DE649811C - Nickel iron alloy spring with hardening beryllium addition - Google Patents
Nickel iron alloy spring with hardening beryllium additionInfo
- Publication number
- DE649811C DE649811C DEST54248D DEST054248D DE649811C DE 649811 C DE649811 C DE 649811C DE ST54248 D DEST54248 D DE ST54248D DE ST054248 D DEST054248 D DE ST054248D DE 649811 C DE649811 C DE 649811C
- Authority
- DE
- Germany
- Prior art keywords
- hardening
- nickel iron
- iron alloy
- beryllium
- fixing temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B17/00—Mechanisms for stabilising frequency
- G04B17/20—Compensation of mechanisms for stabilising frequency
- G04B17/22—Compensation of mechanisms for stabilising frequency for the effect of variations of temperature
- G04B17/227—Compensation of mechanisms for stabilising frequency for the effect of variations of temperature composition and manufacture of the material used
Landscapes
- Engineering & Computer Science (AREA)
- Metallurgy (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Springs (AREA)
Description
Feder aus Nickeleisenlegierung mit härtendem Berylliumzusatz Die bekannte Legierung für Federn für thermokompensierte Schwingsysteme erfüllt durch die unter sich sowohl als auch in bezug auf den Nickelgehalt genau dosierten Zusätze von Metallen der Chromgruppe den Zweck, eine harte, hochelastische Feder zu geben, die je nach Wahl und Dosierung der Zusätze einen thermoelastischen Koeffizienten gibt, der o, positiv oder negativ ist und sich bei der Vergütungstemperatur in der Form gut fixieren läßt. ` Wie die Fabrikationserfahrung gezeigt hat, bieten diese Legierungen in der beschriebenen Zusammensetzung einige Schwierigkeiten.Nickel iron alloy spring with hardening beryllium addition The well-known one Alloy for springs for thermocompensated vibration systems met by the below as well as precisely dosed additions of metals with regard to the nickel content the purpose of the chromium group is to give a hard, highly elastic spring which, depending on the The choice and dosage of the additives gives a thermoelastic coefficient that o, is positive or negative and fix well in the mold at the tempering temperature leaves. `As manufacturing experience has shown, these alloys offer described composition some difficulties.
i. Der thermoelastische Koeffizient ist stark abhängig von der Fixiertemperatur und verlangt deshalb außerordentliche Präzision der Wärmebehandlung, was bei der verhältnismäßig hohen Fixiertemperatur von über 6oo° C Schwierigkeiten bietet.i. The thermoelastic coefficient is strongly dependent on the fixing temperature and therefore requires extraordinary precision of the heat treatment, which is the case with the relatively high fixing temperature of over 600 ° C offers difficulties.
2. Es war bisher nicht möglich, mit Chrom-Beryllium-Zusatz Federn herzustellen, die sich beim Vergüten in ihrer Form befriedigend fixieren ließen.2. So far it was not possible to use springs with chrome beryllium addition produce that could be satisfactorily fixed in shape during tempering.
3. Der Sekundärfehler des thermoelastischen Koeffizienten ist ebenfalls stark abhängig von der Fixiertemperatur; diese Abhängigkeit beträgt heutzutage.bis 5 Sekunden je i° Schwankung der Fixiertemperatur.3. The secondary error of the thermoelastic coefficient is also strongly dependent on the fixing temperature; nowadays this dependency amounts to. to 5 seconds per i ° fluctuation in the fixing temperature.
Es ist nun gelungen, durch Kombination der Zusätze Wblfram-Beryllium, Molybdän-Beryllium oder Chrom-Beryllium mit Titan Nickeleisenlegierungen zu erzielen, die bei den daraus gefertigten Federn nicht nur die Vorzüge der bekannten Legierungen ergeben, sondern dazu noch die obengenannten Nachteile beseitigen und ferner als neuen Vorteil die Fixiertemperatur der Federn tiefer legen. Der Zusatz von Titan zu Beryllium und einem der Metalle Chrom, Molybdän und Wolfram in einer Nickeleisenlegierung mit 25 bis 40 °/0 Nickelgehalt bringt folgende neue Vorzüge: i. Eine ungefähr 5mal geringere Abhängigkeit des thermoelastischen Koeffizienten und seines Sekundärfehlers von der Fixiertemperatur. Dieselbe beträgt o,5 bis i Sekunde je i° Schwankung der Fixiertemperatur.We have now succeeded in combining the additives Wblfram-Beryllium, To achieve molybdenum beryllium or chromium beryllium with titanium nickel iron alloys, the springs made from it not only have the advantages of the well-known alloys result, but also eliminate the disadvantages mentioned above and also as new advantage to lower the fixing temperature of the springs. The addition of titanium to beryllium and one of the metals chromium, molybdenum and tungsten in a nickel iron alloy with 25 to 40% nickel content brings the following new advantages: i. One about 5 times less dependence of the thermoelastic coefficient and its secondary error on the fixing temperature. The same amounts to 0.5 to 1 second for every 1 ° fluctuation of the Fixing temperature.
