[go: up one dir, main page]

DE569598C - - Google Patents

Info

Publication number
DE569598C
DE569598C DENDAT569598D DE569598DA DE569598C DE 569598 C DE569598 C DE 569598C DE NDAT569598 D DENDAT569598 D DE NDAT569598D DE 569598D A DE569598D A DE 569598DA DE 569598 C DE569598 C DE 569598C
Authority
DE
Germany
Prior art keywords
vibration
vibrations
energy
cavity
vibration sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
DENDAT569598D
Other languages
German (de)
Publication of DE569598C publication Critical patent/DE569598C/de
Active legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/043Analysing solids in the interior, e.g. by shear waves

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

DEUTSCHES REICHGERMAN EMPIRE

AUSGEGEBEN AM 4.FEBRUAK 1933ISSUED FEBRUARY 4, 1933

REICHSPATENTAMTREICH PATENT OFFICE

PATENTSCHRIFTPATENT LETTERING

KLASSE 42 k GRUPPE 20 osCLASS 42 k GROUP 20 os

M 113463 IX j42 k Tag der Bekanntmachung über die Erteilung des Patents: ις>. JanuarM 113463 IX j42 k Date of publication of the patent grant: ις>. January

5)ipL-3ng. Otto Mühlhäuser in König, Odenwald5) ipL-3ng. Otto Mühlhäuser in König, Odenwald

Verfahren zur Zustandsbestimmung von Werkstoffen, besonders zur ErmittlungProcess for determining the condition of materials, especially for determination

von Fehlern darinof mistakes in it

Patentiert im Deutschen Reiche vorn io. Januar T931 abPatented in the German Empire from io. January T931 from

Die Erfindung betrifft ein Verfahren zur Zustandsbestimmung von Werkstoffen, besonders zur Ermittlung von Fehlern, beispielsweise zur Feststellung von Gasblasen, Lunkcrungen oder Rissen in Gußstücken, Schmiedestücken oder Schweißnähten oder zur Ermittlung von Inhomogenitäten. Dazu werden mechanische Schwingungen (Schallschwingungen) benutzt, und zwar zweckmäßig Schwingungen höchster Frequenz (kürzester Wellenlänge), um geringe Beugung, gute Retlektion und hohe Absorption der Schwingungsstrahlen zu erreichen. Erfindungsgemäß werden diese Schwingungen in auf anderen Untersuchungsgebieten an sich bekannter Weise außerhalb des Werkstoffes in einem Schwingungssender erzeugt, durch den Werkstoff geleitet und an einer anderen Stelle von einem Schwingungsaufnehmer gemessen.The invention particularly relates to a method for determining the condition of materials to detect errors, for example to detect gas bubbles and cavities or cracks in castings, forgings or welds or to determine inhomogeneities. For this purpose, mechanical vibrations (sound vibrations) used, specifically vibrations of the highest frequency (shortest Wavelength), low diffraction, good reflection and high absorption of the oscillation rays to reach. According to the invention, these vibrations are known per se in other areas of investigation Way outside of the material in a vibration transmitter generated by the material and measured at another point by a vibration sensor.

Es wird also die Änderung des Schwingungszustandes zwischen dem Schwingungssender und dem Schwingungsaufnehmer bestimmt, z. B. durch Messung der Energie der aufgenommenen Schwingungen. Der Schwingungssender kann beispielsweise Schwingungen gleichmäßiger Energie in den zu untersuchenden Korper senden, die vom Schwingungsaufnehmer am Ende eines beliebigen Weges durch den Werkstoff empfangen werden. Fehlerhafte Stellen im Werkstoff, Hohlräume, Risse o. dgl. bewirken eine Minderung der Schwingungsenergie und eine Ablenkung der Schwingungswellen, so daß aus der zu messenden Größe der Energie am Ende des Schwingungsweges (aufgenommene Schwingungsenergie j Rückschlüsse auf die innere Beschaffenheit des Körpers gezogen werden können.So it becomes the change in the vibrational state determined between the vibration transmitter and the vibration sensor, z. B. by measuring the energy the recorded vibrations. The vibration transmitter can, for example, vibrations of uniform energy in the to be examined send by the vibration sensor at the end of any Can be received through the material. Defects in the material, cavities, cracks or the like cause a Reduction of the vibration energy and a deflection of the vibration waves, so that from the amount of energy to be measured at the end of the oscillation path (recorded Vibration energy j conclusions drawn about the internal structure of the body can be.

