DE4224750A1 - Quantitative movement analysis of fish - removing moving objects from video image to leave background, comparing successive images with background and recognising object by difference in intensity - Google Patents
Quantitative movement analysis of fish - removing moving objects from video image to leave background, comparing successive images with background and recognising object by difference in intensityInfo
- Publication number
- DE4224750A1 DE4224750A1 DE4224750A DE4224750A DE4224750A1 DE 4224750 A1 DE4224750 A1 DE 4224750A1 DE 4224750 A DE4224750 A DE 4224750A DE 4224750 A DE4224750 A DE 4224750A DE 4224750 A1 DE4224750 A1 DE 4224750A1
- Authority
- DE
- Germany
- Prior art keywords
- objects
- background
- fish
- reference background
- intensity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 241000251468 Actinopterygii Species 0.000 title abstract description 5
- 230000003287 optical effect Effects 0.000 claims abstract description 3
- 238000012935 Averaging Methods 0.000 claims description 2
- 238000000034 method Methods 0.000 claims 8
- 230000004071 biological effect Effects 0.000 claims 1
- 231100001143 noxa Toxicity 0.000 claims 1
- 239000003440 toxic substance Substances 0.000 claims 1
- 239000003643 water by type Substances 0.000 claims 1
- 238000005259 measurement Methods 0.000 abstract description 5
- 230000004899 motility Effects 0.000 description 4
- 241001465754 Metazoa Species 0.000 description 2
- 230000009182 swimming Effects 0.000 description 2
- 239000003086 colorant Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V8/00—Prospecting or detecting by optical means
- G01V8/10—Detecting, e.g. by using light barriers
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K61/00—Culture of aquatic animals
- A01K61/90—Sorting, grading, counting or marking live aquatic animals, e.g. sex determination
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K67/00—Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D1/00—Measuring arrangements giving results other than momentary value of variable, of general application
- G01D1/14—Measuring arrangements giving results other than momentary value of variable, of general application giving a distribution function of a value, i.e. number of times the value comes within specified ranges of amplitude
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/18—Water
- G01N33/186—Water using one or more living organisms, e.g. a fish
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/20—Analysis of motion
- G06T7/254—Analysis of motion involving subtraction of images
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Environmental Sciences (AREA)
- Zoology (AREA)
- Biodiversity & Conservation Biology (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Animal Husbandry (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- Theoretical Computer Science (AREA)
- Geophysics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Multimedia (AREA)
- Food Science & Technology (AREA)
- Animal Behavior & Ethology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Marine Sciences & Fisheries (AREA)
- Image Analysis (AREA)
Abstract
Description
Auf die zu beobachtenden Objekte wird ein optischer, magnetischer, elektromagnetischer oder akustischer Sensor gerichtet. Er wird mit einem Rechner verbunden, der zur Bildverarbeitung fähig ist. Vor den eigentlichen Messungen wird ein kontinuierliches oder diskontinuierliches Referenz-Hintergrundbild durch Aufmittelung der Einzelbilddaten aufgenommen, wobei die bewegten Objekte eliminiert werden.An optical, magnetic, electromagnetic or acoustic sensor directed. It is connected to a computer that is used for Is capable of image processing. Before the actual measurements becomes a continuous or discontinuous Reference background image by averaging the Single image data recorded, the moving objects be eliminated.
