[go: up one dir, main page]

DE4320003A1 - Process for removing dissolved arsenic by means of solid iron hydroxide in water purification - Google Patents

Process for removing dissolved arsenic by means of solid iron hydroxide in water purification

Info

Publication number
DE4320003A1
DE4320003A1 DE19934320003 DE4320003A DE4320003A1 DE 4320003 A1 DE4320003 A1 DE 4320003A1 DE 19934320003 DE19934320003 DE 19934320003 DE 4320003 A DE4320003 A DE 4320003A DE 4320003 A1 DE4320003 A1 DE 4320003A1
Authority
DE
Germany
Prior art keywords
arsenic
hydroxide
water
iii
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19934320003
Other languages
German (de)
Inventor
Martin Prof Dr Jekel
Wolfgang Driehaus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE19934320003 priority Critical patent/DE4320003A1/en
Publication of DE4320003A1 publication Critical patent/DE4320003A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/06Ferric oxide [Fe2O3]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G28/00Compounds of arsenic
    • C01G28/001Preparation involving a solvent-solvent extraction, an adsorption or an ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • C02F1/62Heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/103Arsenic compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

Published without abstract.

Description

Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Entfernung von gelöstem anorganischem Arsen, insbesondere in der fünfwertigen Form, durch Adsorption an zuvor hergestelltem Eisen-III-Hydroxid in feindisperser oder granulierter Form, welches nach Erschöpfung der Kapazität entweder ausgespült und entsorgt oder chemisch regeneriert wird.The present invention relates to a method for removing dissolved inorganic arsenic, especially in the pentavalent form, by adsorption on previously prepared ferric hydroxide in finely dispersed or granulated form, which according to Exhaustion of capacity is either rinsed and disposed of or chemically regenerated.

Arsen kann als natürlicher oder anthropogen bedingter Schadstoff die Nutzung von Wässern für Trink- und Brauchzwecke, als Mineral-, Heil- oder Badewasser oder die Ableitung industrieller oder gewerblicher Abwässer beeinträchtigen. In diesen Wässern tritt Arsen üblicherweise in 2 Redoxstufen als As(III) und As(V) auf, wobei nach dem Stand der Technik nur das fünfwertige Arsen mit unterschiedlichen Verfahren effektiv entfernt werden kann [1]. As(III) muß zuvor zu As(V) oxidiert werden.Arsenic can be used as a natural or anthropogenic pollutant for water Drinking and use purposes, as mineral, medicinal or bathing water or the derivation of industrial or commercial wastewater. Arsenic usually occurs in 2 in these waters Redox levels as As (III) and As (V), whereby according to the prior art only the pentavalent Arsenic can be removed effectively using different methods [1]. As (III) must be closed beforehand As (V) are oxidized.

Als geeignetes Verfahren zur Arsenentfernung kann die Fällung mit Eisen-III-Salzen, Aluminiumsalzen und mit Calciumhydroxid ("gelöschter Kalk") verwendet werden [1] [2], wobei dem zulaufenden Wasser kontinuierlich diese Chemikalien sowie evtl. saure oder basische Stoffe zur pH-Werteinstellung zugegeben werden. Die Fällungsprodukte müssen anschließend einer Flockung unterworfen werden, wobei je nach Verfahrensart noch polymere Flockungshilfsmittel zur verbesserten Flockenbildung zudosiert werden. Die Abtrennung der Flocken und Feststoffe erfolgt entweder über Sedimentation und Filtration, Flotation und Filtration oder über Filtration allein. Die anfallenden Schlämme sind mit Arsen angereichert und müssen daher sicher entsorgt werden.Precipitation with iron (III) salts, Aluminum salts and with calcium hydroxide ("hydrated lime") are used [1] [2], whereby these chemicals and possibly acidic or basic substances continuously in the incoming water be added for pH adjustment. The precipitation products must then be one Flocculation are subjected to, depending on the type of process, polymeric flocculants be metered in for improved flake formation. The separation of flakes and solids takes place either via sedimentation and filtration, flotation and filtration or via filtration alone. The resulting sludge is enriched with arsenic and must therefore be disposed of safely become.