2. Eine tiefere Fixiertemperatur.2. A lower fusing temperature.
3. Die Möglichkeit der Erzielung brauchbarer Legierungen mit Beryllium-Chrom-Zusatz.3. The possibility of obtaining usable alloys with the addition of beryllium-chromium.
Die folgenden drei Nickeleisenlegierungen geben beispielsweise Federn,
die diese Vorzüge aufweisen:
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DEST54248D DE649811C (en) | 1935-12-14 | 1935-12-14 | Nickel iron alloy spring with hardening beryllium addition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DEST54248D DE649811C (en) | 1935-12-14 | 1935-12-14 | Nickel iron alloy spring with hardening beryllium addition |
Publications (1)
Publication Number | Publication Date |
---|---|
DE649811C true DE649811C (en) | 1937-09-03 |
Family
ID=7466958
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DEST54248D Expired DE649811C (en) | 1935-12-14 | 1935-12-14 | Nickel iron alloy spring with hardening beryllium addition |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE649811C (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE754955C (en) * | 1942-03-30 | 1953-07-13 | Reinhard Straumann | Nickel iron alloy spring with hardening beryllium for thermocompensated oscillating systems |
DE1783139B1 (en) * | 1958-09-04 | 1973-11-15 | Straumann Inst Ag | USE OF AN IRON-NICKEL ALLOY FOR SPRINGS WITH VERY LOW TEMPERATURE COEFFICIENTS |
-
1935
- 1935-12-14 DE DEST54248D patent/DE649811C/en not_active Expired
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE754955C (en) * | 1942-03-30 | 1953-07-13 | Reinhard Straumann | Nickel iron alloy spring with hardening beryllium for thermocompensated oscillating systems |
DE1783139B1 (en) * | 1958-09-04 | 1973-11-15 | Straumann Inst Ag | USE OF AN IRON-NICKEL ALLOY FOR SPRINGS WITH VERY LOW TEMPERATURE COEFFICIENTS |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3490022T1 (en) | Cobalt based alloys for engine valves and valve seats | |
DE649811C (en) | Nickel iron alloy spring with hardening beryllium addition | |
DE1553841B2 (en) | Use of an austenitic work-hardened stainless steel alloy for knife blades | |
CH196408A (en) | Nickel iron alloy spring with hardening beryllium additive for thermo-compensated oscillating systems. | |
DE585151C (en) | Nickel-iron alloy spring, especially for thermocompensated oscillating systems | |
DE754955C (en) | Nickel iron alloy spring with hardening beryllium for thermocompensated oscillating systems | |
DE707151C (en) | Nickel-iron alloy spring with hardening beryllium addition | |
DE648922C (en) | Iron alloys for permanent magnets | |
DE840766C (en) | Alloy for springs, especially for clocks and apparatus | |
AT159580B (en) | Chromium-cobalt magnetic steel. | |
DE658823C (en) | Steel alloy for permanent magnets | |
DE578390C (en) | Nickel iron alloy spring, especially for thermo-compensated oscillating systems | |
DE891399C (en) | Austenitic steel alloys for objects that are exposed to heat during manufacture or in operation | |
DE1558642B2 (en) | UNMAGNETIC NICKEL CHROME MOLYBDEN IRON ALLOYS AND THEIR USES FOR WATCHES FOR WATCHES | |
DE1558642C (en) | Non-magnetic nickel chromium molybdenum iron alloys and their use for balance springs in watches | |
DE1758385C2 (en) | Use of an Fe-Cr-Ni-Mn alloy for valves and valve parts of internal combustion engines | |
DE870762C (en) | alloy | |
GB495562A (en) | A new or improved alloy, method of making same and articles manufactured therefrom | |
DE570232C (en) | Steel with high resistance to deformation at temperatures of 800 800 and above | |
AT112076B (en) | Permanent magnet. | |
AT339355B (en) | AUSTENITIC STEEL FOR OBJECTS WITH RESISTANCE TO CAVITATION AND EROSION | |
AT158971B (en) | Process for the production of steel alloys for objects which must have high fatigue strength at high temperatures. | |
AT159615B (en) | Permanent magnet steel. | |
DE689070C (en) | Alloy which can be hardened by precipitation | |
CH160798A (en) | Process for the production of springs made of nickel iron alloy, for thermocompensated oscillating systems. |