DE69925719T2 - SINGULARITY AVOIDANCE IN A CMG SATELLITE BEARING SYSTEM - Google Patents
SINGULARITY AVOIDANCE IN A CMG SATELLITE BEARING SYSTEM Download PDFInfo
- Publication number
- DE69925719T2 DE69925719T2 DE69925719T DE69925719T DE69925719T2 DE 69925719 T2 DE69925719 T2 DE 69925719T2 DE 69925719 T DE69925719 T DE 69925719T DE 69925719 T DE69925719 T DE 69925719T DE 69925719 T2 DE69925719 T2 DE 69925719T2
- Authority
- DE
- Germany
- Prior art keywords
- signal
- torque
- control
- singularity
- cmg
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
- B64G1/24—Guiding or controlling apparatus, e.g. for attitude control
- B64G1/28—Guiding or controlling apparatus, e.g. for attitude control using inertia or gyro effect
- B64G1/286—Guiding or controlling apparatus, e.g. for attitude control using inertia or gyro effect using control momentum gyroscopes (CMGs)
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
- B64G1/24—Guiding or controlling apparatus, e.g. for attitude control
- B64G1/244—Spacecraft control systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
- B64G1/24—Guiding or controlling apparatus, e.g. for attitude control
- B64G1/244—Spacecraft control systems
- B64G1/245—Attitude control algorithms for spacecraft attitude control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
- B64G1/24—Guiding or controlling apparatus, e.g. for attitude control
- B64G1/36—Guiding or controlling apparatus, e.g. for attitude control using sensors, e.g. sun-sensors, horizon sensors
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Radar, Positioning & Navigation (AREA)
- Aviation & Aerospace Engineering (AREA)
- Automation & Control Theory (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Description
Querverweis zu verwandten Anmeldungencross-reference to related applications
Die vorliegende Anmeldung offenbart Material, das in der am 2. September 1997 eingereichten Anmeldung mit dem Titel „Orienting A Satellite With Controlled Momentum Gyros" von David A. Bailey, veröffentlicht unter US-A-6,154,691, und den folgenden gleichzeitig eingereichten Anmeldungen erörtert wurde: „Robust Singularity Avoidance In A Satellite Attitude Control", von Bong Wie, David A. Bailey und Christopher J. Heiberg, veröffentlicht unter WO 99 47419; „A Continuous Attitude Control Which Avoids CMG Array Singularities" von David A. Bailey, Christopher J. Heiberg und Bong Wie, veröffentlicht unter WO 99 52021; „CMG Control Based On Angular Momentum to Control Satellite Attitude" von David A. Bailey SN, veröffentlicht unter WO 99 47420.The present application discloses material that in the on 2 September Filed in 1997 with the title "Orienting A Satellite With Controlled Momentum Gyros "by David A. Bailey, published under US-A-6,154,691, and the following concurrently filed Applications were discussed: "Robust Singularity Avoidance In A Satellite Attitude Control ", by Bong Wie, David A. Bailey and Christopher J. Heiberg, published under WO 99 47419; "A Continuous Attitude Control Which Avoids CMG Array Singularities "by David A. Bailey, Christopher J. Heiberg and Bong Wie, published under WO 99 52021; "CMG Control Based on Angular Momentum to Control Satellite Attitude "by David A. Bailey SN, published under WO 99 47420.
ERFINDUNGSGEBIETFIELD OF THE INVENTION
Die vorliegende Erfindung betrifft Satelliten und Robotersysteme, die beispielsweise die Orientierung eines Satelliten unter Verwendung von mehreren Steuermomentkreiseln (CMG – Anderungen gyros) steuern, gemäß dem Oberbegriff von Anspruch 1.The The present invention relates to satellites and robotic systems which for example, the orientation of a satellite using control by several control moment gyros (CMG - gyros changes), according to the generic term of claim 1.
