download PDFInfo
- Publication number
- DK145353B DK145353B DK497978AA DK497978A DK145353B DK 145353 B DK145353 B DK 145353B DK 497978A A DK497978A A DK 497978AA DK 497978 A DK497978 A DK 497978A DK 145353 B DK145353 B DK 145353B
- Authority
- DK
- Denmark
- Prior art keywords
- cooling water
- circuit
- engine
- steam
- working medium
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B29/00—Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
- F02B29/04—Cooling of air intake supply
- F02B29/0406—Layout of the intake air cooling or coolant circuit
- F02B29/0412—Multiple heat exchangers arranged in parallel or in series
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K23/00—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
- F01K23/02—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B29/00—Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
- F02B29/04—Cooling of air intake supply
- F02B29/0406—Layout of the intake air cooling or coolant circuit
- F02B29/0437—Liquid cooled heat exchangers
- F02B29/0443—Layout of the coolant or refrigerant circuit
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02G—HOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
- F02G5/00—Profiting from waste heat of combustion engines, not otherwise provided for
- F02G5/02—Profiting from waste heat of exhaust gases
- F02G5/04—Profiting from waste heat of exhaust gases in combination with other waste heat from combustion engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02G—HOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
- F02G2260/00—Recuperating heat from exhaust gases of combustion engines and heat from cooling circuits
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Description
145353 1 Opfindelsen angår et forbrændingsmotoranlæg med en trykladet, vandkølet motor og af den i krav l's indledning angivne art.The invention relates to an internal combustion engine plant having a pressurized, water-cooled engine and of the kind specified in the preamble of claim 1.
5 Det er fra DE-AS 24 43 055 eller DD-PS 103 071 kendt til energigenvinding fra spildegasseme og kølevandet i en motor ved hjælp af dampkredsløb i et anlæg af den omhandlede art at foretage en opdeling i et højtrykskredsløb, der opvarmes af spildegasseme, og et andet 10 kredsløb, LT, med lavere tryk og lavere temperatur, hvilket sidste kredsløb udnytter spildevarmen fra kølevandet. Arbejdsmediet i disse dampkredsløb, fortrinsvis vand, bliver herved ophedet og fordampet og efter omstændighederne tillige overhedet, før de tje-15 ner til drift af mindst en turbine* og bliver atter kondenseret, medens turbinen driver en elektrisk generator eller en anden arbejdsmaskine. En genvinding af kompressionsvarmen i ladeluften er ikke påtænkt ved sådanne anlæg.5 It is known from DE-AS 24 43 055 or DD-PS 103 071 for energy recovery from the waste gases and cooling water in a motor by means of steam circuits in a plant of the kind in question to make a division into a high pressure circuit heated by the waste gases, and another 10 circuit, LT, with lower pressure and lower temperature, which last circuit utilizes the waste heat from the cooling water. The working medium in these steam circuits, preferably water, is thereby heated and evaporated and, as the case may be, superheated before serving to operate at least one turbine * and is again condensed while the turbine operates an electric generator or other working machine. Recovery of the compression heat in the charging air is not contemplated by such plants.
20 I "Schiff- & Hafen/Kommandobrucke" 29 (1977* hefte 5> side 488/489) er der beskrevet et anlæg, i hvilket alle spildevarmekilderne - spildegas, ladeluft og kølevand - er forbundet over et fælles dampkredsløb, 25 hvis arbejdsmedium efter hinanden passerer en varmeveksler for energiovergang fra motorens kølevand, en ladeluftkøler for den komprimerede ladeluft og til slut en spildegasopvarmet spildevarmekedel.20 In "Schiff- & Hafen / Kommandobrucke" 29 (1977 * booklet 5> page 488/489), a plant is described in which all the waste heat sources - waste gas, charge air and cooling water - are connected over a common steam circuit, 25 whose working medium after one another passes a heat exchanger for energy transfer from the engine cooling water, a charge air cooler for the compressed charge air and finally a waste gas heated waste heat boiler.
