[go: up one dir, main page]

DE4102285A1 - METHOD FOR PRODUCING A MEMBRANE DIODE - Google Patents

METHOD FOR PRODUCING A MEMBRANE DIODE

Info

Publication number
DE4102285A1
DE4102285A1 DE4102285A DE4102285A DE4102285A1 DE 4102285 A1 DE4102285 A1 DE 4102285A1 DE 4102285 A DE4102285 A DE 4102285A DE 4102285 A DE4102285 A DE 4102285A DE 4102285 A1 DE4102285 A1 DE 4102285A1
Authority
DE
Germany
Prior art keywords
membrane
diode
diodes
radiation
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE4102285A
Other languages
German (de)
Inventor
Wolfgang Welser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Defence and Space GmbH
Original Assignee
Messerschmitt Bolkow Blohm AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Messerschmitt Bolkow Blohm AG filed Critical Messerschmitt Bolkow Blohm AG
Priority to DE4102285A priority Critical patent/DE4102285A1/en
Publication of DE4102285A1 publication Critical patent/DE4102285A1/en
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F30/00Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors
    • H10F30/20Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors
    • H10F30/21Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation
    • H10F30/22Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation the devices having only one potential barrier, e.g. photodiodes
    • H10F30/221Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation the devices having only one potential barrier, e.g. photodiodes the potential barrier being a PN homojunction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F30/00Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors
    • H10F30/20Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors
    • H10F30/29Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to radiation having very short wavelengths, e.g. X-rays, gamma-rays or corpuscular radiation
    • H10F30/295Surface barrier or shallow PN junction radiation detectors, e.g. surface barrier alpha-particle detectors
    • H10F30/2955Shallow PN junction radiation detectors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/10Semiconductor bodies
    • H10F77/14Shape of semiconductor bodies; Shapes, relative sizes or dispositions of semiconductor regions within semiconductor bodies
    • H10F77/147Shapes of bodies

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Micromachines (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

The membrane diode, mfd. using planar semiconductor techniques, features a monolithic device made from a single crystalline (100) Si wafer by the use of micromechanical techniques, esp. back etching, resulting in a diode in which the front surface contains a p+ implant and the backside an n+ implant. The thickness of the membrane is defined by the radiation to be detected. An array can be put together contg. several similar membrane diodes. USE/ADVANTAGE - The diodes can be made using standard techniques and can be adapted to the radiation type and energy to be detected. This selectivity improves the signal to noise ratio of the device. The mfg. method permits lower bias and capacitance levels to be used. The diodes are used as detectors for e.g. alpha-particle radiation for an energy range of 3-10 MeV using a membrane thickness of 10-50 microns.

Description

Die Erfindung bezieht sich auf die Herstellung einer Membrandiode mit­ tels Planar- und Ätztechnik gemäß dem Gattungsbegriff des Anspruches 1.The invention relates to the manufacture of a membrane diode planar and etching technology according to the preamble of claim 1.

Durch die Druckschrift "Technical Digest of the 7th Sensorsymposium", 1988, Seiten 1 bis 6, von Seidel & Csepregi, ist es bekanntgeworden, piezoresistive Druckaufnehmer durch ätztechnische Herstellung einer Mem­ branstruktur herzustellen. Alle bisherigen zum Stand der Technik zählen­ den Verfahren vorgenannter Art erfordern jedoch relativ hohe Betriebs­ spannungen und Kapazitäten.Through the publication "Technical Digest of the 7th Sensor Symposium", 1988, pages 1 to 6, by Seidel & Csepregi, it became known Piezoresistive pressure transducers through the etching production of a mem industry structure. All previous state of the art However, the methods of the aforementioned type require relatively high levels of operation tensions and capacities.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art aufzuzeigen, durch das eine Membrandiode herge­ stellt werden kann, die die vorgenannten Nachteile nicht mehr aufweist, optimal an die zu untersuchende Strahlenart anpaßbar ist und in bezug auf das Hintergrundrauschen durch andere Strahlungen optimierte Eigen­ schaften aufweist.The present invention has for its object a method of point out the type mentioned, through which a membrane diode can be provided, which no longer has the aforementioned disadvantages, is optimally adaptable to the type of radiation to be examined and in relation Eigen optimized for background noise by other radiations features.

