DE4102285A1 - METHOD FOR PRODUCING A MEMBRANE DIODE - Google Patents
METHOD FOR PRODUCING A MEMBRANE DIODEInfo
- Publication number
- DE4102285A1 DE4102285A1 DE4102285A DE4102285A DE4102285A1 DE 4102285 A1 DE4102285 A1 DE 4102285A1 DE 4102285 A DE4102285 A DE 4102285A DE 4102285 A DE4102285 A DE 4102285A DE 4102285 A1 DE4102285 A1 DE 4102285A1
- Authority
- DE
- Germany
- Prior art keywords
- membrane
- diode
- diodes
- radiation
- detected
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 14
- 238000004519 manufacturing process Methods 0.000 title claims description 4
- 238000005530 etching Methods 0.000 claims abstract description 10
- 230000005855 radiation Effects 0.000 claims abstract description 10
- 238000000034 method Methods 0.000 claims abstract description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 2
- 238000002513 implantation Methods 0.000 claims 2
- 239000002178 crystalline material Substances 0.000 claims 1
- 239000010703 silicon Substances 0.000 claims 1
- 239000007943 implant Substances 0.000 abstract description 4
- LBDSXVIYZYSRII-IGMARMGPSA-N alpha-particle Chemical compound [4He+2] LBDSXVIYZYSRII-IGMARMGPSA-N 0.000 abstract 1
- 239000004065 semiconductor Substances 0.000 abstract 1
- 238000010561 standard procedure Methods 0.000 abstract 1
- 230000006978 adaptation Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/16—Measuring radiation intensity
- G01T1/24—Measuring radiation intensity with semiconductor detectors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F30/00—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors
- H10F30/20—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors
- H10F30/21—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation
- H10F30/22—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation the devices having only one potential barrier, e.g. photodiodes
- H10F30/221—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation the devices having only one potential barrier, e.g. photodiodes the potential barrier being a PN homojunction
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F30/00—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors
- H10F30/20—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors
- H10F30/29—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to radiation having very short wavelengths, e.g. X-rays, gamma-rays or corpuscular radiation
- H10F30/295—Surface barrier or shallow PN junction radiation detectors, e.g. surface barrier alpha-particle detectors
- H10F30/2955—Shallow PN junction radiation detectors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/10—Semiconductor bodies
- H10F77/14—Shape of semiconductor bodies; Shapes, relative sizes or dispositions of semiconductor regions within semiconductor bodies
- H10F77/147—Shapes of bodies
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Molecular Biology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Micromachines (AREA)
- Measuring Fluid Pressure (AREA)
Abstract
Description
Die Erfindung bezieht sich auf die Herstellung einer Membrandiode mit tels Planar- und Ätztechnik gemäß dem Gattungsbegriff des Anspruches 1.The invention relates to the manufacture of a membrane diode planar and etching technology according to the preamble of claim 1.
Durch die Druckschrift "Technical Digest of the 7th Sensorsymposium", 1988, Seiten 1 bis 6, von Seidel & Csepregi, ist es bekanntgeworden, piezoresistive Druckaufnehmer durch ätztechnische Herstellung einer Mem branstruktur herzustellen. Alle bisherigen zum Stand der Technik zählen den Verfahren vorgenannter Art erfordern jedoch relativ hohe Betriebs spannungen und Kapazitäten.Through the publication "Technical Digest of the 7th Sensor Symposium", 1988, pages 1 to 6, by Seidel & Csepregi, it became known Piezoresistive pressure transducers through the etching production of a mem industry structure. All previous state of the art However, the methods of the aforementioned type require relatively high levels of operation tensions and capacities.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art aufzuzeigen, durch das eine Membrandiode herge stellt werden kann, die die vorgenannten Nachteile nicht mehr aufweist, optimal an die zu untersuchende Strahlenart anpaßbar ist und in bezug auf das Hintergrundrauschen durch andere Strahlungen optimierte Eigen schaften aufweist.The present invention has for its object a method of point out the type mentioned, through which a membrane diode can be provided, which no longer has the aforementioned disadvantages, is optimally adaptable to the type of radiation to be examined and in relation Eigen optimized for background noise by other radiations features.