30 Energigenvindingen i dette anlæg er forholdsvis lille, da alle tre spildevarmekilder bliver gennemstrømmet af den samme mængde arbejdsmedium. Navnlig rekuperationen af varmen fra ladeluftkøleren og fra motorens kølevandskredsløb er derfor på ingen måde optimal.30 The energy recovery in this plant is relatively small as all three waste heat sources are flowed through the same amount of working medium. In particular, the recovery of heat from the charge air cooler and from the engine cooling water circuit is therefore by no means optimal.
35 145353 2 1 Den foreliggende opfindelse tager sigte på at forbedre et anlæg af det første af de ovenfor beskrevne arter således, at der kan genvindes så megen energi som muligt, og at den termiske totalvirkningsgrad af anlægget 5 bliver forøget, idet temperaturniveauet af den genvundne varme under liensyn til den arbejdsydende ekspansion skal være så højt som muligt.The present invention aims to improve a plant of the first of the species described above so that as much energy as possible can be recovered and that the total thermal efficiency of the plant 5 is increased as the temperature level of the recovered heat under the supervision of the labor-expansion must be as high as possible.
Dette opnås ifølge opfindelsen ved, at anlægget er ud-10 formet som angivet i krav l's kendetegnende del.This is achieved according to the invention in that the plant is designed as defined in the characterizing part of claim 1.
Ligesom ved motoren i "Schiff- und Hafen/Kommandobrucke" danner kompressionsvarmen i ladeluften en ekstra tilgængelig spildevarmekilde. I modsætning til det kendte 15 anlæg tillader dog den uafhængige opvarmning og dampfrembringelse ved hjælp af de to spildevarmekilder i LT-dampkredsløbet ikke blot i hvert af de to kredsløb at tilpasse den frembragte damp med hensyn til mængde, tryk og temperatur individuelt til de energimængder, 20 der står til disposition i de enkelte spildevarmekilder, men yderligere kan inden for LT-dampkredsløbet de to spildevarmekilder ladeluft og kølevand, der ligger på forskellige temperaturniveauer, og i hvilke yderligere, da arbejdsmediet ligger i forskellige faser, var-25 meoverførselsbetingelserne er forskellige, udnyttes optimalt.As with the engine in the "Schiff- und Hafen / Kommandobrucke", the compression heat in the charging air forms an additional available waste heat source. However, in contrast to the known plant, the independent heating and steam generation by means of the two waste heat sources in the LT steam circuit not only allow in each of the two circuits to individually adjust the produced steam in terms of quantity, pressure and temperature to the energy quantities, 20 are available in the individual wastewater sources, but further within the LT steam circuit, the two wastewater sources can be charged air and cooling water, which are at different temperature levels, and in which further, since the working medium is in different phases, the heat transfer conditions are different. exploited optimally.
Anvendelsen af den i og for sig kendte hedtvandskøling af motoren, hvilken anvendelse dog hidtil ikke er ud-30 nyttet i praksis, f.eks. på grund af risikoen for en mulig dampblæredannelse eller på grund af det højere temperaturniveau af de derigennem kølede cylindre, muliggør en forbedring af energigenvindingen i trin.The use of the hot water cooling of the engine known per se, which use, however, has so far not been utilized in practice, e.g. because of the risk of a possible vapor blistering or because of the higher temperature level of the cylinders cooled through it, enables an improvement of the energy recovery in steps.
Den derved opnåede temperaturforøgelse af kølevandet 35 hæver den spildevarme, der kan udvindes fra motorens 3 145353 1 køling, til et temperaturniveau, der korresponderer meget godt med de temperaturer ved udnyttelsen af kompressionsvarmen i ladeluften, der kan opnås på dampsiden uden ekstrem indsats for varmevekslerfladerne.The temperature increase of the cooling water 35 thus obtained raises the waste heat which can be recovered from the cooling of the engine to a temperature level which corresponds very well with the temperatures of utilization of the compression heat in the charge air which can be obtained on the steam side without extreme effort for the heat exchanger surfaces.