ALLGEMEINER STAND DER TECHNIKGENERAL STATE OF THE ART
Die Lage eines beweglichen Raumfahrzeugs oder Satellitens wird oftmals mit einem Steuermomentkreiselarray beibehalten und eingestellt, weil diese Einrichtungen für ein hohes Drehmoment und eine Drehmomentverstärkung sorgen. Ein typischer CMG ist eine sich drehende Masse, die an einem Kardanring mit einem Aktuator aufgehängt ist, um sie auf der Kardanringachse zu drehen, wodurch ein Drehmoment erzeugt und ein Winkelmoment akkumuliert wird. Das Winkelmoment ist das Integral des Drehmoments über die Zeit. Es wird oftmals ein Array von n > 3 CMGs verwendet, was eine Lagekontrolle mit einer gewissen Redundanz gestattet. Jeder CMG weist ein Winkelmoment (h) auf, das im wesentlichen auf eine Ebene beschränkt ist, wobei der Winkelmomentvektor des Kreisels fast orthogonal zu der Kardanringachse verläuft. Der Fehler bei der Orthogonalität ist so klein, daß er den Betrieb des CMG, des Arrays von CMGs oder die Lagesteuerung des Satelliten nicht beeinflußt. Die Raddrehzahl des CMG ist in den meisten Anwendungen im wesentlichen konstant, braucht aber nicht, damit diese Erfindung funktioniert. Das von dem CMG erzeugte Drehmoment Q ist das Ergebnis des Kreuzprodukts Q = δ . xh, wobei δ . die Kardanringrate und h das Winkelmoment des Rotors ist, und wenn eine variierende Raddrehzahl aufgenommen wird, dann gibt es einen zusätzlichen Term Q = δ . xh + h ., wobei das Winkelmoment h definiert ist als h = JΩ und h . = JΩ ., wobei J das Trägheitsmoment des sich drehenden Rads und Ω die Drehzahl des Rads ist.The Location of a moving spacecraft or satellite often becomes maintained and set with a control torque gyro array, because these facilities for provide high torque and torque boost. A typical CMG is a rotating mass that connects to a gimbal with a Actuator suspended is to turn it on the gimbal axis, creating a torque generated and an angular momentum is accumulated. The angular momentum is the integral of torque over time. It is often an array of n> 3 CMGs uses what is a location control with some redundancy allowed. Each CMG has an angular momentum (h), which essentially depends on a level limited is, where the angular momentum vector of the gyro is almost orthogonal to the gimbal axis runs. The error in orthogonality is so small that he the operation of the CMG, the array of CMGs or the attitude control of the satellite is not affected. The wheel speed of the CMG is substantial in most applications constant, but not needed for this invention to work. The torque Q generated by the CMG is the result of the cross product Q = δ. xh, where δ. the cardan ring rate and h the angular momentum of the rotor is, and if a varying wheel speed is recorded, then is there an additional term Q = δ. xh + h., where the angular moment h is defined as h = JΩ and h. = JΩ., Where J is the moment of inertia of the rotating wheel and Ω the Speed of the wheel is.
Im klassischen Fall berechnet die Lagesteuerung die gewünschten Lageraten für den Satelliten ωd, die die Lageraten für die drei Achsen sind. Die Raten des Kardanringwinkels (δ) für das CMG-Array werden über das pseudoinverse Steuergesetz berechnet, δ . = AT(AAT)–1 Jsωω .c, wobei Js das Satellitenmoment der Trägheitsmatrix und A die Jacobi-Determinante des Winkelmoments des CMG-Arrays bezüglich des Kardanringwinkels ist, wobei h die Summe der Winkelmomente des CMG-Arrays ist, und ωc die befohlene Lagerate ist. Da die A-Matrix eine Funktion des Kardanringwinkels ist und die Kardanringwinkel sich ändern, um am Raumfahrzeug ein Drehmoment zu erzeugen, kann der Rang von A von 3 auf 2 abfallen, was ein singulärer Zustand ist, und das Pseudoinverse kann nicht berechnet werden.In the classical case, the attitude control calculates the desired bearing data for the satellite ω d , which are the bearing data for the three axes. The gimbals of the gimbal angle (δ) for the CMG array are calculated via the pseudo-inverse control law, δ. = A T (AA T ) -1 J s ωω. c , where J s is the satellite moment of the inertial matrix and A is the Jacobi determinant of the angular momentum of the CMG array with respect to the gimbal angle, where h is the sum of the angular moments of the CMG array, and ω c is the commanded storage rate. Since the A-matrix is a function of gimbal angle and the gimbal angles change to generate torque on the spacecraft, the rank of A may fall from 3 to 2, which is a singular state, and the pseudoinverse can not be calculated.