Diese Aufgabe wird durch die im Anspruch 1 aufgezeigten Maßnahmen in überraschend einfacher Weise gelöst. Im Unteranspruch ist eine Weiter bildung aufgezeigt und in der nachfolgenden Beschreibung ist ein Ausfüh rungsbeispiel erläutert sowie in der einzigen Figur der Zeichnung darge stellt. Diese Figur zeigt einen Querschnitt einer nach dem vorgeschlage nen Verfahren hergestellten Membrandiode in vergrößerter Darstellung.This object is achieved by the measures indicated in claim 1 solved surprisingly simple way. Another is in the subclaim education shown and in the description below is an execution Example explained and Darge in the single figure of the drawing poses. This figure shows a cross section according to the proposed NEN method manufactured diaphragm diode in an enlarged view.
Die dargestellte mikromechanisch hergestellte Diode ist monolithisch aus einem einkristallinen Material - im vorliegenden Falle aus "n-Typ" Sili zium (100) Orientierung - mit Hilfe von an sich bekannter Planar- und Ätztechniken (etched Backside) herausgearbeitet. Durch die verwendete mikromechanische Ätztechnik wird eine Membranstruktur hergestellt - wie aus der Figur der Zeichnung deutlich veranschaulicht ist - die auf der Vorder- und Rückseite in entgegengesetztem Typus implantiert wurde. Wie in der Zeichnung dargestellt, erfährt die Vorderseite eine "p+-Implanta tion" und die Rückseite eine "n+-Implantation". Die Tiefe dieser rück seitigen Ätzung richtet sich nun nach der zu untersuchenden Strahlung, beispielsweise ist für Alpha-Teilchen mit Energien zwischen 3 bis 10 MeV z. B. ²³⁸U, ²³⁵U, ²³⁹Pu, ²⁴⁰Pu, ²⁴³Am u. v. m.) eine Restsub stratdicke (Substratdicke minus Ätztiefe) von 10 bis 50 µm optimal.The micromechanically produced diode shown is monolithic a single-crystal material - in the present case from "n-type" sili zium (100) Orientation - with the help of known planar and Etching techniques (etched backside) worked out. By the used micromechanical etching technology creates a membrane structure - like is clearly illustrated from the figure of the drawing - which on the Front and back were implanted in opposite types. How shown in the drawing, the front undergoes a "p + implant tion "and the back of an" n + implant ". The depth of this back side etching now depends on the radiation to be examined, for example, for alpha particles with energies between 3 to 10 MeV e.g. B. ²³⁸U, ²³⁵U, ²³⁹Pu, ²⁴⁰Pu, ²⁴³Am u. v. m.) a residual sub stratdicke (substrate thickness minus etching depth) of 10 to 50 µm optimal.
Durch diese optimale Anpassung der Membran an die Strahlungsart kann der Detektor bei minimaler Betriebsspannung und Kapazität arbeiten und die ses Prinzip der mikrostrukturierten Membrandiode kann auf weitere der bekannten Diodenanwendungen übertragen werden, ohne daß die hier erziel ten Vorteile beeinträchtigt würden.Through this optimal adaptation of the membrane to the type of radiation, the Detector and operate at minimum operating voltage and capacity This principle of the microstructured membrane diode can be applied to the known diode applications are transmitted without achieving the here advantages would be impaired.
Durch diese optimale Anpassung an die zu untersuchende oder zu detektie rende Strahlungsart wird der Rauschhintergrund anderer Strahlungen er heblich verringert, da Teilchen mit Reichweiten, die größer als das rückgeätzte Substrat sind, nur noch beschränkt zum Rauschen beitragen.Through this optimal adaptation to the investigated or to be detected The type of radiation is the background noise of other radiation significantly reduced since particles with ranges greater than that etched-back substrates are only contributing to the noise to a limited extent.