Während der Messungen selbst wird jeweils nach einem festzulegenden Zeitintervall das aktuelle Bild mit dem Referenz-Hintergrundbild verglichen. Das minimal mögliche Zeitintervall ist durch die Frequenz des Sensors, z. B. einer Videokamera, limitiert. Das Zeitintervall kann jedoch größer gewählt werden, wenn die zu beobachtenden Objekte sich nur langsam bewegen. Überall dort, wo sich das aktuelle Bild vom Referenz-Hintergrundbild unterscheidet, wird angenommen, daß es sich um zu erkennende Objekte handelt. Eine Selektion bestimmter Objekttypen durch Kriterien wie die Objektgröße, den Kontrast oder die Farbe ist möglich. Die Daten, die die Ausdehnung und Position der im aktuellen Bild vorhandenen Objekte in einem festzulegenden Raster charakterisieren, werden entweder fortlaufend gespeichert oder direkt verarbeitet. Die fortlaufende Zuordnung der jeweils die Objektmitte repräsentierenden Positionskoordinaten zu den Objekten, die sich im selben Meßraum durcheinander bewegen können, erfolgt aufgrund von Plausibilitätskriterien.During the measurements themselves, one after each time interval to be specified the current image with the Reference background image compared. The minimum possible Time interval is determined by the frequency of the sensor, e.g. B. one Video camera, limited. However, the time interval can be longer can be selected if the objects to be observed only move slowly. Wherever the current picture of the Reference background image differs, it is assumed that they are objects to be recognized. A selection certain object types by criteria such as object size, the contrast or color is possible. The data that the Extent and position of the existing ones in the current image Characterize objects in a grid to be defined, are either saved continuously or directly processed. The continuous assignment of each Position coordinates representing the object center to the Objects that move around in the same measuring room can be done based on plausibility criteria.
Wegen der schnellen Bildfolge z. B. einer Standard-Videokamera von beispielsweise 20 ms pro Halbbild kann man davon ausgehen, daß jeweils das einem Koordinatenpaar des ersten Bildes im zweiten Bild nächstliegende Koordinatenpaar demselben Objekt zugehört. Der Vektor, der diese beiden Punkte verbindet, charakterisiert die augenblickliche Bewegungsrichtung des Objektes und die dazugehörige Bewegungsgeschwindigkeit. Sie bilden zusammen mit den Positionen der Objekte im zweiten Bild die Grundlage für die beim dritten Bild vorzunehmenden Objektzuordnungen. Plausibilitätsprüfungen für die Zuordnung können weiterhin die für den zu untersuchenden Objekttyp maximal von Bild zu Bild zurücklegbare Geschwindigkeit und seine Fähigkeit, sich kontinuierlich fortzubewegen oder Pausen zu machen, schneller oder langsamer die Bewegungsrichtung zu ändern, hinter anderen Objekten zeitweilig zu verschwinden, Fliehkräfte, Massenträgheit usw. berücksichtigen. Derartige und weitere Informationen können auch aus den bereits zurückgelegten Bewegungsbahnen in die Zuordnung der fortlauf enden Koordinaten zu den Objekten einbezogen werden (sich selbst optimierendes Spurverfolgungssystem). Because of the fast sequence of images z. B. a standard video camera for example 20 ms per field can be assumed that the one coordinate pair of the first image in each second image the closest coordinate pair of the same object listened. The vector that connects these two points characterizes the current direction of movement of the Object and the associated movement speed. they form together with the positions of the objects in the second image the basis for those to be made in the third picture Object assignments. Plausibility checks for the assignment can continue to for the object type to be examined maximum speed from frame to frame and his ability to move continuously or take breaks to make the direction of movement faster or slower change to temporarily disappear behind other objects, Take centrifugal forces, inertia, etc. into account. Such and further information can also be obtained from the trajectories covered in the assignment of the continuous coordinates to the objects are included (self-optimizing tracking system).
Die rekonstruierten Bewegungsbahnen können zur Überprüfung graphisch dargestellt werden. Durch die komplette Spurverfolgung erhält man Kenntnisse über die Aufenthaltsorte, die Bewegungsrichtung und -geschwindigkeit jedes Objektes zu jedem Zeitpunkt. Aus den errechneten Bewegungsbahnen wird das Verhalten der Objekte numerisch charakterisiert und analysiert. Die Kenndaten für die Verhaltenskriterien können auch direkt während der Spurverfolgung gewonnen werden.The reconstructed trajectories can be checked can be represented graphically. Through the complete Tracking gives you knowledge of where you are, the direction and speed of movement of each object any time. From the calculated trajectories that becomes Behavior of the objects numerically characterized and analyzed. The characteristics for the behavior criteria can can also be obtained directly during tracking.