Aus WO 95/23054 ist ein Manipulatorcontroller für ein Robotersystem bekannt, das zum Passieren einer Singularität eine gedämpfte pseudoinverse Lösung verwendet.Out WO 95/23054 discloses a manipulator controller for a robot system, that uses a muted pseudoinverse solution to pass a singularity.
Aus dem Dokument „A technique for Maximising the Torque Capability of Control Moment Gyro Systems" (Proceedings of the AAS/AAIA Astrodynamics Conference, Band 2, 1984) ist ein Befehlsverfahren vom Gradiententyp auf der Basis der kleinsten Drehmomentgröße, die eine Sättigung verursacht, bekannt.Out the document "A technique for Maximizing the Torque Capability of Control Moment Gyro Systems "(Proceedings of the AAS / AAIA Astrodynamics Conference, Vol. 2, 1984) is a Gradient type command method based on the smallest torque magnitude that a saturation caused, known.
KURZE DARSTELLUNG DER ERFINDUNGSHORT PRESENTATION THE INVENTION
Die vorliegende Erfindung stellt eine Satellitenlagesteuerung wie in Anspruch 1 definiert bereit.The The present invention provides a satellite attitude control as in Claim 1 is defined.
Die Satellitenlagesteuerung kann das Merkmal von Anspruch 2 enthalten.The Satellite attitude control may include the feature of claim 2.
Eine Aufgabe der vorliegenden Erfindung besteht darin, die Geschwindigkeit der Umorientierung eines Satelliten zwischen zwei Objekten signifikant zu erhöhen, indem mehr als das verfügbare Winkelmoment von den CMGs verwendet wird.A The object of the present invention is speed the reorientation of a satellite between two objects significantly to increase, by more than the available angular momentum used by the CMGs.
Wenn gemäß der vorliegenden Erfindung eine Kardanringposition detektiert wird, die auf eine Singularität hinweist, wird in den Drehmomentbefehl eine Störung eingeführt, um zu bewirken, daß das CMG-Array die Singularität vermeidet.If according to the present Invention a gimbal position is detected which indicates a singularity, a disturbance is introduced in the torque command to cause the CMG array the singularity avoids.
Gemäß der Erfindung wird eine Kardanringrate unter Verwendung von δ = A*h erzeugt, wobei A* = AT[AAT + kI]–1, wobei k ein Skalar und I in einer 3 × 3-Identitätsmatrix ist. Der Wert mit Determinante (AAT) wird während des CMG-Betriebs ständig überwacht. Wenn der Wert von det (AAT) unter ein voreingestelltes Minimum abfällt, wird der Befehl für das erforderliche Drehmoment so abgeändert, daß das System der Singularität entkommen kann. Das Drehmoment kann geändert werden, indem in einer oder mehreren der Achsen ein kleiner fester Betrag an Drehmoment addiert oder indem eine bestimmte orthogonale Richtung, z. B. und eine Drehmomentgröße m gewählt und sie zu dem existierenden Drehmomentbefehl addiert wird. Außerdem eliminiert eine Hysterese bei der Implementierung des Drehmoment-Delta die Möglichkeit des „limit cycling" an dem singulären Punkt. Eine Abweichung bei dem Drehmomentbefehl wird als eine Störung an der Trägheitsmeßeinheit (IMU – Inertial Measurement Unit) des Raumfahrzeugs wahrgenommen, die danach zum Korrigieren der Störung aktualisierte Drehmomentbefehle ausgibt.According to the invention, a gimbal rate is generated using δ = A * h, where A * = A T [AA T + kI] -1 , where k is a scalar and I is in a 3x3 identity matrix. The value with determinant (AA T ) is constantly monitored during CMG operation. When the value of det (AA T ) falls below a preset minimum, the command for the required torque is modified so that the system can escape the singularity. The torque may be changed by adding a small fixed amount of torque in one or more of the axles, or by adding a certain orthogonal direction, e.g. B. and a torque magnitude m is selected and added to the existing torque command. In addition, hysteresis in the implementation of the torque delta eliminates the possibility of limit cycling at the singular point Deviation in the torque command is perceived as a disturbance to the inertial measurement unit (IMU) of the spacecraft, which is subsequently corrected the fault outputs updated torque commands.
