DE60303459T2 - Elektrochemischer membrangenerator - Google Patents
Elektrochemischer membrangenerator Download PDFInfo
- Publication number
- DE60303459T2 DE60303459T2 DE60303459T DE60303459T DE60303459T2 DE 60303459 T2 DE60303459 T2 DE 60303459T2 DE 60303459 T DE60303459 T DE 60303459T DE 60303459 T DE60303459 T DE 60303459T DE 60303459 T2 DE60303459 T2 DE 60303459T2
- Authority
- DE
- Germany
- Prior art keywords
- generator according
- frame
- calibrated holes
- metal body
- aligned
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 19
- 238000006243 chemical reaction Methods 0.000 claims abstract description 43
- 239000000376 reactant Substances 0.000 claims abstract description 29
- 239000000463 material Substances 0.000 claims abstract description 21
- 238000000465 moulding Methods 0.000 claims abstract description 8
- 229910052751 metal Inorganic materials 0.000 claims description 37
- 239000002184 metal Substances 0.000 claims description 36
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 18
- 238000009826 distribution Methods 0.000 claims description 17
- 239000007789 gas Substances 0.000 claims description 15
- 239000007795 chemical reaction product Substances 0.000 claims description 11
- 238000001816 cooling Methods 0.000 claims description 10
- 239000002826 coolant Substances 0.000 claims description 9
- 230000008878 coupling Effects 0.000 claims description 7
- 238000010168 coupling process Methods 0.000 claims description 7
- 238000005859 coupling reaction Methods 0.000 claims description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical group [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 6
- 230000015572 biosynthetic process Effects 0.000 claims description 6
- 239000004033 plastic Substances 0.000 claims description 6
- 229920003023 plastic Polymers 0.000 claims description 6
- 239000000853 adhesive Substances 0.000 claims description 5
- 230000001070 adhesive effect Effects 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 239000000047 product Substances 0.000 claims description 5
- 238000002347 injection Methods 0.000 claims description 4
- 239000007924 injection Substances 0.000 claims description 4
- 239000002861 polymer material Substances 0.000 claims description 4
- 238000004026 adhesive bonding Methods 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 229910001220 stainless steel Inorganic materials 0.000 claims description 3
- 239000010935 stainless steel Substances 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims description 3
- 238000005488 sandblasting Methods 0.000 claims description 2
- 235000011121 sodium hydroxide Nutrition 0.000 claims description 2
- 239000012815 thermoplastic material Substances 0.000 claims description 2
- 239000003517 fume Substances 0.000 claims 2
- 230000008602 contraction Effects 0.000 claims 1
- 230000002093 peripheral effect Effects 0.000 claims 1
- 229920001187 thermosetting polymer Polymers 0.000 abstract description 3
- 238000010292 electrical insulation Methods 0.000 abstract description 2
- 229920001169 thermoplastic Polymers 0.000 abstract description 2
- 239000004416 thermosoftening plastic Substances 0.000 abstract description 2
- 210000004027 cell Anatomy 0.000 description 38
- 239000000446 fuel Substances 0.000 description 6
- 239000007800 oxidant agent Substances 0.000 description 5
- 239000003014 ion exchange membrane Substances 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000012809 cooling fluid Substances 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 210000000352 storage cell Anatomy 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000002912 waste gas Substances 0.000 description 2
- FIKFLLIUPUVONI-UHFFFAOYSA-N 8-(2-phenylethyl)-1-oxa-3,8-diazaspiro[4.5]decan-2-one;hydrochloride Chemical compound Cl.O1C(=O)NCC11CCN(CCC=2C=CC=CC=2)CC1 FIKFLLIUPUVONI-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 240000003517 Elaeocarpus dentatus Species 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 241001255830 Thema Species 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004049 embossing Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- -1 methanol or ethanol Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2465—Details of groupings of fuel cells
- H01M8/247—Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0206—Metals or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0221—Organic resins; Organic polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0223—Composites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0267—Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0271—Sealing or supporting means around electrodes, matrices or membranes
- H01M8/0273—Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/241—Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
- H01M8/242—Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes comprising framed electrodes or intermediary frame-like gaskets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2465—Details of groupings of fuel cells
- H01M8/2483—Details of groupings of fuel cells characterised by internal manifolds
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Electrochemistry (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Fuel Cell (AREA)
- Cell Separators (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Description
- Die vorliegende Erfindung betrifft einen elektrochemischen Generator mit Membran, der durch ein verringertes Gewicht, eine verbesserte elektrische Isolierung zur Umgebung hin und eine einfachere Montage gekennzeichnet ist. Prozesse zur Umwandlung von chemischer in elektrische Energie auf der Basis von mit Membranen arbeitenden elektrochemischen Generatoren sind aus dem Stand der Technik bekannt. Ein Beispiel eines mit Membran arbeitenden elektrochemischen Generators ist in