Ein weiteres technisch angewandtes Verfahren ist die Adsorption an kommerziell erhältlichen granulierten aktivierten Aluminiumoxiden ("Aktivtonerde") in Festbettadsorbern [3], wobei nach Durchbruch des Arsens die chemische Regeneration erfolgt, die zu einer arsenhaltigen Ablauge führt. Die Nachteile dieses Verfahrens betreffen die bei ungünstigen Rohwasserqualitäten kurzen erreichbaren Beladungszeiten bzw. spezifischen Durchsätze (Bettvolumina), die mögliche Schädigung des aktivierten Aluminiumoxids, verbunden mit Kapazitätsverlusten und die problematische Entsorgung und Behandlung des alkalischen Regenerats. Another technically applied process is adsorption on commercially available granulated activated aluminum oxides ("active alumina") in fixed bed adsorbers [3], whereby after Breakthrough of the arsenic chemical regeneration takes place, which leads to an arsenic-containing waste liquor leads. The disadvantages of this process relate to those that are short with unfavorable raw water qualities achievable loading times or specific throughputs (bed volumes), the possible Damage to the activated aluminum oxide, associated with loss of capacity and the problematic disposal and treatment of the alkaline regenerate.  

Zur Arsenentfernung ist weiterhin die Membrantechnik der Umkehrosmose einsetzbar, wobei eine Trennung des Wassers in einen Permeatstrom (ohne oder mit Spuren Arsen) und einen Konzentratstrom (angereichert mit Arsen) erfolgt [2]. Die Abtrennung des Arsens aus dem Konzentratstrom kann, wie bereits beschrieben, mittels Fällung oder Adsorption erfolgen. Beide Membranverfahren eignen sich damit auch zur Vorkonzentration des Arsens, um den Volumenstrom zur eigentlichen Arsenentfernung zu vermindern.The membrane technology of reverse osmosis can also be used to remove arsenic, one of which Separation of the water into a permeate stream (without or with traces of arsenic) and one Concentrate flow (enriched with arsenic) takes place [2]. The separation of the arsenic from the As already described, concentrate flow can take place by means of precipitation or adsorption. Both Membrane processes are therefore also suitable for pre-concentrating the arsenic around which To reduce volume flow for the actual arsenic removal.

Die beschriebenen Arsenentfernungsverfahren weisen einige Nachteile auf, insbesondere hinsichtlich eines höheren verfahrenstechnischen Aufwands und des Chemikalienbedarfs mit Dosier- und Lageranlagen.The arsenic removal methods described have several disadvantages, in particular with regard to a higher process engineering effort and the need for chemicals Dosing and storage systems.

Es stellt sich somit die Aufgabe, ein Verfahren zur möglichst selektiven adsorptiven Abtrennung des Arsens, insbesondere des As(V), zu finden, bei dem durch betreuungsarme Betriebsweise, dem geringeren Gesamtaufwand an Chemikalien und bei den Entsorgungsproblemen für arsenhaltige Rückstände Verbesserungen erzielt werden.The task is therefore to develop a method that is as selective as possible to find adsorptive separation of the arsenic, in particular the As (V), in which by low-maintenance mode of operation, the lower total expenditure of chemicals and the Disposal problems for arsenic residues improvements can be achieved.

Diese Aufgabe kann dadurch gelöst werden, daß festes Eisen-III-Hydroxid hergestellt und in suspendierter oder granulierter Form in Suspensionsreaktoren oder Festbettadsorbern eingesetzt wird, wobei das zuvor ggf. oxidierte Rohwasser (falls AS(III) vorkommt) in ausreichend langen Kontakt mit diesem Eisen-III-Hydroxid gebracht wird.This object can be achieved in that solid iron III hydroxide is prepared and in suspended or granulated form used in suspension reactors or fixed bed adsorbers is, the previously oxidized raw water (if AS (III) occurs) in sufficiently long Is brought into contact with this iron III hydroxide.