Weitere Aufgaben, Vorzüge und Merkmale der Erfindung ergeben sich aus der folgenden Erörterung von einer oder mehreren Ausführungsformen.Further Tasks, benefits and features of the invention will become apparent from the following discussion of one or more embodiments.
KURZE BESCHREIBUNG DER ZEICHNUNGSHORT DESCRIPTION THE DRAWING
AUSFÜHRLICHE IMPLEMENTIERUNGEN DER ERFINDUNGDETAILED IMPLEMENTATIONS OF THE INVENTION
Es
versteht sich, daß
In
Der
Singularitätsvermeidungsprozeß
Die Erfindung ist im Kontext einer Satellitensteuerung erläutert worden, kann aber in Systemen wie etwa Robotersystemen verwendet werden, bei denen Singularitäten angetroffen werden können. Mit dem Vorzug der obigen Erörterung der Erfindung kann der Durchschnittsfachmann die Erfindung und die Komponenten und Funktionen modifizieren, die ganz oder teilweise beschrieben worden sind, ohne von dem wahren Schutzbereich der Erfindung abzuweichen.The Invention has been explained in the context of satellite control, but can be used in systems such as robotic systems where singularities can be encountered. With the benefit of the above discussion The person skilled in the art can use the invention and the invention Modify components and functions that are described in whole or in part without departing from the true scope of the invention.
Claims (2)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US39640 | 1998-03-16 | ||
US09/039,640 US6047927A (en) | 1998-03-16 | 1998-03-16 | Escaping singularities in a satellite attitude control |
PCT/US1999/005598 WO1999050144A2 (en) | 1998-03-16 | 1999-03-16 | Singularity avoidance in a cmg satellite attitude control |
Publications (2)
Publication Number | Publication Date |
---|---|
DE69925719D1 DE69925719D1 (en) | 2005-07-14 |
DE69925719T2 true DE69925719T2 (en) | 2006-03-23 |
Family
ID=21906571
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE69925719T Expired - Lifetime DE69925719T2 (en) | 1998-03-16 | 1999-03-16 | SINGULARITY AVOIDANCE IN A CMG SATELLITE BEARING SYSTEM |
Country Status (5)
Country | Link |
---|---|
US (1) | US6047927A (en) |
EP (1) | EP1064196B1 (en) |
JP (1) | JP4249902B2 (en) |
DE (1) | DE69925719T2 (en) |
WO (1) | WO1999050144A2 (en) |
Families Citing this family (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6241194B1 (en) * | 1999-06-28 | 2001-06-05 | Honeywell International Inc. | Momentum position control |
US6191728B1 (en) * | 1999-07-07 | 2001-02-20 | Honeywell International Inc. | Agile satellite targeting |
US6711476B2 (en) | 2001-09-27 | 2004-03-23 | The Boeing Company | Method and computer program product for estimating at least one state of a dynamic system |
US6591169B2 (en) | 2001-09-27 | 2003-07-08 | The Boeing Company | Method and computer program product for controlling the actuators of an aerodynamic vehicle |
US6732977B1 (en) | 2002-02-11 | 2004-05-11 | Lockheed Martin Corporation | System for on-orbit correction of spacecraft payload pointing errors |
US6695263B1 (en) | 2002-02-12 | 2004-02-24 | Lockheed Martin Corporation | System for geosynchronous spacecraft rapid earth reacquisition |
US7051980B2 (en) * | 2002-02-26 | 2006-05-30 | Lockheed Martin Corporation | Efficient orbit sparing system for space vehicle constellations |
US6891498B2 (en) | 2002-03-28 | 2005-05-10 | Honeywell International Inc. | Inertial reference system for a spacecraft |
US6702234B1 (en) * | 2002-03-29 | 2004-03-09 | Lockheed Martin Corporation | Fault tolerant attitude control system for zero momentum spacecraft |