Mit einer Videokamera wurde das Verhalten einer Gruppe von 6 Fischen vor und während der Fütterung aufgenommen und nach dem oben beschriebenen Prinzip analysiert.The behavior of a group of 6 was monitored with a video camera Fish recorded before and during feeding and after principle described above.
Die Abb. 1 und 2 zeigen die rekonstruierten Spuren der Fische während jeweils einer 10-Sekunden-Messung, wobei die zurückgelegten Wege der Fische mit verschiedenen Farben dargestellt sind. In den Abb. 3 und 4 sind die zugehörigen Analyseergebnisse aufgelistet. Figs. 1 and 2 show the reconstructed traces of the fish during a 10-second measurement, with the distances traveled by the fish shown in different colors. The associated analysis results are listed in Figs. 3 and 4.
Abb. 1 Rekonstruierte Bewegungsbahnen zu Beginn der Fütterung. Zwei Tiere haben das auf die Wasseroberfläche fallende Futter bereits entdeckt und schwimmen erregt in wilden Schleifen umher. Fig. 1 Reconstructed trajectories at the beginning of feeding. Two animals have already discovered the food falling on the water surface and are excitedly swimming in wild loops.
Abb. 2 Rekonstruierte Bewegungsbahnen nach der Fütterung. Die Tiere schwimmen in engeren Schleifen schnell durcheinander, während die Futterflocken absinken. Letztere wurden aufgrund ihrer geringen Größe als Objekte eliminiert. Fig. 2 Reconstructed trajectories after feeding. The animals swim in tight loops quickly, while the food flakes sink. The latter were eliminated as objects due to their small size.
Abb. 3 Numerische Ausgabe der Daten zu Beginn der Fütterung. Fig. 3 Numerical output of the data at the beginning of feeding.
Abb. 4 Numerische Ausgabe der Daten nach der Fütterung. Fig. 4 Numerical output of the data after feeding.
Erklärung der Abkürzungen in Abb. 3 und 4:
Size = Dateigröße, Summe der eingespeicherten Positions
koordinaten
Total = Dauer der Aufnahme
Sample = Dauer der Einzelaufnahme (falls Total gesplittet wird)
Interval = Bildwechsel-Geschwindigkeit
No = Kennbuchstabe für das entsprechende Objekt
SH = Mittlerer Aufenthaltsort eines einzelnen Objektes in der
Vertikalrichtung in einem vergröberten Raster
SHD = Standardabweichung dazu
PPR = Anwesenheit des Objektes während der Messung
TURN = Zahl der Wendungen während der Aufnahme
MOTILITY = In der Flächenprovision des Weges pro Sekunde
zurückgelegter Weg
MOTDEV = Standardabweichung hierzu
DIAGRAM OF MOTILITY = graphische Ausgabe von Motility.
HORIZONTAL POS. = Mittlerer Aufenthaltsort in der Horizontal-
Richtung, über alle Objekte gemittelt.
SWIMMING HEIGHT = mittlerer Aufenthaltsort in
Vertikalrichtung, über alle Objekte gemittelt
TURNINGS = Anzahl der Richtungsänderungen in der x-Achse pro
Sekunde, über alle Objekte gemittelt.Explanation of the abbreviations in Fig. 3 and 4:
Size = file size, sum of the stored position coordinates
Total = duration of the recording
Sample = duration of the single recording (if total is split)
Interval = frame change speed
No = code letter for the corresponding object
SH = Average location of a single object in the vertical direction in a coarser grid
SHD = standard deviation
PPR = presence of the object during the measurement
TURN = number of turns during the recording
MOTILITY = distance traveled per second in the area commission of the route
MOTDEV = standard deviation for this
DIAGRAM OF MOTILITY = graphic output of motility.
HORIZONTAL POS. = Average location in the horizontal direction, averaged over all objects.
SWIMMING HEIGHT = average location in the vertical direction, averaged over all objects
TURNINGS = number of changes in direction in the x-axis per second, averaged over all objects.
Die Reihenfolge der Objekte wurde nach der Größe von Motility geordnet.The order of the objects was based on the size of Motility orderly.