1 skizziert. Der elektrochemische Generator (1 ) wird von mehreren Reaktionszellen (2 ) gebildet, die untereinander in Reihe geschaltet und gemäß einer Filterpressenanordnung montiert sind. Jede Reaktionszelle (2 ) wandelt die freie Energie der Reaktion eines ersten gasförmigen Reaktionsteilnehmers (Brennstoff) mit einem zweiten gasförmigen Reaktionsteilnehmer (Oxidationsmittel) um, ohne sie vollständig in Wärmeenergie abzubauen, so dass sie nicht den Einschränkungen des Carnot'schen Kreisprozesses unterliegt. Der Brennstoff wird in die Anodenkammer der Reaktionszelle (2 ) geleitet und besteht beispielsweise aus einem Gemisch, das Wasserstoff oder leichte Alkohole, wie beispielsweise Methanol oder Ethanol enthält, während das Oxidationsmittel in die entsprechende Kathodenkammer geleitet wird und beispielsweise aus Luft oder Sauerstoff besteht. Der Brennstoff wird in der Anodenkammer oxidiert, wobei gleichzeitig H+-Ionen freigesetzt werden, während das Oxidationsmittel in der Kathodenkammer unter Verbrauch von H+-Ionen reduziert wird. Eine die Anodenkammer von der Kathodenkammer trennende Ionenaustauschmembran ermöglicht einen kontinuierlichen Fluss von H+-Ionen von der Anoden- in die Kathodenkammer, während der Durchtritt von Elektronen behindert wird. Die elektrische Potenzialdifferenz zwischen den Polen der Reaktionszelle (2 ) wird dadurch maximiert. - Genauer betrachtet wird jede Reaktionszelle (
2 ) von einem Paar elektrisch leitfähiger flacher Bipolarplatten (3 ) begrenzt, die, von innen nach außen betrachtet, die Ionenaustauschmembran (4 ), ein Paar poröser Elektroden (5 ), ein Paar Stromsammler/-Verteiler (7 ), die mittels eines netzartigen, leitfähigen Elements des inUS 5,482,792 beschriebenen Typs verwirklicht werden und die Bipolarbleche (3 ) elektrisch mit den porösen Elektroden (5 ) verbinden, während sie gleichzeitig die gasförmigen Reakti onsteilnehmer verteilen, ein Paar Dichtungen (8 ), die dazu dienen, den Rand der Reaktionszelle (2 ) abzudichten, um die Leckage von gasförmigen Reaktionsteilnehmern in die äußere Umgebung zu verhindern, einschließen. In den Bipolarblechen (3 ) und den Dichtungen (8 ) jeder Reaktionszelle (2 ) sind in1 nicht gezeigte Zufuhr- und Auslassöffnungen vorhanden, die über, in1 ebenfalls nicht dargestellte Verteilerkanäle mit der Anoden- und Kathodenkammer der Zelle kommunizieren. Die Verteilerkanäle sind vorzugsweise innerhalb der Dicke der Dichtungen (8 ) ausgebildet und haben eine kammartige Struktur. Sie verteilen und sammeln die gasförmigen Reaktionsteilnehmer und die Reaktionsprodukte, wobei Letztere ggf. mit den Abgasen vermischt sind, in einer gleichmäßigen Art und Weise innerhalb jeder Reaktionszelle (2 ). Die Bipolarbleche (3 ) und die Dichtungen (8 ) sind außerdem mit Öffnungen zur Zufuhr und zum Austrag eines Kühlfluids (üblicherweise deionisiertes Wasser) versehen, um den elektrochemischen Generator (1 ) auf der vorgesehenen Betriebstemperatur zu halten. In einer Filterpressenanordnung bestimmt die Kopplung zwischen den oben genannten Öffnungen die Bildung von zwei Längskanälen, die zur Zufuhr der gasförmigen Reaktionsteilnehmer dienen, von zwei Längskanälen, die zum Austrag der Reaktionsprodukte, ggf. vermischt mit Abgasen, dienen und schließlich der Zufuhr- und Abzugskanäle für Kühlmittel. Außerhalb der Reaktionszelle (2 ) sind zwei Endplatten (11 ) vorhanden, welche den elektrochemischen Generator (1 ) begrenzen und es in Zusammenwirkung mit anderen Vorrichtungen, wie beispielsweise Federn oder Zugstangen ermöglichen, die verschiedenen Komponenten unter Druck zu halten, was dadurch die Gasabdichtung zur äußeren Umgebung hin und die elektrische Kontinuität in Längsrichtung gewährleistet. Eine der beiden Endplatten (11 ) ist mit, in1 nicht dargestellten, Düsen zur Verbindung der oben genannten Längskanäle mit den externen Kreisläufen versehen. Außerdem sind beide Endplatten (11 ) mit geeigneten (in1 ebenfalls nicht dargestellten) Löchern versehen, um die Zugstangen aufzunehmen, mittels denen der elektrochemische Generator (1 ) zusammengezogen wird. Wie in2 dargestellt, kann der elektrochemische Generator (1 ) des Standes der Technik auch mehrere Kühlzellen (20 ) aufweisen, die zwischen den Reaktionszellen angeordnet sind. Die Kühlzellen (20 ) entsprechen den Reaktionszellen (2 ), abgesehen davon, dass sie das aus Ionenaustauschmembran (4 ), den porösen Elektroden (5 ) und den katalytischen Schichten (6 ) bestehende elektrochemische Paket nicht enthalten. Die dem Kühlmittelstrom dienenden Kühlzellen (20 ) enthalten ein leitfähiges Element, das den oben beschriebenen Sammlern (7 ) entspricht und in diesem Fall dazu dient, die elektrische Kontinuität zwischen zwei benachbarten Bipolarblechen sicherzustellen, während gleichzeitig der Wärmeübergangskoeffizient erhöht wird. FR-A-2810795 betrifft eine Bipolarplatte für eine Brennstoffzelle und beschreibt einen Kühlkanal, der durch Bipolarbleche begrenzt wird, wobei sich die Bipolarbleche über den gesamten Bereich des Rahmens erstrecken und die Zufuhrkanäle, die eine kommunizierende Verbindung zwischen den Längskanälen und der Reaktionszelle gewährleisten, zwischen einem Paar von Bipolarblechen vorgesehen sind. - Obwohl der elektrochemische Generator (
1 ) des Standes der Technik unter verschiedenen Aspekten vorteilhaft ist, ist er dennoch mit einigen Nachteilen behaftet. Zunächst ist der elektrochemische Generator (1 ) vorzugsweise mit Bipolarblechen aus Metall, beispielsweise aus Edelstahl, anstelle von Graphit oder den bekannten Polymer-Graphit-Composit-Materialien konstruiert, um die Kosten zu verringern und Stabilitätsprobleme zu vermeiden. Dies führt jedoch zu einem merklichen Gewicht und zu einer Komplexität, da der Generator eine große Zahl von Komponenten umfasst. Die Verwendung einer großen Zahl von Komponenten ist auch mit einer beträchtlichen Zahl von Dichtungen und folglich einem höheren Leckagerisiko verbunden, abgesehen von einer schwierigen Montage, sei sie manuell oder automatisiert, mit langer Montagedauer und entsprechenden Ungenauigkeiten, die Konsequenzen für ihre korrekte Funktion haben können. Andere Nachteile, die mit der Struktur des oben beschriebenen elektrochemischen Generators zusammenhängen, sind durch das Fehlen von elektrischer Isolation zur äußeren Umgebung hin, durch den Kontakt von Metall mit Fluiden, insbesondere bezüglich des Kühlmittels, der innerhalb der Längskanäle stattfindet und zu möglichen Shunt-Strömen führen kann, sowie durch die Abgabe von durch den Generator erzeugter Wärmeleistung in die äußere Umgebung gegeben. - Aufgabe der vorliegenden Erfindung ist die Bereitstellung eines mit Membran arbeitenden elektrochemischen Generators, der Bipolarplatten aus Metall umfasst und die Nachteile des Standes der Technik überwindet.