US6682019B2 (en) * | 2002-04-04 | 2004-01-27 | Honeywell International Inc. | Minimum energy wheel configurations for energy storage and attitude control |
US6648274B1 (en) | 2002-04-12 | 2003-11-18 | David A. Bailey | Virtual reaction wheel array |
WO2004032392A2 (en) * | 2002-08-28 | 2004-04-15 | Arizona Board Of Regents | Steering logic for control moment gyro system |
US6814330B2 (en) | 2002-12-12 | 2004-11-09 | The Boeing Company | Method and computer program product for controlling the control effectors of an aerodynamic vehicle |
US7246776B2 (en) * | 2004-07-23 | 2007-07-24 | Honeywell International, Inc. | Method and system for CMG array singularity avoidance |
US7014150B2 (en) * | 2004-07-30 | 2006-03-21 | Honeywell International Inc. | Method and system for optimizing torque in a CMG array |
US7464899B2 (en) * | 2005-08-03 | 2008-12-16 | Honeywell International Inc. | Method and system for determining a singularity free momentum path |
US7370833B2 (en) * | 2005-10-20 | 2008-05-13 | Honeywell International Inc. | Method and system for determining a singularity free momentum path |
US7835826B1 (en) | 2005-12-13 | 2010-11-16 | Lockheed Martin Corporation | Attitude determination system for yaw-steering spacecraft |
US7805226B2 (en) * | 2006-09-29 | 2010-09-28 | Honeywell International Inc. | Hierarchical strategy for singularity avoidance in arrays of control moment gyroscopes |
US7627404B2 (en) * | 2007-04-13 | 2009-12-01 | The Boeing Company | Singularity escape and avoidance using a virtual array rotation |
JP5228641B2 (en) * | 2008-06-16 | 2013-07-03 | 三菱電機株式会社 | Attitude control device and position control device |
JP5126107B2 (en) * | 2009-02-19 | 2013-01-23 | 三菱電機株式会社 | Satellite attitude control device |
JP5484262B2 (en) * | 2010-08-31 | 2014-05-07 | 三菱電機株式会社 | Spacecraft attitude control device |
US9849785B1 (en) * | 2012-12-10 | 2017-12-26 | The United States Of America, As Represented By The Secretary Of The Navy | Method and apparatus for state space trajectory control of uncertain dynamical systems |
IL223899A (en) | 2012-12-26 | 2017-06-29 | Israel Aerospace Ind Ltd | Device, system and method for attitude control |
US9567112B1 (en) | 2013-06-27 | 2017-02-14 | The United States Of America, As Represented By The Secretary Of The Navy | Method and apparatus for singularity avoidance for control moment gyroscope (CMG) systems without using null motion |
RU2562466C1 (en) * | 2014-04-29 | 2015-09-10 | Акционерное общество "Ракетно-космический центр "Прогресс" (АО "РКЦ "Прогресс") | Spacecraft orientation control method and device for its implementation |
CN104238563B (en) * | 2014-09-04 | 2017-01-18 | 北京航空航天大学 | Design method of control moment gyroscopes with surface inclination angles changeable |
CN104850128B (en) * | 2015-05-21 | 2017-09-19 | 上海新跃仪表厂 | A kind of momenttum wheel layout collocation method for being used to accumulate spacecraft with large inertia |
CN110576983B (en) * | 2019-08-26 | 2021-03-16 | 上海航天控制技术研究所 | Attitude determination method in track transfer process |
CN111099040B (en) * | 2019-10-18 | 2021-10-29 | 上海航天控制技术研究所 | System polarity determination method based on control moment gyro group control |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5100084A (en) * | 1990-04-16 | 1992-03-31 | Space Systems/Loral, Inc. | Method and apparatus for inclined orbit attitude control for momentum bias spacecraft |
FR2678894B1 (en) * | 1991-07-09 | 1993-11-19 | Aerospatiale Ste Nationale Indle | METHOD AND DEVICE FOR CONTROLLING ATTITUDE IN A ROLL-LACET OF A SATELLITE WITH SINGLE DIRECTION OF CONTINUOUS ACTUATION. |