Das Eisen-III-Hydroxid läßt sich auf folgende Weise herstellen bzw. gewinnenThe iron III hydroxide can be produced or obtained in the following way

  • 1. Als Suspension: Fe3+ + 3 OH- → Fe(OH)₃Zu einer sauren Fe3+-Salzlösung (FeCl₃, Fe(NO₃)₃, Fe₂(SO₄)₃ oder andere Fe3+-Salze) wird entsprechend der Stöchiometrie der obigen Reaktion Lauge (NaOH, KOH od. ä.) zugegeben, bis der pH-Wert bei 6-8 stabil bleibt und Fe(OH)₃ quanitativ gefällt ist. Die Suspension wird gewaschen und steht dann für die Konditionierung von Festbettreaktionsfiltern zur Verfügung.1. As a suspension: Fe 3+ + 3 OH - → Fe (OH) ₃to an acidic Fe 3+ salt solution (FeCl₃, Fe (NO₃) ₃, Fe₂ (SO₄) ₃ or other Fe 3+ salts) is according to the Stoichiometry of the above reaction, liquor (NaOH, KOH or the like) is added until the pH remains stable at 6-8 and Fe (OH) ₃ has quanitatively precipitated. The suspension is washed and is then available for the conditioning of fixed bed reaction filters.
  • 2. Als granuliertes Material:
    Herstellung einer Suspension wie unter 1. beschrieben, die nach dem Waschen durch Zentrifugation in ein Hydroxidgel überführt wird. Durch Gefrierkonditionierung bei Temperaturen unter -5°C wird dieses Gel in ein granuliertes Material überführt, das direkt in Festbettreaktionsfiltern eingesetzt werden kann.
    2. As granular material:
    Preparation of a suspension as described under 1. which, after washing, is transferred to a hydroxide gel by centrifugation. Freeze conditioning at temperatures below -5 ° C transforms this gel into a granulated material that can be used directly in fixed bed reaction filters.

Die feinen, suspendierten Eisen-III-Hydroxidprodukte können zur Arsenentfernung eingesetzt werden, wenn sie vor dem Einsatz in Festbettfiltern, gefüllt mit gekörntem Material oder anderen Trägern hoher äußerer oder innerer Porosität, eingebracht werden. Hierzu wird die Eisen-III- Hydroxidsuspension durch Kreislaufführung in das Festbettfilter eingetragen und dort abgeschieden, wobei möglichst hohe Beladungen zu erreichen sind. Anschließend wird das arsenhaltige Rohwasser durchgesetzt und das Arsen über die Anlagerung an das Eisen-III- Hydroxid entfernt. Nachdem die Adsorptionskapazität erschöpft ist, wird das Eisen-III-Hydroxid mechanisch über Spülung mit Luft und Wasser entfernt, entweder weiter behandelt und als Schlamm entsorgt oder einer chemischen Regeneration unterworfen, damit es wiederverwendet werden kann.The fine, suspended iron (III) hydroxide products can be used to remove arsenic if, before use, in fixed bed filters, filled with granular material or other Carriers with high external or internal porosity. For this the iron III Hydroxide suspension entered by circulation in the fixed bed filter and there separated, whereby the highest possible loads can be achieved. Then that will raw water containing arsenic is enforced and the arsenic is deposited on the iron III Hydroxide removed. After the adsorption capacity is exhausted, the iron III hydroxide mechanically removed by flushing with air and water, either treated further and as Disposed of sludge or subjected to chemical regeneration so that it can be reused can be.

Granuliertes Eisen-III-Hydroxid läßt sich als Adsorbermaterial in einen Festbettreaktor einfüllen und zur Arsenentfernung verwenden. Nach der Ausnutzung der Kapazität wird es im Filterbehälter oder extern nach dem Herausnehmen chemisch mit NaOH-Lösung regeneriert und kann für den nächsten Beladugnszyklus eingesetzt werden.Granulated iron III hydroxide can be filled into a fixed bed reactor as an adsorbent material and use it to remove arsenic. After the capacity is used, it will be in the filter container or regenerated chemically with NaOH solution after removal and can be used for next loading cycle.