Diese Aufgabe wird durch die im Anspruch 1 aufgezeigten Maßnahmen in überraschend einfacher Weise gelöst. Im Unteranspruch ist eine Weiter­ bildung aufgezeigt und in der nachfolgenden Beschreibung ist ein Ausfüh­ rungsbeispiel erläutert sowie in der einzigen Figur der Zeichnung darge­ stellt. Diese Figur zeigt einen Querschnitt einer nach dem vorgeschlage­ nen Verfahren hergestellten Membrandiode in vergrößerter Darstellung.This object is achieved by the measures indicated in claim 1 solved surprisingly simple way. Another is in the subclaim education shown and in the description below is an execution Example explained and Darge in the single figure of the drawing poses. This figure shows a cross section according to the proposed NEN method manufactured diaphragm diode in an enlarged view.

Die dargestellte mikromechanisch hergestellte Diode ist monolithisch aus einem einkristallinen Material - im vorliegenden Falle aus "n-Typ" Sili­ zium (100) Orientierung - mit Hilfe von an sich bekannter Planar- und Ätztechniken (etched Backside) herausgearbeitet. Durch die verwendete mikromechanische Ätztechnik wird eine Membranstruktur hergestellt - wie aus der Figur der Zeichnung deutlich veranschaulicht ist - die auf der Vorder- und Rückseite in entgegengesetztem Typus implantiert wurde. Wie in der Zeichnung dargestellt, erfährt die Vorderseite eine "p+-Implanta­ tion" und die Rückseite eine "n+-Implantation". Die Tiefe dieser rück­ seitigen Ätzung richtet sich nun nach der zu untersuchenden Strahlung, beispielsweise ist für Alpha-Teilchen mit Energien zwischen 3 bis 10 MeV z. B. ²³⁸U, ²³⁵U, ²³⁹Pu, ²⁴⁰Pu, ²⁴³Am u. v. m.) eine Restsub­ stratdicke (Substratdicke minus Ätztiefe) von 10 bis 50 µm optimal.The micromechanically produced diode shown is monolithic a single-crystal material - in the present case from "n-type" sili zium (100) Orientation - with the help of known planar and Etching techniques (etched backside) worked out. By the used micromechanical etching technology creates a membrane structure - like is clearly illustrated from the figure of the drawing - which on the  Front and back were implanted in opposite types. How shown in the drawing, the front undergoes a "p + implant tion "and the back of an" n + implant ". The depth of this back side etching now depends on the radiation to be examined, for example, for alpha particles with energies between 3 to 10 MeV e.g. B. ²³⁸U, ²³⁵U, ²³⁹Pu, ²⁴⁰Pu, ²⁴³Am u. v. m.) a residual sub stratdicke (substrate thickness minus etching depth) of 10 to 50 µm optimal.

Durch diese optimale Anpassung der Membran an die Strahlungsart kann der Detektor bei minimaler Betriebsspannung und Kapazität arbeiten und die­ ses Prinzip der mikrostrukturierten Membrandiode kann auf weitere der bekannten Diodenanwendungen übertragen werden, ohne daß die hier erziel­ ten Vorteile beeinträchtigt würden.Through this optimal adaptation of the membrane to the type of radiation, the Detector and operate at minimum operating voltage and capacity This principle of the microstructured membrane diode can be applied to the known diode applications are transmitted without achieving the here advantages would be impaired.

Durch diese optimale Anpassung an die zu untersuchende oder zu detektie­ rende Strahlungsart wird der Rauschhintergrund anderer Strahlungen er­ heblich verringert, da Teilchen mit Reichweiten, die größer als das rückgeätzte Substrat sind, nur noch beschränkt zum Rauschen beitragen.Through this optimal adaptation to the investigated or to be detected The type of radiation is the background noise of other radiation significantly reduced since particles with ranges greater than that etched-back substrates are only contributing to the noise to a limited extent.

Mehrere solcher mikrostrukturierter Membrandioden können nun zu einem Array zusammengefaßt werden und liefern so einen Energiediskriminator.Several such microstructured membrane diodes can now be combined into one Array can be summarized and thus provide an energy discriminator.