5 Ved anvendelse af et hedtvandskølekredsløb, der af hensyn til det cirkulerende vand er fuldstændig adskilt fra dampkredsløhet og med hensyn til sit trykniveau er afpasset fuldstændig til motorens behov, bliver det muligt at sammenfatte spildevarmeudnyttelsen af kølevan-10 det og fra ladeluften i et fælles dampkredsløb - med af hinanden uafhængige varmevekslersystemer for ophed-ningen og for fordampningen af arbejdsmediet.5 By using a hot water cooling circuit which is completely separate from the steam circuit for the sake of circulating water and which is completely adapted to the needs of the engine in terms of its pressure level, it becomes possible to summarize the waste heat utilization of the cooling water and from the charge air in a common steam circuit. - with independent heat exchanger systems for the heating and evaporation of the working medium.
Fordelagtige foranstaltninger til opdeling og regule-15 ring af arbeodsmediumgennemstrømningen gennem varme-overføringssystemerne for de på motoren tilbagevirkende varmekilder, d.v.s. kølevandsgenkølingen og lade-luftkølingen, er genstand for underkrav, idet den for motordriften vigtige kølevandsudløbstemperatur og/eller 20 ladeluftindløbstemperaturen i motoren bruges som reguleringsstørrelser.Advantageous measures for dividing and controlling the working medium flow through the heat transfer systems for the heat sources retroactive to the engine, i.e. the cooling water cooling and the charging-air cooling are subject to requirements, since the cooling water outlet temperature and / or the charge air inlet temperature of the engine important for engine operation are used as control sizes.
Ved en regulering af den i kondensatoren fra det andet dampkredsløb bortførte varme kan der sikres en til-25 strækkelig varmebortførsel fra kølevandet i motoren og/eller fra ladeluften, f.eks. også, hvis der opstår forstyrrelser ved dampturbinen, eller turbinen svigter.By controlling the heat dissipated in the capacitor from the second steam circuit, a sufficient heat removal can be ensured from the cooling water in the engine and / or from the charging air, e.g. also if any disturbances occur at the steam turbine or the turbine fails.
Den nødvendige varmebortførsel kan på den anden side også sikres, når der i det andet dampkredsløb, for-50 trinsvis i strømningsretningen for arbejdsmediet, før de parallelle varmevekslere for spildevarmen er indbygget en ekstra køler.On the other hand, the necessary heat transfer can also be ensured when in the second steam circuit, preferably in the flow direction of the working medium, before the parallel heat exchanger for the waste heat is added an additional cooler.
Hvis temperaturniveauet er gunstigt, er det muligt 55 foruden turbinerne til frembringelse af mekanisk 145353 4- 1 arbejde på kendt måde i det ene af kredsløbene eller i begge kredsløb at indskyde en eller flere uafhængige varmeforbrugere, d.v.s. varmeforbrugere, der kun står i forbindelse med dampsystemerne indirekte over varme-5 vekslere, idet der herved kan opnås en forbedring af den termiske totalvirkningsgrad af anlægget.If the temperature level is favorable, in addition to the turbines for producing mechanical work, it is possible to inject one or more independent heat consumers in one of the circuits or in both circuits in a known manner. heat consumers, which are only connected to the steam systems indirectly over heat exchangers, thereby achieving an improvement in the thermal overall efficiency of the plant.
Opfindelsen forklares nærmere under henvisning til 10 tegningen, der viser en udførelsesform for forbrændingsmotoranlægget .The invention is further explained with reference to the drawing, which shows an embodiment of the internal combustion engine plant.
Til en kun skematisk vist motor 1 hører en ladegruppe, hvis ladeluftblæser 3 tilsuger luft fra atmosfæren 15 gennem en ledning 4- og transporterer luften gennem en ledning 6 til motoren 1. I ledningen 6 findes en ladeluf tkøler 7 for den komprimerede luft.A schematically shown motor 1 belongs to a charging group whose charge air blower 3 sucks air from the atmosphere 15 through a conduit 4 and transports the air through a conduit 6 to the motor 1. In the conduit 6 there is a charge air cooler 7 for the compressed air.