Die Abbildungen zeigen schematisch Beispiele für die Anwendung des Verfahrens nach der Erfindung, und zwar inThe figures show schematically examples for the application of the process according to the invention, namely in

Abb. ι zum Aufsuchen eines Hohlraumes im Werkstoff, inFig. Ι to search for a cavity in the material, in

Abb. 2 und 3 zur Ermittlung von Tiefenrissen, inFig. 2 and 3 for the determination of deep cracks, in

Abb. 4 zur Ermittlung eines Oberflächenrisses. Fig. 4 to determine a surface crack.

Gleiche Bezugszeichen beziehen sich auf gleiche Teile.The same reference numbers relate to the same parts.

Der Werkstoff 1 enthält als Fehler einen 5" Hohlraum 2 (Abb. 1). Zu seiner Ermittlung wird an der einen Seite des Werkstoffes ein Schwingungssender 3 aufgesetzt, an der anderen ein Schwingungsaufnehmer 4, der mit einem nicht dargestellten Meßgerät verbunden ist. Die Schwingungsfrequenz ist so zu wählen, daß die Schwingungen an den Begrenzungen des Hohlraumes eine geringe Beugung erfahren und außerdem im Hohlraum absorbiert werden; sie ist also so hoch, als So technisch erreichbar, zu wählen. Für den Schwingungsaufnehmer 4 ist dann in der gezeichneten Lage die aufgenommene Energie nahezu oder gleich Null, in einer anderenMaterial 1 contains a 5 "as an error Cavity 2 (Fig. 1). It is determined on one side of the material a vibration transmitter 3 placed on the other a vibration sensor 4, which is with is connected to a measuring device, not shown. The oscillation frequency is to be chosen so that the vibrations experience little diffraction at the boundaries of the cavity and also in the cavity be absorbed; So it is so high to choose as So technically achievable. For the Vibration sensor 4 is then the energy absorbed in the position shown close to or equal to zero, in another

DENDAT569598D Active DE569598C (en)

Publications (1)

Publication Number Publication Date
DE569598C true DE569598C (en)

Family

ID=575623

Family Applications (1)

Application Number Title Priority Date Filing Date
DENDAT569598D Active DE569598C (en)

Country Status (1)

Country Link
DE (1) DE569598C (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE741335C (en) * 1936-08-09 1943-11-10 Reimar Pohlman Dr Device for detecting faults in solid or liquid bodies by means of sound waves, in particular ultrasonic waves
US2433963A (en) * 1943-07-02 1948-01-06 Budd Co Weld testing apparatus
US2439131A (en) * 1943-11-20 1948-04-06 United Aircraft Corp Resonance inspection method
US2484623A (en) * 1944-10-17 1949-10-11 Bell Telephone Labor Inc Thickness measurement
US2527986A (en) * 1947-04-26 1950-10-31 Sperry Prod Inc Supersonic testing
US2640190A (en) * 1945-09-04 1953-05-26 Rines Robert Harvey System for measuring the thickness of opaque objects
US3211252A (en) * 1962-03-29 1965-10-12 Shell Oil Co Method and apparatus using seismic energy for detecting discontinuities
US3274033A (en) * 1963-08-12 1966-09-20 Branson Instr Ultrasonics
DE3342463A1 (en) * 1982-11-26 1984-05-30 Basf Ag, 6700 Ludwigshafen Method of monitoring the development of cracks in machine parts and components
DE3416709A1 (en) * 1984-05-05 1985-11-07 Nukem Gmbh, 6450 Hanau METHOD FOR DESTRUCTION-FREE TESTING OF WORKPIECES OR COMPONENTS WITH ULTRASOUND AND DEVICE FOR IMPLEMENTING THE METHOD