Claims (2)

1. Verfahren zur Herstellung einer Membrandiode mittels Planar- oder Ätztechnik, dadurch gekennzeichnet, daß die monolithisch aus einem einkristallinen Material - wie beispielsweise Silizium (100) - erzeugte Diode durch die mikromechanische Ätztechnik (Etched Backside) eine Mem­ branstruktur erhält, die auf der Vorderseite einer p+-Implantation und auf der Rückseite einer n+-Implantation unterworfen wird, wobei die Tie­ fe der rückseitigen Ätzung entsprechend der zu untersuchenden oder zu detektierenden Strahlung ausgeführt wird.1. A method for producing a membrane diode using planar or etching technology, characterized in that the monolithically produced from a single-crystalline material - such as silicon (100) - diode by the micromechanical etching technology (etched backside) receives a membrane structure that on the front is subjected to a p + implantation and an n + implantation on the back, the depth of the back etching being carried out in accordance with the radiation to be examined or detected. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß mehrere auf diese Weise mikrostrukturierte Membrandioden zu einem Array zusam­ mengefaßt werden.2. The method according to claim 1, characterized in that several in this way, micro-structured membrane diodes are combined to form an array be quantified.
DE4102285A 1991-01-26 1991-01-26 METHOD FOR PRODUCING A MEMBRANE DIODE Ceased DE4102285A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE4102285A DE4102285A1 (en) 1991-01-26 1991-01-26 METHOD FOR PRODUCING A MEMBRANE DIODE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE4102285A DE4102285A1 (en) 1991-01-26 1991-01-26 METHOD FOR PRODUCING A MEMBRANE DIODE

Publications (1)

Publication Number Publication Date
DE4102285A1 true DE4102285A1 (en) 1992-08-06

Family

ID=6423752

Family Applications (1)

Application Number Title Priority Date Filing Date
DE4102285A Ceased DE4102285A1 (en) 1991-01-26 1991-01-26 METHOD FOR PRODUCING A MEMBRANE DIODE

Country Status (1)

Country Link
DE (1) DE4102285A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999027325A2 (en) * 1997-11-25 1999-06-03 Robert Bosch Gmbh Thermal membrane sensor and method for the production thereof
US6579740B2 (en) * 2000-10-13 2003-06-17 Denso Corporation Method of making a thin film sensor
EP1548836A1 (en) * 2002-08-09 2005-06-29 Hamamatsu Photonics K. K. Photodiode array, production method therefor, and radiation detector
EP0771475B1 (en) * 1995-05-19 2005-12-21 Dr. Johannes Heidenhain GmbH Radiation-sensitive detector element
EP1648036A1 (en) * 2003-07-23 2006-04-19 Hamamatsu Photonics K.K. Backside-illuminated photodetector
EP1653520A1 (en) * 2003-07-29 2006-05-03 Hamamatsu Photonics K.K. Backside-illuminated photodetector
US7888761B2 (en) 2004-05-27 2011-02-15 Isis Innovation Limited Direct electron detector
WO2012084186A2 (en) 2010-12-22 2012-06-28 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Semiconductor detector having offset bonding contact
DE102020132289A1 (en) 2020-12-04 2022-06-09 Vishay Semiconductor Gmbh METHOD OF MAKING A PHOTODIODE