Mehrere solcher mikrostrukturierter Membrandioden können nun zu einem Array zusammengefaßt werden und liefern so einen Energiediskriminator.Several such microstructured membrane diodes can now be combined into one Array can be summarized and thus provide an energy discriminator.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4102285A DE4102285A1 (en) | 1991-01-26 | 1991-01-26 | METHOD FOR PRODUCING A MEMBRANE DIODE |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4102285A DE4102285A1 (en) | 1991-01-26 | 1991-01-26 | METHOD FOR PRODUCING A MEMBRANE DIODE |
Publications (1)
Publication Number | Publication Date |
---|---|
DE4102285A1 true DE4102285A1 (en) | 1992-08-06 |
Family
ID=6423752
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE4102285A Ceased DE4102285A1 (en) | 1991-01-26 | 1991-01-26 | METHOD FOR PRODUCING A MEMBRANE DIODE |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE4102285A1 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999027325A2 (en) * | 1997-11-25 | 1999-06-03 | Robert Bosch Gmbh | Thermal membrane sensor and method for the production thereof |
US6579740B2 (en) * | 2000-10-13 | 2003-06-17 | Denso Corporation | Method of making a thin film sensor |
EP1548836A1 (en) * | 2002-08-09 | 2005-06-29 | Hamamatsu Photonics K. K. | Photodiode array, production method therefor, and radiation detector |
EP0771475B1 (en) * | 1995-05-19 | 2005-12-21 | Dr. Johannes Heidenhain GmbH | Radiation-sensitive detector element |
EP1648036A1 (en) * | 2003-07-23 | 2006-04-19 | Hamamatsu Photonics K.K. | Backside-illuminated photodetector |
EP1653520A1 (en) * | 2003-07-29 | 2006-05-03 | Hamamatsu Photonics K.K. | Backside-illuminated photodetector |
US7888761B2 (en) | 2004-05-27 | 2011-02-15 | Isis Innovation Limited | Direct electron detector |
WO2012084186A2 (en) | 2010-12-22 | 2012-06-28 | MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. | Semiconductor detector having offset bonding contact |
DE102020132289A1 (en) | 2020-12-04 | 2022-06-09 | Vishay Semiconductor Gmbh | METHOD OF MAKING A PHOTODIODE |
-
1991
- 1991-01-26 DE DE4102285A patent/DE4102285A1/en not_active Ceased
Non-Patent Citations (1)
Title |
---|
JP 2-241066 (A). In: Patents Abstr. of Japan, Sect. E, Vol. 14 (1990), Nr. 557 (E-1011) * |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0771475B1 (en) * | 1995-05-19 | 2005-12-21 | Dr. Johannes Heidenhain GmbH | Radiation-sensitive detector element |
WO1999027325A3 (en) * | 1997-11-25 | 1999-08-12 | Bosch Gmbh Robert | Thermal membrane sensor and method for the production thereof |
WO1999027325A2 (en) * | 1997-11-25 | 1999-06-03 | Robert Bosch Gmbh | Thermal membrane sensor and method for the production thereof |
US6579740B2 (en) * | 2000-10-13 | 2003-06-17 | Denso Corporation | Method of making a thin film sensor |
US7148464B2 (en) | 2002-08-09 | 2006-12-12 | Hamamatsu Photonics K.K. | Photodiode array with a plurality of depressions |
EP1835539A3 (en) * | 2002-08-09 | 2007-09-26 | Hamamatsu Photonics K.K. | Photodiode array, method of manufacturing the same, and radiation detector |
EP1548836A1 (en) * | 2002-08-09 | 2005-06-29 | Hamamatsu Photonics K. K. | Photodiode array, production method therefor, and radiation detector |
EP1548836A4 (en) * | 2002-08-09 | 2006-10-18 | Hamamatsu Photonics Kk | PHOTODIODE ARRAY, METHOD FOR PRODUCING THE SAME, AND RADIATION DETECTOR |
EP1648036A4 (en) * | 2003-07-23 | 2007-03-21 | Hamamatsu Photonics Kk | PHOTODETECTEUR LIGHT ON THE REAR FACE |