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE741335C (en) * 1936-08-09 1943-11-10 Reimar Pohlman Dr Device for detecting faults in solid or liquid bodies by means of sound waves, in particular ultrasonic waves
US2433963A (en) * 1943-07-02 1948-01-06 Budd Co Weld testing apparatus
US2439131A (en) * 1943-11-20 1948-04-06 United Aircraft Corp Resonance inspection method
US2484623A (en) * 1944-10-17 1949-10-11 Bell Telephone Labor Inc Thickness measurement
US2640190A (en) * 1945-09-04 1953-05-26 Rines Robert Harvey System for measuring the thickness of opaque objects
US2527986A (en) * 1947-04-26 1950-10-31 Sperry Prod Inc Supersonic testing
US3211252A (en) * 1962-03-29 1965-10-12 Shell Oil Co Method and apparatus using seismic energy for detecting discontinuities
US3274033A (en) * 1963-08-12 1966-09-20 Branson Instr Ultrasonics
DE3342463A1 (en) * 1982-11-26 1984-05-30 Basf Ag, 6700 Ludwigshafen Method of monitoring the development of cracks in machine parts and components
DE3416709A1 (en) * 1984-05-05 1985-11-07 Nukem Gmbh, 6450 Hanau METHOD FOR DESTRUCTION-FREE TESTING OF WORKPIECES OR COMPONENTS WITH ULTRASOUND AND DEVICE FOR IMPLEMENTING THE METHOD

Similar Documents

Publication Publication Date Title
DE569598C (en)
DE69631465T2 (en) Method and device for analyzing the particle content of gases
Palmer et al. The application of acoustic emission measurements to fracture mechanics
DE3787825T2 (en) Procedure for measuring residual stresses in the material of a test object.
US20230228718A1 (en) Non-baseline On-line Stress Monitoring System and Monitoring Method Based on Multi-mode Lamb Wave Data Fusion
Endramawan et al. Non Destructive Test Dye Penetrant and Ultrasonic on Welding SMAW Butt Joint with Acceptance Criteria ASME Standard
Alekseeva et al. A study of hydrogen cracking in metals by the acoustoelasticity method
Donaghe et al. Advanced triaxial testing of soil and rock
DE69207859T2 (en) High frequency acoustic rheometer, and device using this rheometer for measuring the viscosity of a fluid
DE2821553A1 (en) PROCEDURE FOR DETERMINING CRACKS ON TEST BODIES DURING DYNAMIC MATERIAL TESTING
Warburton et al. The oscillatory testing of pharmaceutical semi-solids using a transfer function analyser
Heywood The relationship between fatigue and stress concentration
Härkegård An experimental study of the influence of inclusions on the fatigue properties of steel
Cramer Propagation of stress waves in rubber rods
Tittmann et al. A self-calibrating technique for the ultrasonic discrimination of solid-state welds
Sinclair et al. Mechanical wave interaction at a diffuse interface
Greguss The effect of sound on combustion processes: Akust. Zh., 8, No. 4, p. 420 (1962)
Zhang et al. JQM Approach for Failure Assessment of Fusion Line Cracks: Two-Material and Three-Material Models
DE102021133875A1 (en) Process and device for ultrasonic stress measurement with longitudinal waves on railway wheels
Horvath Jr The influence of microstructure on weld metal impact properties
DD256188A1 (en) METHOD FOR THE INVESTIGATION OF MATERIAL RIPS IN COMPONENTS
Kopec et al. Using ultrasonic attenuation measurements to investigate anomalies in the structure of railway axles
JPH05296926A (en) Measuring method for insoluble component contained in engine oil for ship
Lur'e Oxidation of phenol in the field of ultrasonic waves: J. Phys. Chem., 36, No. 12, p. 2616 (1962)
Hobbs Practical aspects of cavitation