Ladeluftblæseren 5 er drevet af en spildegasturbine 8 20 over en aksel 10, idet de varme udstødsgasser fra motoren 1 er ført til turbinen 8 gennem en ledning 9 og efter ekspansion i turbinen 8 føres bort gennem en ledning 11, i hvilken der er indskudt en varmeveksler 12.The charge air blower 5 is driven by a waste gas turbine 8 20 over a shaft 10, the hot exhaust gases from the engine 1 being fed to the turbine 8 through a line 9 and after expansion in the turbine 8 passing through a line 11 into which a heat exchanger is inserted. 12th
2525
Varmeveksleren 12 tjener som fordamper og overheder for arbejdsmediet i et konventionelt dampkredsløb 13, der arbejder med forholdsvis høje tryk og tjener til udnyttelse af spildegasvarme. I et kredsløbssystem trans-30 porterer en første pumpe 15 arbejdsmedium, f.eks. vand, fra en kedel 14- over en forvarmer 16 til fordamperrør i den spildegasopvarmede varmeveksler 12 og derfra tilbage til damp rummet i kedlen 14·. I en forvarmer 16 afgiver arbejdsmediet varme til kondensatet, der fra en 35 kondensator 17 pumpes til kedlen 14-. Den damp, der 5 145353 1 dannes i fordamperrørene, bliver fra kedlen 14 tilført til overhederdelen i varmeveksleren 12 og når fra denne ind i en dampturbine 18, der f.eks, driver en elektrisk generator 19· 5The heat exchanger 12 serves as the evaporator and superheater for the working medium in a conventional steam circuit 13 which operates at relatively high pressures and serves to utilize waste gas heat. In a circuit system, a first pump transports 15 working media, e.g. water, from a boiler 14- over a preheater 16 to evaporator tubes in the waste gas heated heat exchanger 12 and from there back to the steam room in the boiler 14 ·. In a preheater 16, the working medium delivers heat to the condensate which is pumped from a condenser 17 to the boiler 14-. The steam generated in the evaporator tubes is supplied from the boiler 14 to the superheat part of the heat exchanger 12 and reaches from it into a steam turbine 18 which, for example, drives an electric generator 19 · 5
Den i turbinen 18 ekspanderede damp strømmer så til kondensatoren 17, fra hvilken en anden pumpe 20 transporterer kondensatet til opvarmning i forvarmeren 16 og derefter til vandrummet i kedlen 14. Da der ved dette 10 system 13 til udnyttelse af spildegasvapme er tale om en kendt og mange gange anvendt indretning, beskrives virkemåden ikke nærmere her.The steam expanded in the turbine 18 then flows to the capacitor 17, from which another pump 20 transports the condensate for heating in the preheater 16 and then to the water space in the boiler 14. Since this system 13 for utilization of waste gas vapors is a known and many times used interior design, the operation is not described in detail here.
Ved motoren 1 er der yderligere vist et kølevandskreds-15 løb 21, der indeholder en køler 22, en pumpe 23 og en kunstig højtank 24. Den i og for sig kendte hedtvands-køling adskiller sig fra de gængse kølesystemer ved, at den arbejder ved temperaturer over 100° C. F.eks. kan kølevandet forlade motoren 1 ved omkring 120° C og 20 strømme ind i en tilbagekøler 22 og afkøles i denne omkring 10° til 110° C og derefter, transporteret af pumpen 22, strømme tilbage til motoren 1.At engine 1 there is further shown a cooling water circuit 15 running 21 containing a cooler 22, a pump 23 and an artificial high tank 24. The hot water cooling known per se differs from the conventional cooling systems in that it operates at temperatures above 100 ° CFex. For example, the cooling water can leave the motor 1 at about 120 ° C and flow into a back-cooler 22 and cool within it about 10 ° to 110 ° C and then, transported by the pump 22, flow back to the motor 1.
Da fordampning må forhindres i dette kølevandskredsløb, 25 står kredsløbsystemet under et overtryk, der ved hjælp af den kunstige højtank 24 og med brug af komprimeret luft f.eks. holdes på 5 ata.Since evaporation must be prevented in this cooling water circuit, the circuit system is under an overpressure which, by means of the artificial high tank 24 and with the use of compressed air, e.g. is held at 5 ata.