Gegenüber dem Stand der Technik handelt es sich bei dem beschriebenen Verfahren um eine Verbesserung, weil die Adsorptionskapazitäten der hergestellten Eisen-III-Hydroxide für Arsen(V) wesentlich höher und damit die Beladungszyklen länger sind, verglichen mit den aktivierten Aluminiumoxiden. Diese Tatsache wirkt sich besonders günstig aus, wenn pH-Werte über 7 und wenn konkurrierende Stoffe, wie Phosphat, im Rohwasser vorliegen. Bei der chemischen Regeneration mit Lauge ist weiterhin die geringe Löslichkeit gegenüber dem aktivierten Aluminiumoxid (das zu Aluminat Al(OH)₄- aufgelöst wird) von Vorteil. Eine Schädigung des Adsorptionsmaterials tritt damit kaum ein und es können höher konzentrierte Laugen verwendet werden, die eine weitgehende Regeneration bei minimiertem Regeneratvolumen bewirken. Die Nachbehandlung der Regenerate wird damit günstiger durchzuführen sein.Compared to the prior art, the described method is an improvement because the adsorption capacities of the iron III hydroxides produced for arsenic (V) are significantly higher and the loading cycles are therefore longer compared to the activated aluminum oxides. This fact is particularly beneficial when pH values above 7 and when competing substances such as phosphate are present in the raw water. In chemical regeneration with alkali, the low solubility compared to the activated aluminum oxide (which is dissolved to aluminate Al (OH) ₄ - ) is also advantageous. Damage to the adsorption material hardly occurs and more concentrated alkalis can be used, which result in extensive regeneration with a minimal volume of regrind. The aftertreatment of the regenerated materials will therefore be cheaper.

Der Gegenstand der Erfindung wird anhand des nachstehenden Beispiels und der schematischen Zeichnung noch näher erläutert.The object of the invention is illustrated by the example below and the schematic Drawing explained in more detail.

In Fig. 1 bedeuten:
(1) Brunnen zur Trinkwasserversorgung,
(2) Pumpe,
(3) Festbettreaktionsfilter,
(4) Entnahmestelle.
In Fig. 1 where:
( 1 ) wells for drinking water supply,
( 2 ) pump,
( 3 ) fixed bed reaction filter,
( 4 ) tapping point.

Beispielexample Festbettreaktionsfilter mit granuliertem Eisen(III)-Hydroxid, hergestellt nach Vorschrift 2, zur Arsenentfernung aus Trinkwasser (Verfahrensfließbild nach Fig. 1)Fixed bed reaction filter with granulated iron (III) hydroxide, produced according to regulation 2, for removing arsenic from drinking water (process flow diagram according to FIG. 1)

Das aus dem Brunnen (1) mit der Pumpe (2) geförderte Wasser enthielt im Mittel 0,096 mg/l As(V) und hatte einen pH-Wert von 7,8. Es durchfloß ein Festbettreaktionsfilter (3) mit granuliertem, gefrierkonditionierten Eisen(III)-Hydroxid mit einer konstanten Filtergeschwindigkeit von 4,8 m/h. Dieser Filter hatte eine Füllhöhe von 0,9 m. Die Arsenkonzentration des behandelten Wassers an der Entnahmestelle (4) wurde regelmäßig analysiert.The water pumped from the well ( 1 ) with the pump ( 2 ) contained 0.096 mg / l As (V) on average and had a pH of 7.8. It flowed through a fixed bed reaction filter ( 3 ) with granulated, freeze-conditioned iron (III) hydroxide with a constant filter speed of 4.8 m / h. This filter had a filling height of 0.9 m. The arsenic concentration of the treated water at the tapping point ( 4 ) was regularly analyzed.