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP 2-241066 (A). In: Patents Abstr. of Japan, Sect. E, Vol. 14 (1990), Nr. 557 (E-1011) *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0771475B1 (en) * 1995-05-19 2005-12-21 Dr. Johannes Heidenhain GmbH Radiation-sensitive detector element
WO1999027325A3 (en) * 1997-11-25 1999-08-12 Bosch Gmbh Robert Thermal membrane sensor and method for the production thereof
WO1999027325A2 (en) * 1997-11-25 1999-06-03 Robert Bosch Gmbh Thermal membrane sensor and method for the production thereof
US6579740B2 (en) * 2000-10-13 2003-06-17 Denso Corporation Method of making a thin film sensor
US7148464B2 (en) 2002-08-09 2006-12-12 Hamamatsu Photonics K.K. Photodiode array with a plurality of depressions
EP1835539A3 (en) * 2002-08-09 2007-09-26 Hamamatsu Photonics K.K. Photodiode array, method of manufacturing the same, and radiation detector
EP1548836A1 (en) * 2002-08-09 2005-06-29 Hamamatsu Photonics K. K. Photodiode array, production method therefor, and radiation detector
EP1548836A4 (en) * 2002-08-09 2006-10-18 Hamamatsu Photonics Kk PHOTODIODE ARRAY, METHOD FOR PRODUCING THE SAME, AND RADIATION DETECTOR
EP1648036A4 (en) * 2003-07-23 2007-03-21 Hamamatsu Photonics Kk PHOTODETECTEUR LIGHT ON THE REAR FACE
EP1648036A1 (en) * 2003-07-23 2006-04-19 Hamamatsu Photonics K.K. Backside-illuminated photodetector
US7420257B2 (en) 2003-07-23 2008-09-02 Hamamatsu Photonics K.K. Backside-illuminated photodetector
EP1653520A1 (en) * 2003-07-29 2006-05-03 Hamamatsu Photonics K.K. Backside-illuminated photodetector
EP1653520A4 (en) * 2003-07-29 2007-03-21 Hamamatsu Photonics Kk BACKLIGHT PHOTODETECTOR
US7768086B2 (en) 2003-07-29 2010-08-03 Hamamatsu Photonics K.K. Backside-illuminated photodetector
US7888761B2 (en) 2004-05-27 2011-02-15 Isis Innovation Limited Direct electron detector
WO2012084186A2 (en) 2010-12-22 2012-06-28 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Semiconductor detector having offset bonding contact
DE102010055633A1 (en) * 2010-12-22 2012-06-28 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Semiconductor detector with offset bonding contact
DE102020132289A1 (en) 2020-12-04 2022-06-09 Vishay Semiconductor Gmbh METHOD OF MAKING A PHOTODIODE

Similar Documents

Publication Publication Date Title
DE69306687T2 (en) Accelerometer sensitive to the side and method for its manufacture
DE69318956T2 (en) Process for manufacturing accelerometers using "silicon on insulator" technology
EP1550349B1 (en) Membrane and method for the production thereof
DE69315544T2 (en) Integrated accelerometer with measuring axis parallel to the substrate
EP0394305B1 (en) Device for measuring acceleration
DE19826317B4 (en) Method for producing a semiconductor substrate, semiconductor pressure sensor and its production method
DE69408005T2 (en) Semiconductor device with piezoresistive pressure transducer
DE4016471A1 (en) MICROMECHANICAL INCLINATION SENSOR
DE112006002946T5 (en) Semiconductor pressure gauge and method for its manufacture
DE69012748T2 (en) CONVERTER WITH A MEMBRANE AND A VARIETY OF SENSING ELEMENTS.
DE4309206C1 (en) Semiconductor device having a force and/or acceleration sensor
EP1744138A1 (en) Micromechanical device with two sensor structures and method for manufacturing a micromechanical device
DE4102285A1 (en) METHOD FOR PRODUCING A MEMBRANE DIODE
DE4030466C2 (en) Piezo resistance device
DE4318466A1 (en) Micromechanical sensor and method for its production
WO1991000522A1 (en) Device for measuring mechanical forces and dynamic effects
DE69714204T2 (en) pressure monitor
DE4333099A1 (en) Force sensor and process for producing a force sensor
CH684611A5 (en) A method for producing capacitive sensors and capacitive sensor.
DE102020213030A1 (en) Manufacturing process for a micromechanical component for a sensor or microphone device
DE19603829A1 (en) Silicon@ based micromechanical structure manufacturing method
DE102005055473A1 (en) Micromechanical device for use in e.g. pressure sensor, has seismic mass that is connected by spring structure, and free space and cavity that are provided parallel to main substrate level and below front side surface
DE102016107856A1 (en) Pressure measuring device
EP1569865B1 (en) Production of microelectromechanical systems (MEMS) using the high-temperature silicon fusion bonding of wafers
DE102017109971A1 (en) pressure sensor

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8127 New person/name/address of the applicant

Owner name: DEUTSCHE AEROSPACE AG, 8000 MUENCHEN, DE

8131 Rejection