Som varmeoptagende medium tjener der i hedtvandstil-30 bagekøleren 22 og i ladeluftkøleren 7 et arbejdsmedium i et andet dampkredsløb 25. Denne indeholder ved den viste udførelsesform en fødepumpe 26, af hvilken arbejdsmedium, i almindelighed vand, transporteres fra en kondensator 27 til et forgreningspunkt 28. I dette 35 punkt opdeles vandstrømmen på to parallelt gennemstrømmede ledningssystemer 29 og 60, af hvilke det ene 6 145353 1 indeholder varmeoptagende, sekundære rørslanger i køleren 7, medens det andet indeholder sådanne slanger i tilhagekøleren 22. I disse to delsystemer hiiver vand ved hjælp af den varme, der bortføres fra kølerne, om-5 dannet til mættet damp.As a heat-absorbing medium, in the hot water reflux condenser 22 and in the charge air cooler 7, a working medium in a second steam circuit 25 is provided. In the illustrated embodiment, it contains a feed pump 26, of which working medium, generally water, is conveyed from a capacitor 27 to a branch point 28 In this point 35 the water flow is divided into two parallel flow systems 29 and 60, one of which contains heat-absorbing secondary pipe hoses in the cooler 7, while the other contains such hoses in the auxiliary cooler 22. Water in these two subsystems of the heat dissipated from the coolers converted to saturated steam.
Delstrømmene, der atter er forenet i et punkt 31¾ når til en dampturbine 32, ekspanderes i denne og tilføres i tilslutning hertil kondensatoren 27· Turbinen 32 dri-10 ver herved f.eks. en elektrisk generator 33·The partial currents, which are again joined at a point 31¾ to a steam turbine 32, are expanded therein and in addition to this the capacitor 27 · The turbine 32 drives e.g. an electric generator 33 ·
Den kondensationsvarme, der skal bortføres fra kondensatoren 27, bliver optaget af et kun skematisk vist kølevands system 34-· Dot ved den viste udførelsesform 15 åbne system 34- indeholder foruden køleslanger 35 i kondensatoren 27 en pumpe 36, på hvis trykside der er af-grenet en med en regulerbar afspærrings- og drøvleor-gan 37 forsynet shunt- eller udløbsledning 38· Organet 37 og ledningen 38 har til formål at muliggøre en re-20 gulering af køleydelsen af kondensatoren 27, som det vil blive beskrevet nedenfor.The heat of condensation to be removed from the capacitor 27 is taken up by a system 34- only schematically shown cooling water 34. However, in the illustrated embodiment 15 open system 34-, in addition to cooling hoses 35 in the capacitor 27, contains a pump 36 on whose pressure side there is discharged. branched a shunt or outlet line 38 provided with an adjustable shut-off and throttle member 37 · The means 37 and line 38 are intended to enable a regulation of the cooling performance of the capacitor 27, as will be described below.
Ved den viste udførelsesform for anlægget sker opdelingen af arbejdsmediummængden på de to delsystemer 39 25 og 30 til dampfrembringelse ved hjælp af regulerbare drøvleorganer 39 og 4-0, til hvilke der føres indstillingssignaler fra et regulerings- eller styreapparat 4-1 over ledninger 4-2 og 4-3. Et tredie indstillingssignal føres over en ledning 44- til drøvleorganet 37 i shunt-30 eller afløbsledningen 38 for kondensator-kølekredslø-bet 34·.In the illustrated embodiment of the system, the working medium amount is divided into the two steam generating subsystems 39 25 and 30 by means of adjustable throttle means 39 and 4-0, to which adjustment signals from a control or control device 4-1 are passed over lines 4-2. and 4-3. A third setting signal is passed over a line 44- to the throttle member 37 in the shunt 30 or the drain line 38 of the condenser cooling circuit 34 ·.
Styre- eller reguleringsorganet 4-1 modtager som indgangssignaler måle-værdier fra to temperaturfølere 4-5 35 og 4-6, ved hjælp af hvilke kølevandsudløbstemperaturen 7 145353 1 og ladeluftindløbstemperaturen til motoren "bliver målt.The control or control means 4-1 receive as input signals measurement values from two temperature sensors 4-5 35 and 4-6 by which the cooling water outlet temperature 7 and the charge air inlet temperature of the engine "are measured.
Disse temperaturer, der f.eks. med fordel kan holdes på en konstant størrelse, tjener som reguleringsstørrelse i apparatet 4-1, der tillige har ikke viste midler til 5 en skal-værdiindstilling for de nævnte temperaturer.These temperatures, which e.g. advantageously can be maintained at a constant size, which serves as a control size in the apparatus 4-1, which also has no means shown for a scale value setting for said temperatures.