- Zum besseren Verständnis der vorliegenden Erfindung werden einige ihrer Ausführungsformen im Folgenden als bloße, nicht einschränkende Beispiele und Bezugnahme auf die beigefügten Zeichnungen beschrieben, in denen:
-
1 eine Explosionsdarstellung der Seitenansicht einer ersten Ausführungsform eines elektrochemischen Membrangenerators gemäß Stand der Technik zeigt; -
2 eine Explosionsdarstellung der Seitenansicht einer zweiten Ausführungsform des elektrochemischen Membrangenerators der1 zeigt; -
3 eine Explosionsdarstellung der Seitenansicht einer erfindungsgemäßen Ausführungsform eines elektrochemischen Membrangenerators zeigt; -
4 eine Komponente des elektrochemischen Membrangenerators der3 zeigt; -
5a eine Ansicht entlang dem Schnitt A-A der Komponente der4 zeigt; -
5b eine Ansicht entlang dem Schnitt B-B der Komponente der4 zeigt; -
6 eine Stirnansicht einer weiteren Ausführungsform einer Komponente des elektrochemischen Membrangenerators der3 zeigt; -
7 eine Ansicht entlang dem Schnitt C-C der Komponente der6 zeigt; -
8 eine Ansicht entlang dem Schnitt D-D der Komponente der7 zeigt; -
9 eine Ansicht entlang dem Schnitt C-C einer alternativen Ausführungsform der Komponente der6 zeigt; -
10 eine Ansicht entlang dem Schnitt E-E der Komponente der9 zeigt; -
11 eine Stirnansicht einer weiteren Ausführungsform der Komponente des elektrochemischen Membrangenerators der3 zeigt; -
12 einer Schnittdarstellung der Komponente der11 entlang dem Schnitt F-F entspricht; und -
13 eine Ansicht entlang dem Schnitt G-G der Komponente der12 zeigt; -
3 zeigt eine Ausführungsform des erfindungsgemäßen elektrochemischen Membrangenerators (100 ), der durch mehrere Reaktionszellen (101 ) gebildet wird, die untereinander in Reihe geschaltet und in einer Filterpressenanordnung zusammengebaut sind, wobei Kühlzellen (120 ) in einem Verhältnis von 1 : 1 bezogen auf die Reaktionszellen dazwischen eingesetzt sind, die den oben beschriebenen Kühlzellen (20 ) der2 entsprechen. In anderen Ausführungsformen kann dieses Verhältnis verschieden sein, beispielsweise 1 : 2 oder 1 : 3. Jede Reaktionszelle (101 ) wird von einem Paar von ebenen Bipolarblechen (102 ) begrenzt, zwischen denen, von innen nach außen gesehen, folgende Komponenten eingeschlossen sind: eine Ionenaustauschmembran (103 ); ein Paar poröser Elektroden (104 ); ein Paar katalytischer Schichten (105 ), die auf der Grenzfläche zwischen der Membran (103 ) und jeder der porösen Elektroden (104 ) abgeschieden wurden; ein Paar Stromsammler/-Verteiler (106 ), die mittels eines netzartigen metallischen Elements des inUS 5,482,792 beschriebenen Typs realisiert sind und welche die Bipolarbleche (102 ) elektrisch mit den porösen Elektroden (104 ) verbinden, während sie gleichzeitig die gasförmigen Reaktionsteilnehmer verteilen. - Wie detaillierter in den
4 ,5a ,5b gezeigt wird, bestehen die Bipolarbleche (102 ) aus einem zentralen Metallkörper (110 ), dessen Abmessungen diejenigen des aktiven Bereichs der Reaktionszelle (101 ), die in einen Rahmen (111 ) aus einem Polymermaterial (beispielsweise einem thermoplastischen oder duroplastischen Material) integriert ist, geringfügig überragen. Der Rahmen (111 ) wird durch Aufformen oder Verkleben auf den zentralen Metallkörper (110 ) gelegt und kann ggf. aus unterschiedlichen Bauteilen bestehen. Der Rahmen (111 ) übernimmt vorteilhaft alle Funk tionen der Dichtung (8 ) des elektrochemischen Generators des Standes der Technik, welche somit weggelassen werden kann. - Wie in
4 dargestellt, weist der Rahmen (111 ) erste und zweite Öffnungen (111a1 ,111a2 ) für den Durchlass der gasförmigen Reaktionsteilnehmer, nämlich Brennstoff bzw. Oxidationsmittel, erste und zweite Öffnungen (111b1 ,111b2 ) für den Austrag der Reaktionsprodukte, die ggf. mit Abgasen vermischt sind, Öffnungen (112 ) für die Zufuhr und den Austrag eines Kühlfluids auf. Der Rahmen (11 ) weist außerdem mehrere Löcher (150 ) zur Aufnahme von Zugstangen auf, mittels denen der elektrochemische Generator (100 ) festgezogen wird. - Außerdem weist der Rahmen (
111 ) Verteilkanäle (113a ,113b ) (5a ) und Kühlkanäle (114 ) (5b ) auf, die alle in der Dicke des Rahmens selbst ausgebildet sind. Die Verteilerkanäle (113a ) und (113b ) sind an der Grenzfläche zu dem zentralen Metallkörper (110 ) positioniert und stellen eine direkte kommunizierende Verbindung der ersten und zweiten Öffnungen (111a1 ,111a2 ) (von denen in5a nur eine gezeigt ist) bzw. der ersten und zweiten Öffnungen (111b1 ,111b2 ) (von denen in5a eine gezeigt ist) mit dem Inneren der Reaktionszelle (101 ) her, während die Kühlkanäle (114 ) eine kommunizierende Verbindung der Öffnungen (112 ) mit dem Inneren der Kühlzellen (120 ) herstellen. In einer Filterpressenanordnung bestimmt die Kopplung zwischen den Öffnungen (111a1 ,111a2 ) und den Öffnungen (111b1 ,111b2 ) aller Rahmen (111 ) jeweils die Bildung von zwei in Längsrichtung verlaufenden Sammelkanälen (115 ) und zwei in Längsrichtung verlaufenden Sammelkanälen (116 ), während die Kopplung zwischen den Öffnungen (112 ) aller Rahmen (111 ) außerdem die Bildung von entsprechenden Sammelkanälen bestimmt, obwohl diese aus Gründen einer vereinfachten Darstellung in3 nicht gezeigt sind. Die beiden in Längsrichtung verlaufenden Sammelkanäle (115 ), von denen in3 nur einer gezeigt ist, dienen dazu, die gasförmigen Reaktionsteilnehmer zuzuführen, die beiden in Längsrichtung verlaufenden Sammelkanäle (116 ), von denen in Figur nur einer dargestellt ist, dienen zum Abführen des ggf. mit Abgasen (Inertgasen und nicht umgewandelten Anteilen der Reaktionsteilnehmer) vermischten Reaktionsproduktes (Wasser), während die durch die Kopplung der Öffnungen (112 ) gebildeten Sammelkanäle der Zufuhr und dem Abzug des Kühlfluids dienen. - Außerhalb von der Anordnung der Reaktionszellen (