Ergebnis:
Nach 7800 Bettvolumina wurden 0,003 mg/l Arsen im Ablauf des Filters gemessen. Der ab 1996 gültige Arsengrenzwert von 0,01 mg/l wurde nach 13 600 Bettvolumina überschritten. Dies entsprach einer Betriebszeit des Filters von 102 Tagen.
Result:
After 7800 bed volumes, 0.003 mg / l arsenic were measured in the filter outlet. The arsenic limit value of 0.01 mg / l, valid from 1996, was exceeded after 13 600 bed volumes. This corresponded to an operating time of the filter of 102 days.

Zitierte Literatur:
[1] SORG, T. J. und LOGSDON, G. S.: Treatment Technology to Meet the Interim Primary Drinking Water Regulations for Inorganics, Part 2. Journal Amer. Water Works Association 70, 379-393, 1978.
[2] JEKEL, M. und van DYCK-JEKEL, H.: Spezifische Entfernung von anorganischen Spurenstoffen bei der Trinkwasseraufbereitung. DVGW-Schriftenreihe Wasser Nr. 62, Eschborn 1989.
[3] RUBEL, F. und HATHAWAY, S. W.: Pilot Study for Removal of Arsenic from Drinking Water at the Fallon, Nevada, Naval Air Station. US-EPA/600/S2-85/094, Cincinnati 1985.
Literature cited:
[1] SORG, TJ and LOGSDON, GS: Treatment Technology to Meet the Interim Primary Drinking Water Regulations for Inorganics, Part 2. Journal Amer. Water Works Association 70, 379-393, 1978.
[2] JEKEL, M. and van DYCK-JEKEL, H .: Specific removal of inorganic trace substances in drinking water treatment. DVGW publication series Wasser No. 62, Eschborn 1989.
[3] RUBEL, F. and HATHAWAY, SW: Pilot Study for Removal of Arsenic from Drinking Water at the Fallon, Nevada, Naval Air Station. US EPA / 600 / S2-85 / 094, Cincinnati 1985.

Claims (2)

1. Verfahren zur adsorptiven Entfernung von gelösten Arsenaten bei der Trink- und Brauchwasseraufbereitung, bei der Aufbereitung von Mineral-, Heil- und Badewässern sowie bei der Reinigung industrieller und gewerblicher Abwässer, dadurch gekennzeichnet, daß Eisen-III-Hydroxid (Fe(OH)₃) hergestellt und als festes Adsorptionsmittel eingesetzt wird, wobei das aufzubereitende Rohwasser in Suspensionsreaktoren oder Festbettreaktionsfiltern behandelt wird, die das Eisen-III-Hydroxid enthalten.1. Process for the adsorptive removal of dissolved arsenates in drinking and process water treatment, in the treatment of mineral, medicinal and bathing water and in the purification of industrial and commercial waste water, characterized in that iron III hydroxide (Fe (OH) ₃) is produced and used as a solid adsorbent, the raw water to be treated being treated in suspension reactors or fixed bed reaction filters which contain the iron (III) hydroxide. 2. Verfahren nach Anspruch 1, bei dem hergestelltes Eisen-III-Hydroxid durch eine Gefrierkonditionierung in ein Granulat überführt und in Suspensionsreaktoren oder Festbettreaktionsfiltern als Adsorptionsmittel zur Arsenentfernung eingesetzt wird.2. The method according to claim 1, wherein the iron III hydroxide produced by a Freeze conditioning converted into granules and in suspension reactors or Fixed bed reaction filters are used as adsorbents for arsenic removal.
DE19934320003 1993-06-11 1993-06-11 Process for removing dissolved arsenic by means of solid iron hydroxide in water purification Withdrawn DE4320003A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19934320003 DE4320003A1 (en) 1993-06-11 1993-06-11 Process for removing dissolved arsenic by means of solid iron hydroxide in water purification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19934320003 DE4320003A1 (en) 1993-06-11 1993-06-11 Process for removing dissolved arsenic by means of solid iron hydroxide in water purification