Som allerede nævnt, kan en kondensator, hvis køleydelse er regulerbar, fordelagtigt bygges og dimensioneres således, at der er sikret en tilstrækkelig køling af kø-10 levandet og af ladeluften til motoren 1, hvis der skulle opstå forstyrrelser i eller en svigten af dampturbinen J2. På den anden side er det under visse imstændigheder også hensigtsmæssigt til denne opgave at indskyde en ekstra, regulerbar køler 4-7 i dampkredsløbet 25, som an-15 tydet på tegningen mellem pumpen 26 og afgreningspunkt-et 28. Køleren 4-7 er til regulering af sin køleydelse f.eks. på sin kølemiddelside 4-8 forsynet med en over et drøvleorgan 4-9 regulerbar shuntledning 50. fil idrifbesættelse og regulering kan f.eks. tjene det samme sig-20 nal, ved hjælp af hvilket også køleydelsen for kondensatoren 27 bliver forandret.As already mentioned, a capacitor whose cooling performance is adjustable can advantageously be built and dimensioned to ensure sufficient cooling of the cooling water and of the charge air to the engine 1 should disturbances or failure of the steam turbine J2 occur. . On the other hand, in some circumstances, it is also convenient for this task to insert an additional, adjustable cooler 4-7 into the steam circuit 25, as indicated in the drawing between the pump 26 and the branch point 28. The cooler 4-7 is provided. regulating its cooling performance e.g. on its refrigerant side 4-8 provided with an adjustable shunt line 50 over a throttle member 4-9. serve the same signal by which the cooling performance of capacitor 27 is also changed.
Virkemåden af reguleringen til opdeling af arbejdsme-diet skal forklares ved hjælp af et eksempel. Idet man 25 går ud fra en ligevægtstilstand, antages det, at temperaturføleren 46 viser en for høj temperatur af ladeluften. På denne afgivelse fra den indstillede skal-værdi reagerer systemet f.eks. med en drøvling af organet 40 og en åbning af organet 39, hvorved opdelingen af 30 arbejdsmediet på de to ledningssystemer 29 og 30 bliver forandret, og der tilføres en større mængde "kølemiddel" til luftkøleren 7-The operation of the regulation for the division of working methods must be explained by means of an example. Starting from an equilibrium state, it is assumed that the temperature sensor 46 shows an excessive temperature of the charge air. For this release from the set shell value, the system responds e.g. with a swirling of the member 40 and an opening of the member 39, thereby changing the division of the working medium into the two conduit systems 29 and 30 and adding a greater amount of "coolant" to the air cooler 7-
Ved disse indgreb bliver imidlertid så den i og for sig 33 tilstedeværende ligevægt i ledningssystemet 30 for var- 8 145353 1 mebortførsel fra motorens l's kølevand forstyrret. Denne forstyrrelse imødegås af apparatet 4-1 ved en samtidig drøvling af organet 37, hvorved kølevandsstrømmen gennem kondensatoren 27 bliver forøget, og temperatu-5 ren af det vand, der strømmer til kølerne 7 og 22, bliver nedsat. Også ved en mindre mængde tilstrømmende “kølemiddel" sikres derved den i og for sig til opretholdelse af den ønskede temperatur af kølevandet nødvendige varmebortførsel.However, with these interventions, the equilibrium present in the 33 in the wiring system 30 for heat removal from the cooling water of the engine 1 is disturbed. This disturbance is countered by the apparatus 4-1 by a simultaneous swirling of the means 37, thereby increasing the cooling water flow through the capacitor 27 and decreasing the temperature of the water flowing to the coolers 7 and 22. Also, with a smaller amount of "coolant" flowing, the heat removal necessary for maintaining the desired temperature of the cooling water is thereby ensured.