101 ) sind zwei Endplatten (117 ) vorhanden (3 ), welche den elektrochemischen Generator (100 ) begrenzen. Eine der beiden Endplatten (117 ) ist mit in3 nicht dargestellten Düsen für die hydraulische Verbindung der verschiedenen, in Längsrichtung verlaufenden Sammelkanäle mit den externen Kreisläufen versehen. Darüber hinaus sind die beiden Endplatten (117 ) mit geeigneten (ebenfalls in3 nicht dargestellten) Löchern zur Aufnahme der Zugstangen versehen. - In dem Fall, in welchem die Kühlzellen (
120 ) im Verhältnis von 1 : 1 zwischen den Reaktionszellen (101 ) angeordnet sind, wie dies in3 dargestellt ist, kann der zentrale Metallkörper (110 ) der Bipolarbleche (192 ) mit mehreren kalibrierten Löchern (130a ,130b ) mit einem Durchmesser zwischen 0,1 und 5 mm versehen sein, wie dies in6 dargestellt ist. Durch die mehreren kalibrierten Löcher (130a ) bzw. (130b ) strömen die gasförmigen Reaktionsteilnehmer in die Reaktionszelle (101 ) und die Reaktionsprodukte und Abgase werden aus dieser abgezogen, wie im Folgenden detaillierter erläutert wird. In einer alternativen Konstruktion weisen die kalibrierten Löcher (130a ) und (130b ) gleichmäßig variierende Durchmesser auf, um eine gleichmäßige Verteilung der gasförmigen Reaktionsteilnehmer und einen gleichmäßigen Abzug der Produkte zu gewährleisten. Die Löcher (130a ) und (130b ) sind jeweils unter bzw. über den inneren Rändern des Rahmens (111 ) auf der Seite positioniert, die derjenigen mit den Verteilerkanälen (131 ) und (132 ) gegenüberliegt. Der Abstand der Löcher von den Kanten des Rahmens (111 ) beträgt vorzugsweise etwa 1 mm, damit die aktive Fläche der Reaktionszelle (101 ) besser ausgenutzt wird. - In
7 , die eine Seitenansicht des Bipolarblechs der6 entlang dem Schnitt C-C darstellt, weist der Rahmen (111 ) auf der der Kühlzelle (120 ) gegenüberliegenden Seite einen Verteilerbereich für gasförmige Reaktionsteilnehmer (131 ) auf, der mit ersten und zweiten Öffnungen (111a1 ,111a2 ) kommuniziert und einen Sammelbereich für Reaktionsprodukte und Abgase (132 ) der mit ersten und zweiten Öffnun gen (111b1 ,111b2 ) kommuniziert. Der Verteilerbereich für gasförmige Reaktionsteilnehmer (131 ) und der Sammelbereich für Reaktionsprodukte und Abgase (132 ) sind beide in der Dicke des Rahmens (111 ) ausgebildet. Auf der der Reaktionszelle (101 ) gegenüberliegenden Seite weist der Rahmen (111 ) keine Kanäle auf und seine Dicke kann in Abhängigkeit von der Dicke der Anordnung aus Membran, Elektrode und Kollektor ohne weitere Einschränkungen optimiert werden. Die Verteiler (131 ) und Sammelbereiche (132 ) sind in8 dargestellt, die eine Stirnansicht des Schnitts der Bipolarplatte (102 ) der7 entlang der Ebene D-D darstellt. Die Kanäle (133 ) und (134 ) stimmen mit der Ausrichtung der Löcher (130a ) und (130b ) überein. - In diesem Fall arbeitet der elektrochemische Generator (
100 ) wie folgt: Die gasförmigen Reaktionsteilnehmer (Brennstoff und Oxidationsmittel), die über die in Längsrichtung verlaufenden Sammelleitungen (115 ) in den elektrochemischen Generator (100 ) geleitet werden, fließen in den Verteilerbereich (131 ). Von dort fließen die gasförmigen Reaktionsteilnehmer durch den Kanal (133 ) und durch die mehreren kalibrierten Löcher (130a ) und werden in die Reaktionszelle (101 ) eingespritzt. Die darin erzeugten Reaktionsprodukte und Abgase durchqueren wiederum die mehreren kalibrierten Löcher (130b ) und erreichen durch die Kanäle (134 ) den Sammelbereich (132 ) und die Sammelleitung (116 ), durch welche sie den elektrochemischen Generator (100 ) verlassen. - In einer alternativen Ausführungsform werden die Löcher (
130a ) dazu verwendet, Wasser direkt in die Reaktionszelle einzuspritzen, statt gasförmige Reaktionsteilnehmer einzuspritzen, wie oben dargestellt wurde. In diesem Fall hat das eingespritzte Wasser eine doppelte Funktion, nämlich sowohl für die Befeuchtung der Gase und der Membran (103 ) zu sorgen, als auch durch teilweises Verdampfen Reaktionswärme abzuleiten. Das nicht verdampfte Wasser wird zusammen mit den Produkten und Abgasen durch den Sammelbereich aus der Reaktionszelle abgezogen, welcher mit einer in Längsrichtung verlaufenden Abzugssammelleitung kommuniziert. Auf die Löcher (130b ) kann somit verzichtet werden. Aufgrund der Kühlwirkung, die von dem direkt in die Reaktionszelle eingespritzten Wasser hervorgerufen wird, ist eine Zufuhr von Kühlmittel, wie beispielsweise Wasser, zu den Kühlzellen (120 ) nicht mehr erforderlich. Die Zellen (120 ) haben, obwohl die Struktur der3 mit dem Element (106 ) beibehalten wird, die alleinige Funktion, den elektrischen Kontakt zwischen den Metallkörpern (110 ) von zwei benachbarten Bipolarblechen (102 ) herzustellen. Ausgehend von4 ist der Querschnitt entlang der Linie C-C im Hinblick auf diesen speziellen Fall in9 dargestellt, wo Bauteile, die denjenigen der vorherigen Figuren entsprechen, mit den gleichen Bezugsziffern bezeichnet sind. Zum besseren Verständnis ist der Schnitt des Bipolarblechs der9 entlang der Linie E-E in10 dargestellt, wo man die Entwicklung des Kanals (135 ), der mit den Löchern (130a ) übereinstimmt und das Einspritzen des aus (112 ) kommenden Wassers durch diese ermöglicht, dargestellt ist. Die Versorgung mit Reaktionsgasen und der Abzug von Produkten und Abgasen findet, wie in5a gezeigt, durch die Kanäle (113a ) und (113b ) statt. In diesem Fall ist die Dicke der Dichtung (111 ) auf der Seite der Reaktionszelle, wie im Fall der Ausführungsform der5a , durch die Notwendigkeit begrenzt, die Kanäle (113a ) und (113b ) aufzunehmen und kann nicht, wie bei der Ausführungsform der7 , frei optimiert werden. Dieser Vorteil kann jedoch mittels einer weiteren Ausführungsform der Erfindung wieder verwirklicht werden, wobei man gleichzeitig die wirksame direkte Einspritzung von Wasser nützt, welche dadurch charakterisiert ist, dass man eine Rahmenkonstruktion