Publications (1)

Publication Number Publication Date
DE4320003A1 true DE4320003A1 (en) 1994-12-15

Family

ID=6490504

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19934320003 Withdrawn DE4320003A1 (en) 1993-06-11 1993-06-11 Process for removing dissolved arsenic by means of solid iron hydroxide in water purification

Country Status (1)

Country Link
DE (1) DE4320003A1 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19826186A1 (en) * 1998-06-04 1999-12-09 Ingbuero Dr Fechter Gmbh Production of iron hydroxide in lump form useful as adsorbent for removing contaminants from water or gases
DE19853529A1 (en) * 1998-11-20 2000-05-25 Dieter A Hiller Rain water filter insert held within mantle amorphous iron oxide and keeping discharge impurities to within legal limits
DE20109443U1 (en) 2001-05-30 2001-08-09 ATEC Dr. Mann GmbH, 74847 Obrigheim Device for decontaminating water containing traces of arsenic, manganese and iron
WO2001062670A1 (en) * 2000-02-25 2001-08-30 Capital Controls Ltd Apparatus and method for water treatment by adsorption
WO2002047811A1 (en) * 2000-12-13 2002-06-20 Geh Wasserchemie Gmbh & Co.Kg Method for producing a sorption material that contains iron
WO2003002462A1 (en) * 2001-06-28 2003-01-09 Ch2M Hill, Inc. Carbon dioxide enhanced complex-adsorption process for metal or metalloid removal from water
WO2003043731A1 (en) * 2001-11-15 2003-05-30 Engelhard Corporation Arsenic removal media
FR2843745A1 (en) * 2002-08-23 2004-02-27 Centre Nat Rech Scient REMOVAL OF METAL IONS FROM AQUEOUS EFFLUENTS
WO2004052532A1 (en) * 2002-12-10 2004-06-24 Engelhard Corporation Improved arsenic removal media
US7267776B2 (en) 2004-05-05 2007-09-11 Lanxess Deutschland Gmbh Foams for removing pollutants and/or heavy metals from flowable media
US7407588B2 (en) 2004-04-03 2008-08-05 Lanxess Deutschland Gmbh Method of using stable adsorber granules to remove pollutants from flowable media
US7651973B2 (en) 2000-09-26 2010-01-26 Lanxess Deutschland Gmbh Contact and adsorbent granules
US7767001B2 (en) 2000-09-26 2010-08-03 Lanxess Deutschland Gmbh Contact and adsorbent granules
US7811360B2 (en) 2000-09-26 2010-10-12 Lanxess Deutschland Gmbh Contact and adsorbent granules
EP2292561A2 (en) 2009-09-08 2011-03-09 LANXESS Deutschland GmbH Removal of oxo anions from silicate-containing water
US7942953B2 (en) 2000-09-26 2011-05-17 Lanxess Deutschland Gmbh Adsorption vessels
US9102551B2 (en) 2006-08-28 2015-08-11 Basf Corporation Media for the removal of heavy metals and volatile byproducts from drinking water
ITVE20150023A1 (en) * 2015-05-12 2016-11-12 Gruppo Zilio S R L METHOD TO PRODUCE A FILTER MATERIAL CONTAINING IRON FOR WATER TREATMENT, PLANT FOR IMPLEMENTING THE METHOD AND FILTER MATERIAL OBTAINED BY THE METHOD
IT201600106297A1 (en) * 2016-10-21 2018-04-21 Gruppo Zilio S R L METHOD TO PRODUCE A FILTERING MATERIAL CONTAINING IRON FOR WATER TREATMENT, A PLANT TO IMPLEMENT THE METHOD AND FILTERING MATERIAL OBTAINED BY METHOD.
WO2022136736A1 (en) * 2020-12-21 2022-06-30 Kemira Oyj Moist iron hydroxide gel and its use
DE102021212510A1 (en) 2021-11-08 2023-05-11 Robert Bosch Gesellschaft mit beschränkter Haftung Water treatment process for aqueous solutions containing germanium