US5248118A (en) * | 1992-05-13 | 1993-09-28 | General Electric Co. | Spacecraft attitude control system with reaction wheel bearing protection |
US5354016A (en) * | 1992-07-30 | 1994-10-11 | General Electric Co. | Pivoted wheel roll control with automatic offset |
GB9403644D0 (en) * | 1994-02-25 | 1994-04-13 | Advanced Robotics Res | Manipulator controller |
US5875676A (en) * | 1997-09-02 | 1999-03-02 | Honeywell Inc. | Non colocated rate sensing for control moment gyroscopes |
-
1998
- 1998-03-16 US US09/039,640 patent/US6047927A/en not_active Expired - Lifetime
-
1999
- 1999-03-16 DE DE69925719T patent/DE69925719T2/en not_active Expired - Lifetime
- 1999-03-16 JP JP2000541068A patent/JP4249902B2/en not_active Expired - Fee Related
- 1999-03-16 WO PCT/US1999/005598 patent/WO1999050144A2/en active IP Right Grant
- 1999-03-16 EP EP99935274A patent/EP1064196B1/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
EP1064196B1 (en) | 2005-06-08 |
WO1999050144A2 (en) | 1999-10-07 |
JP2002509843A (en) | 2002-04-02 |
EP1064196A2 (en) | 2001-01-03 |
US6047927A (en) | 2000-04-11 |
WO1999050144A3 (en) | 1999-11-18 |
JP4249902B2 (en) | 2009-04-08 |
DE69925719D1 (en) | 2005-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69925719T2 (en) | SINGULARITY AVOIDANCE IN A CMG SATELLITE BEARING SYSTEM | |
DE69921790T2 (en) | ROBUST SINGULARITY AVOIDANCE IN A SATELLITE STATION | |
DE69911184T2 (en) | CONTINUOUS SPACE VEHICLE STORAGE REGULATION, WHETHER SINGULARITY STATES ARE AVOIDED IN THE CONTROL TORQUE GYRO ARRANGEMENT | |
EP0601051B1 (en) | Measurement arrangement useful for controlling the attitude of a three-axis stabilized satellite, corresponding evaluation process, regulating system and process | |
DE60120363T2 (en) | ORIENTATION DETERMINATION IN A TILTABLE BODY BY MEANS OF A MODIFIED QUATERNATION DATA PRESENTATION | |
EP0856784B1 (en) | Method and device for the on-board determination of a satellite s position | |
DE4129627C2 (en) | Device and method for position control of a spacecraft to be rotated about a body-fixed axis | |
DE69707327T2 (en) | Uniaxial correction for web inclination | |
DE69602798T2 (en) | Satellite swirl stabilization method, in which a transverse moment of inertia with a single degree of freedom is stored, and system therefor | |
DE3241507A1 (en) | CONTROL SYSTEM FOR A MAGNETIC STORAGE DEVICE | |
US4732354A (en) | Active damping of satellite nutation | |
DE102013015702B3 (en) | Rotary damper for a motor vehicle | |
JP4249901B2 (en) | CMG control based on momentum for satellite attitude control | |
DE3638462C2 (en) | ||
DE60008103T2 (en) | MOMENTS POSITION CONTROL | |
US6354163B1 (en) | Mitigating gimbal induced disturbances in CMG arrays | |
DE3927920A1 (en) | METHOD FOR ELIMINATING GYRO ERRORS | |
DE69829529T2 (en) | Stabilization of the axis of rotation of a spacecraft by means of kinetic energy storing devices | |
Mahony et al. | Visual servoing using linear features for under-actuated rigid body dynamics | |
DE60300944T2 (en) | INERTIA REFERENCE SYSTEM FOR A SPACE VEHICLE | |
DE69601853T2 (en) | Method and system for controlling the position or orientation of a spacecraft | |
EP0335116A2 (en) | Method of aligning a two axis platform | |
EP0106066A2 (en) | Apparatus for determining the north | |
JP3415321B2 (en) | Spacecraft unloading device | |
DE1481508C (en) | Process for regulating the transverse acceleration and roll damping of steerable plug bodies and device for carrying out the process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
8364 | No opposition during term of opposition |