verwendet, welche die beiden in den7 und9 skizzierten Konzepte der Gasverteilung und Wassereinspritzung umfasst. Eine solche Ausführungsform ist in11 als Stirnansicht des Bipolarblechs (102 ) dargestellt, wobei Bauteile, die denjenigen der vorherigen Figuren entsprechen, mit den gleichen Bezugsziffern bezeichnet sind. Wie man erkennt, ist der zentrale Metallkörper (110 ) mit einer Doppelreihe von Löchern versehen, nämlich130a zur Zufuhr der gasförmigen Reaktionsteilnehmer bzw. (136 ) zum Einspritzen von Wasser, und mit einer einzigen Reihe von Löchern130b , die dem Abzug der Reaktionsprodukte, Abgase und des Restwassers dienen. Zum besseren Verständnis ist der Schnitt des Rahmens (111 ) entlang der F-F in12 dargestellt, welche den Schnitt des Verteilerkanals (135 ) für das durch die Löcher (136 ) in die Reaktionszelle (101 ) einzuspritzende Wasser zeigt. Eine Stirnansicht eines weiteren Querschnitts des Bipolarblechs entlang der Linie G-G der12 ist in13 dargestellt. - Mit der oben offenbarten Erfindung sind die folgenden Vorteile verbunden:
- a) Verringerung des Gewichts des erfindungsgemäßen elektrochemischen Generators: Der erfindungsgemäße elektrochemische Generator sieht die Verwendung von Bipolarblechen mit einem Metallbereich vor, dessen Abmessungen nur geringfügig größer als diejenigen der aktiven Fläche der Reaktionszelle sind, während die Metallbipolarbleche gemäß Stand der Technik Abmessungen haben, die im Wesentlichen mit der gesamten Stirnfläche des Generators übereinstimmen. Die auf diese Modifikation zurückgehende geschätzte Gewichtsreduktion liegt bei etwa 30%.
- b) Verringerung der Anzahl der Komponenten zur Herstellung des
erfindungsgemäßen elektrochemischen
Generators: Die Verringerung der Anzahl der Komponenten führt zu bemerkenswerten
Vorteilen im Hinblick auf die Verringerung der Herstellungszeit
und der damit zusammenhängenden Kosten
und verringert darüber
hinaus das Auftreten von Fehlern. Beispielsweise erfordert die Herstellung
eines Generators gemäß Stand
der Technik der
2 mit n Reaktionszellen 3 × n Dichtungen und 2 × n Bipolarplatten, also insgesamt 5 × n Komponenten (ohne Berücksichtigung der Komponenten des elektrochemischen Pakets, die unverändert bleiben). Bei Verwendung des erfindungsgemäßen elektrochemischen Generators (100 ) gemäß der Ausführungsform der3 , werden nur 2 × n Komponenten benötigt. - c) Verringerung der Anzahl der Dichtungen: Die Gewährleistungen
einer leckagefreien Dichtung bei der Montage einer Vielzahl von
Bauteile aus unterschiedlichen Materialien ist eines der Hauptprobleme,
denen man bei der Konstruktion von Generatoren gegenübersteht,
und solche Probleme besitzen nicht immer eine einfache Lösung. Die
Montage des Generators des Standes der Technik gemäß
2 mit n Reaktionszellen erfordert 5 × n abzudichtende Oberflächen, was sich auf 2 × n Oberflächen reduziert, wenn erfindungsgemäße Bipolarbleche verwendet werden. - d) Verbesserte Ausrichtung und Zentrierung der Komponenten:
Die erfindungsgemäßen Bipolarbleche
erlauben es, die Ausrichtung der Komponenten während der Montage des Generators
zu verbessern, da, wie oben erwähnt,
die Anzahl der Komponenten deutlich verringert ist und sich die Polymerrahmen
automatisch in der richtigen Position befinden, im Gegensatz zu
der Situation bei der Technologie des Standes der Technik, wo viele
Komponenten zusammenzubauen sind und die Positionierung der Dichtungen,
die nicht an den Bipolarblechen befestigt sind, zweifellos schwierig
ist. Auch die Zentrierung der anderen Bauelemente des elektrochemischen
Generators (Stromsammler/-Verteiler, Elektroden und Membranen) wird
durch das Vorhandensein eines von den Rahmen (
111 ) umgebenen prädisponierten Sitzes vereinfacht. - e) Verbesserte elektrische Isolation nach außen: Die erfindungsgemäßen Bipolarbleche ermöglichen es, den Generator von der äußeren Umgebung elektrisch zu isolieren und gleichzeitig die Verteilung von Wärmeleistung zu verringern.
- f) Fehlen von Fluid-Metall-Kontakten in den Zufuhr- und Entsorgungs-Sammelleitungen: Ein weiteres wichtiges Thema bei der Verwendung von Metallkomponenten in elektrochemischen Generatoren ist der Versuch, den Kontakt von Metallen mit Fluiden (befeuchteten gasförmigen Reaktionsteilnehmern, Kühlmittel) möglichst zu reduzieren, damit Korrosionsrisiken verringert und Shuntströme unterdrückt werden. Der Einsatz der erfindungsgemäßen Bipolarbleche ermöglicht es, Metallteile sowohl aus den Zufuhr- als auch aus den Entsorgungssammelleitungen der befeuchteten gasförmigen Reaktionsteilnehmer und von den Zufuhr- und Entsorgungssammelleitungen des Kühlmittels zu eliminieren, da all diese Leitungen innerhalb des Polymerrahmens gebildet werden.
- Die Herstellung der erfindungsgemäßen Bipolarbleche, die aus einem zentralen Metallkörper bestehen, der ggf. mit Verteilungs- und Sammellöchern versehen ist, und in einem Rahmen aus einem Kunststoffmaterial integriert ist, welches die verschiedenen Öffnungen und Kanäle enthält, kann mit einem der im Folgenden aufgezählten Verfahren durchgeführt werden:
- – Verwendung von extrahierbaren Bauelementen, die als Querschnitte der verschiedenen Kanäle in dem Metallkörper ausgeformt sind, Formen des Kunststoffmaterials zur Bildung des integralen Rahmens und Extraktion mit einem geeigneten Reaktanten nach einer optionalen Kühlung im Fall eines thermoplastischen Materials oder nach Beendigung der Polymerisation im Fall eines duroplastischen Materials. Ein geeignetes extrahierbares Material ist Aluminium, das mit Natronlauge einfach aufgelöst werden kann. Das Kunststoffmaterial des Rahmens muss mechanische Eigenschaften, insbesondere eine minimale Langzeitverformbarkeit bei der Betriebstemperatur und unter dem typischen Betriebsdruck aufweisen, die geeignet sind, den Durchlassquerschnitt der verschiedenen Kanäle im Wesentlichen unverändert zu halten.