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SU 3 74 232-A, Referat aus Datenbank WPIDS, Derwent Information LTD, Ref.-Nr. 73-71353U/47 *

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19826186A1 (en) * 1998-06-04 1999-12-09 Ingbuero Dr Fechter Gmbh Production of iron hydroxide in lump form useful as adsorbent for removing contaminants from water or gases
DE19826186B4 (en) * 1998-06-04 2004-12-23 Ingenieurbüro Dr. Fechter GmbH Process for producing an iron hydroxide and a polymer-containing adsorbent / reactant and its use
DE19853529A1 (en) * 1998-11-20 2000-05-25 Dieter A Hiller Rain water filter insert held within mantle amorphous iron oxide and keeping discharge impurities to within legal limits
WO2001062670A1 (en) * 2000-02-25 2001-08-30 Capital Controls Ltd Apparatus and method for water treatment by adsorption
US7942953B2 (en) 2000-09-26 2011-05-17 Lanxess Deutschland Gmbh Adsorption vessels
US7811360B2 (en) 2000-09-26 2010-10-12 Lanxess Deutschland Gmbh Contact and adsorbent granules
US7767001B2 (en) 2000-09-26 2010-08-03 Lanxess Deutschland Gmbh Contact and adsorbent granules
US7651973B2 (en) 2000-09-26 2010-01-26 Lanxess Deutschland Gmbh Contact and adsorbent granules
US6809062B2 (en) 2000-12-13 2004-10-26 Geh Wasserchemie & Co. Kg Process for producing an iron-containing sorption material
WO2002047811A1 (en) * 2000-12-13 2002-06-20 Geh Wasserchemie Gmbh & Co.Kg Method for producing a sorption material that contains iron
DE20109443U1 (en) 2001-05-30 2001-08-09 ATEC Dr. Mann GmbH, 74847 Obrigheim Device for decontaminating water containing traces of arsenic, manganese and iron
US6787041B2 (en) 2001-06-28 2004-09-07 Ch2M Hill, Inc. Carbon dioxide enhanced complex-adsorption process for metal or metalloid removal from water
WO2003002462A1 (en) * 2001-06-28 2003-01-09 Ch2M Hill, Inc. Carbon dioxide enhanced complex-adsorption process for metal or metalloid removal from water
WO2003043731A1 (en) * 2001-11-15 2003-05-30 Engelhard Corporation Arsenic removal media
WO2004018367A3 (en) * 2002-08-23 2004-04-08 Centre Nat Rech Scient Removal of metal ions from aqueous effluents
WO2004018367A2 (en) * 2002-08-23 2004-03-04 Centre National De La Recherche Scientifique (C.N.R.S.) Removal of metal ions from aqueous effluents
FR2843745A1 (en) * 2002-08-23 2004-02-27 Centre Nat Rech Scient REMOVAL OF METAL IONS FROM AQUEOUS EFFLUENTS
WO2004052532A1 (en) * 2002-12-10 2004-06-24 Engelhard Corporation Improved arsenic removal media
US7407588B2 (en) 2004-04-03 2008-08-05 Lanxess Deutschland Gmbh Method of using stable adsorber granules to remove pollutants from flowable media
US7267776B2 (en) 2004-05-05 2007-09-11 Lanxess Deutschland Gmbh Foams for removing pollutants and/or heavy metals from flowable media
US9102551B2 (en) 2006-08-28 2015-08-11 Basf Corporation Media for the removal of heavy metals and volatile byproducts from drinking water
EP2292561A2 (en) 2009-09-08 2011-03-09 LANXESS Deutschland GmbH Removal of oxo anions from silicate-containing water
ITVE20150023A1 (en) * 2015-05-12 2016-11-12 Gruppo Zilio S R L METHOD TO PRODUCE A FILTER MATERIAL CONTAINING IRON FOR WATER TREATMENT, PLANT FOR IMPLEMENTING THE METHOD AND FILTER MATERIAL OBTAINED BY THE METHOD
WO2016181262A1 (en) * 2015-05-12 2016-11-17 Gruppo Zilio S.P.A. Method for producing a filter material containing iron for the treatment of water
EP3294446B1 (en) 2015-05-12 2019-02-27 Gruppo Zilio S.R.L. Method and plant for producing a filter material containing iron for the treatment of water
US11007504B2 (en) 2015-05-12 2021-05-18 Gruppo Zilio S.P.A. Method for producing a filter material containing iron for the treatment of water
IT201600106297A1 (en) * 2016-10-21 2018-04-21 Gruppo Zilio S R L METHOD TO PRODUCE A FILTERING MATERIAL CONTAINING IRON FOR WATER TREATMENT, A PLANT TO IMPLEMENT THE METHOD AND FILTERING MATERIAL OBTAINED BY METHOD.
WO2018073723A1 (en) * 2016-10-21 2018-04-26 Gruppo Zilio S.P.A. Method for producing a filter material containing iron for the treatment of water and plant for implementing the method.
WO2022136736A1 (en) * 2020-12-21 2022-06-30 Kemira Oyj Moist iron hydroxide gel and its use
DE102021212510A1 (en) 2021-11-08 2023-05-11 Robert Bosch Gesellschaft mit beschränkter Haftung Water treatment process for aqueous solutions containing germanium