EP1648036A1 (en) * | 2003-07-23 | 2006-04-19 | Hamamatsu Photonics K.K. | Backside-illuminated photodetector |
US7420257B2 (en) | 2003-07-23 | 2008-09-02 | Hamamatsu Photonics K.K. | Backside-illuminated photodetector |
EP1653520A1 (en) * | 2003-07-29 | 2006-05-03 | Hamamatsu Photonics K.K. | Backside-illuminated photodetector |
EP1653520A4 (en) * | 2003-07-29 | 2007-03-21 | Hamamatsu Photonics Kk | BACKLIGHT PHOTODETECTOR |
US7768086B2 (en) | 2003-07-29 | 2010-08-03 | Hamamatsu Photonics K.K. | Backside-illuminated photodetector |
US7888761B2 (en) | 2004-05-27 | 2011-02-15 | Isis Innovation Limited | Direct electron detector |
WO2012084186A2 (en) | 2010-12-22 | 2012-06-28 | MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. | Semiconductor detector having offset bonding contact |
DE102010055633A1 (en) * | 2010-12-22 | 2012-06-28 | MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. | Semiconductor detector with offset bonding contact |
DE102020132289A1 (en) | 2020-12-04 | 2022-06-09 | Vishay Semiconductor Gmbh | METHOD OF MAKING A PHOTODIODE |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69306687T2 (en) | Accelerometer sensitive to the side and method for its manufacture | |
DE69318956T2 (en) | Process for manufacturing accelerometers using "silicon on insulator" technology | |
EP1550349B1 (en) | Membrane and method for the production thereof | |
DE69315544T2 (en) | Integrated accelerometer with measuring axis parallel to the substrate | |
EP0394305B1 (en) | Device for measuring acceleration | |
DE19826317B4 (en) | Method for producing a semiconductor substrate, semiconductor pressure sensor and its production method | |
DE69408005T2 (en) | Semiconductor device with piezoresistive pressure transducer | |
DE4016471A1 (en) | MICROMECHANICAL INCLINATION SENSOR | |
DE112006002946T5 (en) | Semiconductor pressure gauge and method for its manufacture | |
DE69012748T2 (en) | CONVERTER WITH A MEMBRANE AND A VARIETY OF SENSING ELEMENTS. | |
DE4309206C1 (en) | Semiconductor device having a force and/or acceleration sensor | |
EP1744138A1 (en) | Micromechanical device with two sensor structures and method for manufacturing a micromechanical device | |
DE4102285A1 (en) | METHOD FOR PRODUCING A MEMBRANE DIODE | |
DE4030466C2 (en) | Piezo resistance device | |
DE4318466A1 (en) | Micromechanical sensor and method for its production | |
WO1991000522A1 (en) | Device for measuring mechanical forces and dynamic effects | |
DE69714204T2 (en) | pressure monitor | |
DE4333099A1 (en) | Force sensor and process for producing a force sensor | |
CH684611A5 (en) | A method for producing capacitive sensors and capacitive sensor. | |
DE102020213030A1 (en) | Manufacturing process for a micromechanical component for a sensor or microphone device | |
DE19603829A1 (en) | Silicon@ based micromechanical structure manufacturing method | |
DE102005055473A1 (en) | Micromechanical device for use in e.g. pressure sensor, has seismic mass that is connected by spring structure, and free space and cavity that are provided parallel to main substrate level and below front side surface | |
DE102016107856A1 (en) | Pressure measuring device | |
EP1569865B1 (en) | Production of microelectromechanical systems (MEMS) using the high-temperature silicon fusion bonding of wafers | |
DE102017109971A1 (en) | pressure sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OP8 | Request for examination as to paragraph 44 patent law | ||
8127 | New person/name/address of the applicant |
Owner name: DEUTSCHE AEROSPACE AG, 8000 MUENCHEN, DE |
|
8131 | Rejection |