- – Verwendung von vorgeformten Bauelementen, welche den Querschnitt der erforderlichen Kanäle des Metallkörpers besitzen, gefolgt von Formen des Kunststoffmaterials zur Bildung des integralen Rahmens. Die vorgeformten Materialien können aus Metall, vorzugsweise Edelstahl oder Kunststoff bestehen: Wenn die mechanische Druckelastizität der vorgeformten Bauelemente groß ist, können die oben erwähnten Einschränkungen der geringen Verformbarkeit für das Rahmenmaterial überwunden werden.
- – Vorformen des Rahmens, beispielsweise durch Ausformen, ggf. in zwei Querschnitten, von denen jeder aus einer Seite des Rahmens besteht und seine eigenen Kanäle enthält, sowie Zusammenbau des Metallkörpers durch thermisches Kleben oder vorzugsweise Verkleben mit einem geeigneten Klebstoff, damit jegliche Beschädigung des Durchlassquerschnitts der Kanäle verhindert wird. Die Auswahl des Rahmenmaterials unterliegt in diesem Fall, abgesehen von dem Erfordernis einer minimalen Verformbarkeit, auch dem Erfordernis der Kompatibilität mit kommerziell erhältlichen Klebstoffen, unter denen Dünnfilmklebstoffe bevorzugt sind.
- Zur Verbesserung der Haftung zwischen Metallkörper und Rahmenmaterial, ggf. mit einem dazwischen angeordneten Klebstoff, wird der Metallkörper vorzugsweise einer Vorbehandlung unterzogen, wie beispielsweise einem feinen Sandstrahlen und/oder chemischen Angriffen, um eine mikroraue und chemisch reaktive Oberfläche zu erzeugen. Eine weitere Maßnahme, die ebenfalls dazu dient, die Haftung zwischen dem Metallkörper und dem Rahmen herzustellen, kann darin bestehen, den Metallkörper im Randbereich mit Öffnungen zu versehen, in welche das Rahmenmaterial bei dem Ausformschritt eindringen und somit eine Kontinuität zwischen den beiden Seiten des Rahmens selbst herstellen kann.
- Die obige Beschreibung soll nicht als Einschränkung der Erfindung verstanden werden, die vielmehr in unterschiedlichsten Ausführungsformen realisiert werden kann, ohne den durch die beigefügten Ansprüche abgesteckten Rahmen zu verlassen.
- In der Beschreibung und in den Ansprüchen der vorliegenden Anmeldung soll der Begriff "umfassen" und dessen Abwandlungen wie "umfassend" und "umfasst" keineswegs das Vorhandensein von anderen Bauelementen oder zusätzlichen Komponenten ausschließen.
Claims (24)
- Elektrochemischer Membrangenerator, der durch gasförmige Reaktanten gespeist wird und umfasst: mehrere Reaktionszellen und mehrere zwischen den Reaktionszellen angeordnete Kühlzellen, die in einer Filterpressenanordnung montiert sind, wobei jede der Reaktionszellen durch Bipolarbleche begrenzt und mit metallischen netzartigen Stromsammlern/-verteilern versehen ist, wobei jede der Kühlzellen durch Bipolarbleche begrenzt und mit einem netzartigen leitfähigen Element versehen ist, wobei die Bipolarbleche aus einem zentralen Metallkörper bestehen, dessen Abmessungen etwas größer als diejenigen der aktiven Fläche der Reaktionszellen sind und der in einen Rahmen aus einem Polymermaterial eingebaut ist, wobei der Rahmen mit ersten und zweiten Versorgungsöffnungen für den Durchlass der gasförmigen Reaktanten, ersten und zweiten Auslassöffnungen für den Abzug der Reaktionsprodukte, die gegebenenfalls mit Abgasen vermischt sind, und Öffnungen zur Zufuhr und Abfuhr eines Kühlmittels versehen ist und wobei der Rahmen Verteiler- und Sammelkanäle enthält, um eine direkte kommunizierende Verbindung zwischen den Öffnungen und den Reaktionszellen beziehungsweise den Kühlzellen herzustellen.
- Generator gemäß Anspruch 1, dadurch gekennzeichnet, dass das Polymermaterial ein thermoplastisches Material ist.
- Generator gemäß Anspruch 1, dadurch gekennzeichnet, dass das Polymermaterial ein duroplastisches Material ist.
- Generator gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Rahmen durch Formen oder Verkleben mit dem zentralen Metallkörper verbunden ist.
- Generator gemäß Anspruch 4, dadurch gekennzeichnet, dass der zentrale Metallkörper vorab mit extrahierbaren Elementen versehen ist, welche die Form der Verteiler- und Sammelkanäle besitzen, und dass die extrahierbaren Elemente nach der Formgebung mit einem Reaktanten aufgelöst werden.
- Generator gemäß Anspruch 5, dadurch gekennzeichnet, dass die extrahierbaren Elemente aus Aluminium bestehen und der Reaktant Natronlauge ist.
- Generator gemäß Anspruch 4, dadurch gekennzeichnet, dass der zentrale Metallkörper vorab mit vorgeformten Elementen versehen wird, deren Form derjenigen der Verteiler- und Sammelkanäle entspricht.
- Generator gemäß Anspruch 7, dadurch gekennzeichnet, dass die vorgeformten Elemente aus Metall oder Kunststoffen bestehen.
- Generator gemäß Anspruch 8, dadurch gekennzeichnet, dass das Metall Edelstahl ist.
- Generator gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der mit dem zentralen Metallkörper integrale Rahmen aus zwei vorgeformten Komponenten besteht, welche die Verteiler- und Sammelkanäle enthalten.
- Generator gemäß Anspruch 10, dadurch gekennzeichnet, dass jeder der beiden vorgeformten Komponenten eine Fläche des Rahmens bildet.
- Generator gemäß einem der Ansprüche 10 oder 11, dadurch gekennzeichnet, dass die beiden Komponenten und der zentrale Metallkörper durch thermisches Verbinden oder Verkleben mit einem Klebstoff zusammengebaut werden.
- Generator gemäß einem der Ansprüche 4 oder 12, dadurch gekennzeichnet, dass der zentrale Metallkörper eine durch Sandstrahlen und/oder chemischen Angriff erhaltene mikroraue und/oder chemisch reaktive Oberfläche aufweist.