1010
For at tydeliggøre forskellen mellem det første dampkredsløb til spildegasvarme-genvinding og det andet dampkredsløb ved anlægget ifølge opfindelsen, er de ved en passende dimensionering af systemerne herskende 15 temperaturer og tryk påført på tegningen på nogle punkter af de nævnte kredsløb. Tillige er for samme dimensionering af anlægget virkningerne af ladeluft- og hedtvandskølingen skønnet, og de temperaturer, der derved optræder ved indgangen og ved udgangen fra kølerne , 20 7 og 22 i arbejdsmediet og i dampstrømmen er optegnet.In order to clarify the difference between the first steam cycle for waste gas heat recovery and the second steam circuit of the plant according to the invention, at appropriate dimensioning of the systems, temperatures and pressure are applied to the drawing at some points of the said circuits. Also, for the same sizing of the plant, the effects of the charge air and hot water cooling are estimated, and the temperatures thereby occurring at the inlet and outlet from the coolers, 20 7 and 22 in the working medium and in the steam stream are recorded.
Den forklarede udførelsesform tydeliggør og viser, hvorledes dels hedtvandskølingen og ladeluftkølingen på enkel og hensigtsmæssig måde kan sammenkobles til en ' 25 forbedring af den samlede virkning af anlægget med dampkredsløbet 25 ifølge opfindelsen.The explained embodiment illustrates and illustrates how partly the hot water cooling and the charge air cooling can be simply and conveniently coupled to improve the overall effect of the system with the steam circuit 25 according to the invention.
Endvidere kan dampturbinerne 18 og 32 forbindes til drift af en enkel generator på en aksel. Det er også 30 tænkeligt at føre begge varmeføringssystemer 7 og 22 til én kedel til fordampning af arbejdsmediet.Furthermore, the steam turbines 18 and 32 can be connected to operate a simple generator on a shaft. It is also conceivable to conduct both heat transfer systems 7 and 22 to one boiler for evaporating the working medium.
Ligeledes kan de to kondensatorer 17 og 27 samt pumperne 20 og 26 principielt forenes til et enkelt system.Also, the two capacitors 17 and 27 as well as the pumps 20 and 26 can in principle be combined into a single system.
35 I det sidste tilfælde er ekstra regulerings- og styre- 1 midler så nødvendige til en hensigtsmæssig mængdeop deling af de to opstående delstrømme.35 In the latter case, additional control and control means are then necessary for an appropriate volume distribution of the two arising sub flows.
9 1453539 145353
Desuden er det tænkeligt, at man kan aftage energi til 5 opvarmningsformål på kendt måde fra det ene af damp-kredsløbene eller fra begge disse, f.eks. ved en passende aftapning i de pågældende turbiner efter partiel ekspansion.In addition, it is conceivable that energy for 5 heating purposes can be derived in a known manner from one of the steam circuits or from both of them, e.g. by appropriate bottling in the turbines concerned after partial expansion.
Claims (3)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH1417977A CH626426A5 (en) | 1977-11-21 | 1977-11-21 | Internal combustion engine system with a pressure-charged, water-cooled engine |
CH1417977 | 1977-11-21 |
Publications (3)
Publication Number | Publication Date |
---|---|
DK497978A DK497978A (en) | 1979-05-22 |
DK145353B true DK145353B (en) | 1982-11-01 |
DK145353C DK145353C (en) | 1983-03-21 |
Family
ID=4398615
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DK497978A DK145353C (en) | 1977-11-21 | 1978-11-09 | Combustion engine system with a pressurized, water-cooled engine |
Country Status (7)
Country | Link |
---|---|
JP (1) | JPS5479336A (en) |
CH (1) | CH626426A5 (en) |
DK (1) | DK145353C (en) |
FR (1) | FR2409379A1 (en) |
IT (1) | IT1102320B (en) |
NL (1) | NL175091C (en) |
SE (1) | SE7811849L (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH632051A5 (en) * | 1978-10-25 | 1982-09-15 | Sulzer Ag | INTERNAL COMBUSTION ENGINE. |