Claims (7)
- a) es wird ein kontinuierliches oder diskontinuierliches Referenz-Hintergrundbild durch Aufmittelung der Einzelbilddaten aufgenommen, wodurch die bewegten Objekte eliminiert werden.
- b) Während der nachfolgenden Beobachtung werden die fortlaufenden Bilder mit diesem Referenz-Hintergrundbild verglichen.
- c) Wo sich das aktuelle Bild vom Referenz-Hintergrundbild in seiner Intensität unterscheidet, werden Objekte erkannt.
- d) Gegebenenfalls erfolgt eine Selektion bestimmter Objekttypen durch Kriterien wie die Objektgröße, den Kontrast oder die Farbe.
- e) Die Ausdehnung und Position der im aktuellen Bild vorhandenen Objekte werden in einem festzulegenden Raster als Koordinaten charakterisiert.
- f) Diese Koordinaten werden entweder fortlaufend gespeichert oder direkt verarbeitet.
- g) Die fortlaufende Zuordnung der Positionskoordinaten zu den Objekten, die sich im selben Meßraum durcheinander bewegen können, erfolgt nach Plausibilitätskriterien für die möglichen Bewegungsweisen der zu beobachtenden Objekte.
- h) Aus den so errechneten Bewegungsbahnen wird das Verhalten der einzelnen Objekte numerisch charakterisiert und analysiert.
- a) a continuous or discontinuous reference background image is recorded by averaging the individual image data, as a result of which the moving objects are eliminated.
- b) During the subsequent observation, the continuous images are compared with this reference background image.
- c) Objects are recognized where the intensity of the current image differs from the reference background image.
- d) If necessary, certain object types are selected using criteria such as object size, contrast or color.
- e) The extent and position of the objects present in the current image are characterized as coordinates in a grid to be defined.
- f) These coordinates are either saved continuously or processed directly.
- g) The continuous assignment of the position coordinates to the objects that can move around in the same measuring space is carried out according to plausibility criteria for the possible movements of the objects to be observed.
- h) The behavior of the individual objects is numerically characterized and analyzed from the movement paths calculated in this way.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4224750A DE4224750A1 (en) | 1992-07-27 | 1992-07-27 | Quantitative movement analysis of fish - removing moving objects from video image to leave background, comparing successive images with background and recognising object by difference in intensity |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4224750A DE4224750A1 (en) | 1992-07-27 | 1992-07-27 | Quantitative movement analysis of fish - removing moving objects from video image to leave background, comparing successive images with background and recognising object by difference in intensity |
Publications (1)
Publication Number | Publication Date |
---|---|
DE4224750A1 true DE4224750A1 (en) | 1994-02-03 |
Family
ID=6464195
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE4224750A Ceased DE4224750A1 (en) | 1992-07-27 | 1992-07-27 | Quantitative movement analysis of fish - removing moving objects from video image to leave background, comparing successive images with background and recognising object by difference in intensity |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE4224750A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19809210A1 (en) * | 1998-03-04 | 1999-09-16 | Siemens Ag | Locality or workplace surveillance method |
DE10002085A1 (en) * | 2000-01-19 | 2001-08-02 | Fraunhofer Ges Forschung | Object monitoring method involves recognizing and summarizing picture elements having same characteristics, deriving classification features from object areas, and performing further processing |
WO2019002880A1 (en) * | 2017-06-28 | 2019-01-03 | Observe Technologies Limited | Data collection system and method for feeding aquatic animals |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0385384A2 (en) * | 1989-03-01 | 1990-09-05 | Siemens Aktiengesellschaft | Detection and tracking process of moving objects in a sequence of digital images with moving background |