- Generator gemäß Anspruch 4, dadurch gekennzeichnet, dass der zentrale Metallkörper mit Öffnungen im Umfangsbereich versehen ist, welche der Verbesserung der Haftung des geformten Rahmens dienen.
- Generator gemäß einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass bei einer Filterpressenanordnung die Kopplung zwischen den Öffnungen des Rahmens die Bildung von länglichen Versorgungssammelleitungen, die Kopplung zwischen den Auslassöffnungen die Bildung von länglichen Auslasssammelleitungen, die Kopplung zwischen den Öffnungen zum Zuführen und Abziehen des Kühlmittels die Bildung von Kühlmittelsammelleitungen bestimmt.
- Generator gemäß einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass der Rahmen außerdem zahlreiche Löcher zur Aufnahme von Zugstangen aufweist, mittels derer das Zusammenziehen des elektrochemischen Generators bewirkt wird.
- Generator gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der zentrale Metallkörper zahlreiche erste kallibrierte Löcher für den Durchlass von gasförmigen Reaktanten und zahlreiche zweite kallibrierte Löcher für den Abzug der Reaktionsprodukte und gegebenenfalls enthaltener Abgase umfasst.
- Generator gemäß Anspruch 17, dadurch gekennzeichnet, dass die ersten kallibrierten Löcher gegenseitig ausgerichtet und entsprechend der Verteilerkanäle des Rahmens angeordnet sind und dass die zweiten kallibrierten Löcher gegenseitig ausgerichtet und entsprechend der Sammelkanäle des Rahmens angeordnet sind.
- Generator gemäß einem der Ansprüche 17 oder 18, dadurch gekennzeichnet, dass die ersten und zweiten kallibrierten Löcher etwa 1 mm vom inneren Rand des Rahmens beabstandet sind.
- Generator gemäß einem der Ansprüche 17 bis 19, dadurch gekennzeichnet, dass die ersten und zweiten kallibrierten Löcher einen Durchmesser zwischen 0,1 und 5 mm aufweisen.
- Generator gemäß einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, dass der zentrale Metallkörper zahlreiche ausgerichtete kallibrierte Löcher zum Einspritzen von Wasser in die Reaktionszellen enthält, wobei die Löcher vorzugsweise etwa 1 mm von dem inneren Rand des Rahmens beabstandet sind.
- Generator gemäß Anspruch 21, dadurch gekennzeichnet, dass die ausgerichteten kallibrierten Löcher entsprechend zusätzlicher Wasserverteilerkanäle ausgerichtet sind.
- Generator gemäß einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, dass der zentrale Körper zahlreiche ausgerichtete kallibrierte Löcher zum Verteilen der gasförmigen Reaktanten, zahlreiche ausgerichtete kallibrierte Löcher zum Einspritzen von Wasser und zahlreiche ausgerichtete kallibrierte Löcher zum Abziehen der Produkte, der Abgase und des restlichen eingespritzten Wassers umfasst, wobei jedes der kallibrierten Löcher entsprechend einem der Verteiler- oder Sammelkanäle ausgerichtet ist.
- Generator gemäß Anspruch 23, dadurch gekennzeichnet, dass die ausgerichteten kallibrierten Löcher zum Verteilen der gasförmigen Reaktionsteilnehmer und die ausgerichteten kallibrierten Löcher zum Abzug der Produkte, der Abgase und des restlichen eingespritzten Wassers etwa 1 mm vom inneren Rand des Rahmens beabstandet sind.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ITMI20021859 | 2002-08-28 | ||
IT001859A ITMI20021859A1 (it) | 2002-08-28 | 2002-08-28 | Generatore elettrochimico a membrana con migliorato |
PCT/EP2003/009554 WO2004021490A1 (en) | 2002-08-28 | 2003-08-28 | Membrane electrochemical generator |
Publications (2)
Publication Number | Publication Date |
---|---|
DE60303459D1 DE60303459D1 (de) | 2006-04-13 |
DE60303459T2 true DE60303459T2 (de) | 2006-09-28 |
Family
ID=31972199
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE60303459T Expired - Lifetime DE60303459T2 (de) | 2002-08-28 | 2003-08-28 | Elektrochemischer membrangenerator |
Country Status (13)
Country | Link |
---|---|
US (2) | US8062805B2 (de) |
EP (1) | EP1547179B1 (de) |
JP (1) | JP5043301B2 (de) |
KR (1) | KR101056623B1 (de) |
CN (1) | CN1679194A (de) |
AT (1) | ATE317158T1 (de) |
AU (1) | AU2003266319A1 (de) |
BR (1) | BR0313926A (de) |
CA (1) | CA2496046C (de) |
DE (1) | DE60303459T2 (de) |
ES (1) | ES2257704T3 (de) |
IT (1) | ITMI20021859A1 (de) |
WO (1) | WO2004021490A1 (de) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5151270B2 (ja) * | 2007-06-26 | 2013-02-27 | 日産自動車株式会社 | 燃料電池構成部材 |
EP2885834B1 (de) * | 2012-08-17 | 2020-10-21 | Nuvera Fuel Cells, LLC | Entwurf von bipolarplatten zur anwendung bei elektrochemischen zellen |
EP2730680B1 (de) * | 2012-11-08 | 2016-04-13 | Siemens Aktiengesellschaft | Bipolarplatte für einen Elektrolyseur, Elektrolyseur und Verfahren zur Herstellung einer Bipolarplatte |
AU2019209836B2 (en) * | 2018-01-17 | 2024-10-03 | Nuvera Fuel Cells, LLC | Fuel-cell plate and flow structure designs |
CN119325656A (zh) * | 2022-04-07 | 2025-01-17 | 海萨塔私人有限公司 | 可堆叠的电合成或电能电芯 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4678724A (en) | 1982-06-23 | 1987-07-07 | United Technologies Corporation | Fuel cell battery with improved membrane cooling |
GB8509957D0 (en) | 1985-04-18 | 1985-05-30 | Ici Plc | Electrode |
RU2174728C2 (ru) | 1994-10-12 | 2001-10-10 | Х Пауэр Корпорейшн | Топливный элемент, использующий интегральную технологию пластин для распределения жидкости |
JPH1074527A (ja) | 1996-06-25 | 1998-03-17 | Du Pont Kk | 固体高分子電解質型燃料電池 |