FR2449780A1 (en) * | 1979-02-22 | 1980-09-19 | Semt | METHOD AND APPARATUS FOR RECOVERING THERMAL ENERGY IN A SUPERFUELED INTERNAL COMBUSTION ENGINE |
FR2469580A1 (en) * | 1979-11-15 | 1981-05-22 | Johnson Robert | METHOD AND SYSTEM FOR RECOVERING ENERGY, IN PARTICULAR LOST ENERGY IN A MOTOR-COMPRESSOR GROUP |
JPS57145749U (en) * | 1981-03-09 | 1982-09-13 | ||
US9404393B2 (en) | 2011-03-24 | 2016-08-02 | General Electric Company | Combined cycle power plant |
JP6002417B2 (en) * | 2012-01-20 | 2016-10-05 | 日立造船株式会社 | Waste heat recovery device |
JP6029403B2 (en) * | 2012-09-25 | 2016-11-24 | 大阪瓦斯株式会社 | Steam generation system |
DK177616B1 (en) * | 2012-12-03 | 2013-12-09 | Man Diesel & Turbo Deutschland | Large, slow-moving, turbocharged, two-stroke internal two-stroke internal combustion engine with cross heads and steam turbine |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3350876A (en) * | 1966-01-19 | 1967-11-07 | Roy W P Johnson | Internal combustion engine plant |
DD96753A1 (en) * | 1972-01-05 | 1973-04-12 |
-
1977
- 1977-11-21 CH CH1417977A patent/CH626426A5/en not_active IP Right Cessation
-
1978
- 1978-10-31 FR FR7830928A patent/FR2409379A1/en active Granted
- 1978-11-09 DK DK497978A patent/DK145353C/en not_active IP Right Cessation
- 1978-11-16 SE SE7811849A patent/SE7811849L/en unknown
- 1978-11-17 NL NLAANVRAGE7811362,A patent/NL175091C/en not_active IP Right Cessation
- 1978-11-17 IT IT29882/78A patent/IT1102320B/en active
- 1978-11-20 JP JP14241678A patent/JPS5479336A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
NL175091C (en) | 1984-09-17 |
IT7829882A0 (en) | 1978-11-17 |
CH626426A5 (en) | 1981-11-13 |
IT1102320B (en) | 1985-10-07 |
SE7811849L (en) | 1979-05-22 |
FR2409379B1 (en) | 1983-09-09 |
FR2409379A1 (en) | 1979-06-15 |
JPS628606B2 (en) | 1987-02-24 |
DK145353C (en) | 1983-03-21 |
NL7811362A (en) | 1979-05-23 |
DK497978A (en) | 1979-05-22 |
JPS5479336A (en) | 1979-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2126491C1 (en) | Device for cooling gas turbine cooler of gas-and-steam turbine plant | |
US4232522A (en) | Method and apparatus for utilizing waste heat from a flowing heat vehicle medium | |
US3423293A (en) | Apparatus for vapor compression distillation of impure water | |
GB2033017A (en) | Internal combustion engine plant | |
CN102834591A (en) | Exhaust heat recovery power generation device and vessel provided therewith | |
AU2004274586A1 (en) | Method for starting a continuous steam generator and continuous steam generator for carrying out said method | |
CN107109965A (en) | Cooling device for waste heat recovery system | |
JP2013180625A (en) | Exhaust heat recovery type ship propulsion device, and operation method therefor | |
RU2062332C1 (en) | Combined-cycle plant | |
US3213001A (en) | Closed-circuit thermal power plant and flash distillation unit | |
SU1521284A3 (en) | Power plant | |
US20040104017A1 (en) | Device for coolant cooling in a gas turbine and gas and steam turbine with said device | |
DK145353B (en) | Combustion engine system with a pressurized, water-cooled engine | |
US3451220A (en) | Closed-cycle turbine power plant and distillation plant | |
GB1601832A (en) | Internal combustion engine plant | |
US3032999A (en) | Steam turbine power plants | |
CN1299436A (en) | Gas and steam turbine installation | |
US2823650A (en) | Method and means for heat exchange between flowing media, preferably for remote heating systems | |
US9297280B2 (en) | Method and apparatus for utilizing the exhaust heat from internal combustion engine | |
US11008899B2 (en) | Internal combustion engine with evaporative cooling and waste heat utilization | |
SU1514966A1 (en) | Power unit | |
KR20170138267A (en) | System for recycling wasted heat of vessel | |
US3913330A (en) | Vapor generator heat recovery system | |
US3946566A (en) | Turbine start-up system | |
US3314237A (en) | Startup system for a once-through steam generator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PBP | Patent lapsed |