DE3543515C2 (en) * | 1985-12-10 | 1992-09-24 | Gsf - Forschungszentrum Fuer Umwelt Und Gesundheit, Gmbh, 8000 Muenchen, De |
-
1992
- 1992-07-27 DE DE4224750A patent/DE4224750A1/en not_active Ceased
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3543515C2 (en) * | 1985-12-10 | 1992-09-24 | Gsf - Forschungszentrum Fuer Umwelt Und Gesundheit, Gmbh, 8000 Muenchen, De | |
EP0385384A2 (en) * | 1989-03-01 | 1990-09-05 | Siemens Aktiengesellschaft | Detection and tracking process of moving objects in a sequence of digital images with moving background |
Non-Patent Citations (1)
Title |
---|
Mustererkennung 1989, DAGM-Symposium Hamburg, 2.-4.10.89, Springer-Verlag 1989, S. 153-159 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19809210A1 (en) * | 1998-03-04 | 1999-09-16 | Siemens Ag | Locality or workplace surveillance method |
DE10002085A1 (en) * | 2000-01-19 | 2001-08-02 | Fraunhofer Ges Forschung | Object monitoring method involves recognizing and summarizing picture elements having same characteristics, deriving classification features from object areas, and performing further processing |
WO2019002880A1 (en) * | 2017-06-28 | 2019-01-03 | Observe Technologies Limited | Data collection system and method for feeding aquatic animals |
US11464213B2 (en) | 2017-06-28 | 2022-10-11 | Observe Technologies Limited | Decision making system and method of feeding aquatic animals |
AU2018293444B2 (en) * | 2017-06-28 | 2024-01-04 | Observe Technologies Limited | Data collection system and method for feeding aquatic animals |
US11925173B2 (en) | 2017-06-28 | 2024-03-12 | Observe Technologies Limited | Data collection system and method for feeding aquatic animals |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69032326T2 (en) | DYNAMIC METHOD FOR DETECTING OBJECTS AND IMAGE PROCESSING DEVICE THEREFOR | |
DE69229856T2 (en) | ADAPTIVE VISUAL PROCESS AND SYSTEM | |
DE2823490C2 (en) | ||
DE69127968T2 (en) | THREE-DIMENSIONAL REAL-TIME SENSOR SYSTEM | |
EP0365928B1 (en) | Method for processing cell images | |
DE69511620T2 (en) | Video processing system | |
DE3505331C2 (en) | Method and device for measuring the impression left in a sample during penetration hardness testing | |
DE68928895T2 (en) | Method and device for universal adaptive learning image measurement and recognition | |
EP0385384B1 (en) | Detection process of moving objects in a sequence of digital images | |
DE69811667T2 (en) | DEVICE AND METHOD FOR DETECTING AND DETERMINING THE POSITION OF AN ANIMAL PART | |
DE69522844T2 (en) | Image processing method for the local determination of the center and the objects which stand out against a background, and device for carrying out the method | |
DE69023787T2 (en) | Target location on a target. | |
DE10043460C2 (en) | Locating parts of the body by evaluating edge direction information | |
DE69426175T2 (en) | Processing device for tracking a video signal | |
WO1994023276A1 (en) | Colour control by image-forming sensors close to production point | |
EP3671546A1 (en) | Method and system for determining landmarks in an environment of a vehicle | |
WO1992008204A2 (en) | Method of detecting and estimating the position in space of objects from a two-dimensional image | |
DE69315333T2 (en) | METHOD FOR DETECTING AND SUPPRESSING ERRORS IN DIGITAL VIDEO SIGNALS THAT EXCEED A SPECIFIC CONTRAST | |
DE4211904C2 (en) | Automatic procedure for creating a list of different types for a liquid sample | |
DE102015115786B4 (en) | METHOD AND SYSTEM REALIZED ON A COMPUTER FOR PROCESSING A SEQUENCE OF IMAGES | |
EP2034461A2 (en) | Method for detecting and/or tracking moved objects in a monitoring zone with stoppers, device and computer program | |
DE69808522T2 (en) | IMAGE PROCESSING DEVICE | |
DE69225264T2 (en) | Minimum difference processor | |
DE3921257A1 (en) | METHOD AND DEVICE FOR DIGITAL ANALYSIS OF IMAGES RELATING TO STRATIGRAPHIC DATA | |
DE69423607T2 (en) | METHOD FOR CLASSIFYING IMAGES WITH OUTPUT IMAGES |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
8110 | Request for examination paragraph 44 | ||
8125 | Change of the main classification |
Ipc: G06T 7/20 |
|
8131 | Rejection |