IT1312198B1 (it) * | 1999-04-21 | 2002-04-09 | De Nora Spa | Cella a combustibile raffreddata mediante iniezione diretta di acqualiquida |
FR2810795B1 (fr) | 2000-06-27 | 2002-10-04 | Technicatome | Plaque bipolaire a deux plaques metalliques pour pile a combustible et son procede de fabrication |
JP3785909B2 (ja) | 2000-08-24 | 2006-06-14 | トヨタ自動車株式会社 | 燃料電池用セパレータの製造方法 |
KR100397611B1 (ko) * | 2001-03-31 | 2003-09-17 | 삼성전자주식회사 | 수소이온교환 연료전지 스택 |
GB0112021D0 (en) * | 2001-05-17 | 2001-07-11 | Johnson Matthey Plc | Substrate |
CN1253957C (zh) | 2001-08-16 | 2006-04-26 | 亚太燃料电池科技股份有限公司 | 燃料电池的双极板 |
-
2002
- 2002-08-28 IT IT001859A patent/ITMI20021859A1/it unknown
-
2003
- 2003-08-28 JP JP2004532136A patent/JP5043301B2/ja not_active Expired - Lifetime
- 2003-08-28 CA CA2496046A patent/CA2496046C/en not_active Expired - Lifetime
- 2003-08-28 US US10/524,040 patent/US8062805B2/en active Active
- 2003-08-28 DE DE60303459T patent/DE60303459T2/de not_active Expired - Lifetime
- 2003-08-28 CN CNA038205629A patent/CN1679194A/zh active Pending
- 2003-08-28 KR KR1020057003484A patent/KR101056623B1/ko not_active Expired - Lifetime
- 2003-08-28 AU AU2003266319A patent/AU2003266319A1/en not_active Abandoned
- 2003-08-28 AT AT03790934T patent/ATE317158T1/de not_active IP Right Cessation
- 2003-08-28 EP EP03790934A patent/EP1547179B1/de not_active Expired - Lifetime
- 2003-08-28 ES ES03790934T patent/ES2257704T3/es not_active Expired - Lifetime
- 2003-08-28 BR BR0313926-3A patent/BR0313926A/pt not_active Application Discontinuation
- 2003-08-28 WO PCT/EP2003/009554 patent/WO2004021490A1/en active IP Right Grant
-
2010
- 2010-07-19 US US12/839,066 patent/US8592094B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
ATE317158T1 (de) | 2006-02-15 |
BR0313926A (pt) | 2005-07-12 |
CA2496046C (en) | 2011-11-08 |
JP2005536863A (ja) | 2005-12-02 |
CN1679194A (zh) | 2005-10-05 |
DE60303459D1 (de) | 2006-04-13 |
US20110033767A1 (en) | 2011-02-10 |
ES2257704T3 (es) | 2006-08-01 |
EP1547179B1 (de) | 2006-02-01 |
CA2496046A1 (en) | 2004-03-11 |
KR20050057048A (ko) | 2005-06-16 |
US8592094B2 (en) | 2013-11-26 |
AU2003266319A1 (en) | 2004-03-19 |
ITMI20021859A1 (it) | 2004-02-29 |
US20080199747A1 (en) | 2008-08-21 |
EP1547179A1 (de) | 2005-06-29 |
KR101056623B1 (ko) | 2011-08-16 |
US8062805B2 (en) | 2011-11-22 |
JP5043301B2 (ja) | 2012-10-10 |
WO2004021490A1 (en) | 2004-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0774794B1 (de) | Brennstoffzelle mit Polymerelektrolyt und integrierte Dichtung | |
EP0876686B1 (de) | Flüssigkeitsgekühlte brennstoffzelle mit verteilungskanälen | |
DE69513032T2 (de) | Interne fluidsammelkanaleinheit für eine batterie von elektrochemischen brennstoffzellenstapeln | |
EP3378117B1 (de) | Bipolarplatte mit asymmetrischen dichtungsabschnitten, sowie brennstoffzellenstapel mit einer solchen | |
EP2356714B1 (de) | Brennstoffzelle ohne bipolarplatten | |
DE10340215A1 (de) | Polymerelektrolytmembran-Brennstoffzelle und bipolare Platte | |
DE10040792C2 (de) | Polymerelektrolytmembran-Brennstoffzellensystem mit Kühlmedium-Verteilungsraum und-Sammelraum und mit Kühlung durch fluide Medien | |
DE102010024316A1 (de) | Dichtung für eine Bipolarplatte einer Brennstoffzelle | |
DE10207743A1 (de) | Elektrode für eine Polymerelektrolyt-Brennstoffzelle, Trennwand hierfür sowie Polymerelektrolyt-Brennstoffzelle und Elektrizitätserzeugungssystem unter Verwendung derselben | |
DE10047248A1 (de) | Elektrochemischer Zellenstapel | |
DE102011118817A1 (de) | Brennstoffzellen-separatorplatte | |
DE102015225228A1 (de) | Bipolarplatte für eine Brennstoffzelle sowie Brennstoffzellenstapel mit einer solchen | |
EP2973809B1 (de) | Bipolarplatte für eine brennstoffzelle, brennstoffzelle und verfahren zur herstellung der bipolarplatte | |
EP1897161B1 (de) | Bipolarplatte, verfahren zur herstellung einer bipolarplatte und brennstoffzellenblock-anordnung | |
EP4399350A2 (de) | Rahmen für pem elektrolysezellen und pem elektrolysezellen stapel zur erzeugung von hochdruck-wasserstoff mittels differenzdruckelektrolyse | |
DE102018211877A1 (de) | Zellrahmen für Brennstoffzelle und Brennstoffzellenstapel, der denselben verwendet | |
EP4166691A1 (de) | Rahmen für pem elektrolysezellen und pem elektrolysezellen stapel zur erzeugung von hochdruck-wasserstoff mittels differenzdruckelektrolyse | |
DE102020215014A1 (de) | Bipolarplatte für eine elektrochemische Zelle und elektrochemische Zelle | |
DE102016122590A1 (de) | Polarplatte für eine Brennstoffzelle und Brennstoffzellenstapel | |
DE102012111229B4 (de) | Bipolarplatte für einen PEM-Stapelreaktor und PEM-Stapelreaktor | |
EP1653538A1 (de) | Kühlplattenmodul mit integralem Dichtungselement für einen Brennstoffzellenstack | |
DE102016121614A1 (de) | Einzelzell-Anordnung für eine Brennstoffzelle und Brennstoffzellenstapel | |
DE60303459T2 (de) | Elektrochemischer membrangenerator | |
DE60306916T2 (de) | Elektrochemischer generator mit einer bipolarplatte, welche eine vielzahl von der verteilung der gase dienenden löchern aufweist | |
DE102018100772A1 (de) | Elektrochemische Zellenvorrichtung und Verfahren zur Herstellung einer elektrochemischen Zellenvorrichtung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
8364 | No opposition during term of opposition |