Similar Documents

Publication Publication Date Title
DE4320003A1 (en) Process for removing dissolved arsenic by means of solid iron hydroxide in water purification
US3763040A (en) Processes for reducing the organic-carbon content of water contaminated with organic compounds by continuous countercurrent multistage treatment with activated carbon
EP0389661B1 (en) Process for removing arsenic from waste waters
US4332687A (en) Removal of complexed heavy metals from waste effluents
Merrill et al. Field Evaluation of arsenic and selnium removal by iron coprecipitation
DE69019690T2 (en) Process for filtering and purifying water.
DE1517526B2 (en) PROCESS FOR PRODUCING DRINKABLE WATER FROM WASTEWATER
DE3840323C2 (en) Process for removing plant treatment products from raw water
US6790352B1 (en) Process for treating acid mine water with moderate to high sulfate content
JP3646900B2 (en) Apparatus and method for treating boron-containing water
US4448696A (en) Process for recovering and recycling coagulant present in water treatment sludges
CN101636356A (en) From solution, remove the method and apparatus of arsenic
EP2792645A1 (en) Process for removing fluorides from water
Merrill et al. Field evaluation of arsenic and selenium removal by iron coprecipitation
EP3196170A1 (en) Process for reducing selenium from an ion-exchange or adsorption media spent regenerant
DE2341415A1 (en) Chemical waste water processing - using purifier contg. calcium carbonate, acid and or metal sulphate, oil adsorbent and flocculant
JP3373033B2 (en) How to remove phosphorus from water
JP2002086160A (en) Treatment method of fluorine-containing waste water
DE2461727C3 (en) Process for the treatment and purification of waste water containing oil
US1886267A (en) Treating sewage
US3699039A (en) Method for the removal of colloidal suspensions and other pollutants from liquid wastes
AT390782B (en) METHOD FOR TREATING WASTEWATER FROM THE SMOKE GAS DESULFURATION
CA3144648A1 (en) Process for reducing selenium from ion-exchange brine
DE2851135C2 (en) Process for regenerating anion exchangers in hydrogen carbonate form used to remove anions of strong acids from raw water
Barbooti et al. Removal of chromium. From electroplating wastewater by simple chemical treatment and ion exchange

Legal Events

Date Code Title Description
OAV Applicant agreed to the publication of the unexamined application as to paragraph 31 lit. 2 z1
OP8 Request for examination as to paragraph 44 patent law
8122 Nonbinding interest in granting licenses declared
8125 Change of the main classification

Ipc: C02F 1/58

8130 Withdrawal