DE4102257A1 - Appts. for mfg. reinforced components in laser-cured polymer - has laser-curable polymer in bath, laser directed at polymer surface where fibres pass through polymer and are guided relative to laser beam angle - Google Patents
Appts. for mfg. reinforced components in laser-cured polymer - has laser-curable polymer in bath, laser directed at polymer surface where fibres pass through polymer and are guided relative to laser beam angleInfo
- Publication number
- DE4102257A1 DE4102257A1 DE4102257A DE4102257A DE4102257A1 DE 4102257 A1 DE4102257 A1 DE 4102257A1 DE 4102257 A DE4102257 A DE 4102257A DE 4102257 A DE4102257 A DE 4102257A DE 4102257 A1 DE4102257 A1 DE 4102257A1
- Authority
- DE
- Germany
- Prior art keywords
- polymer
- laser
- liquid
- fibers
- fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 229920000642 polymer Polymers 0.000 title abstract 11
- 239000004033 plastic Substances 0.000 claims abstract description 37
- 229920003023 plastic Polymers 0.000 claims abstract description 37
- 239000000835 fiber Substances 0.000 claims description 57
- 239000007788 liquid Substances 0.000 claims description 28
- 238000004519 manufacturing process Methods 0.000 claims description 13
- 230000005855 radiation Effects 0.000 claims description 12
- 238000006073 displacement reaction Methods 0.000 claims description 4
- 230000036316 preload Effects 0.000 claims description 3
- 239000004744 fabric Substances 0.000 claims 1
- 239000007791 liquid phase Substances 0.000 claims 1
- 230000003014 reinforcing effect Effects 0.000 claims 1
- 239000012530 fluid Substances 0.000 abstract 3
- 230000002787 reinforcement Effects 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 11
- 101150114468 TUB1 gene Proteins 0.000 description 6
- 238000000034 method Methods 0.000 description 4
- 229920002430 Fibre-reinforced plastic Polymers 0.000 description 3
- 239000011151 fibre-reinforced plastic Substances 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 238000010408 sweeping Methods 0.000 description 2
- 238000005422 blasting Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000007596 consolidation process Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 239000002991 molded plastic Substances 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000012783 reinforcing fiber Substances 0.000 description 1
- 230000003716 rejuvenation Effects 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/28—Shaping operations therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C35/00—Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
- B29C35/02—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
- B29C35/08—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
- B29C35/10—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation for articles of indefinite length
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/106—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
- B29C64/124—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
- B29C64/129—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
- B29C64/135—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C35/00—Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
- B29C35/02—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
- B29C35/08—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
- B29C35/0805—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
- B29C2035/0838—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using laser
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/06—Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
- B29K2105/08—Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
- B29K2105/10—Cords, strands or rovings, e.g. oriented cords, strands or rovings
- B29K2105/101—Oriented
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Health & Medical Sciences (AREA)
- Materials Engineering (AREA)
- Optics & Photonics (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Thermal Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Toxicology (AREA)
- Composite Materials (AREA)
- Treatment Of Fiber Materials (AREA)
- Moulding By Coating Moulds (AREA)
Abstract
Description
Die Erfindung betrifft eine Vorrichtung der im Oberbegriff des Anspruchs 1 angegebenen Art.The invention relates to a device in the preamble of claim 1 specified Art.
Bekannt ist eine Vorrichtung zur Herstellung beliebig ge formter Kunststoffteile, bestehend aus einer mit einer durch energiereiche Strahlung aushärtbaren Flüssigkeit ge füllten Wanne, einer innerhalb der Flüssigkeit verschieb lichen Halterung für den Körper und einer Strahlungsquelle für die energiereiche Strahlung, insbesondere einem Laser. Der Laser dient der örtlichen Aushärtung der Flüssigkeit und läßt sich dazu gezielt auf vorgegebene Flächenelemente der Flüssigkeitsoberfläche richten, so daß dort Schichten aushärtbar sind, deren Eindringtiefe in die Flüssigkeit von der Intensität und der Überstreichungsgeschwindigkeit des Laserstrahls abhängt. Die Halterung taucht dabei, aus gehend von der Flüssigkeitsoberfläche schrittweise verti kal in die Flüssigkeit ein und bewirkt somit, daß die be reits ausgehärteten Schichten in die Flüssigkeit einsin ken. Die Steuerung des Laserstrahls erfolgt in Abhängig keit von den Oberflächenkoordinaten des herzustellenden Körpers.A device for producing any ge is known molded plastic parts, consisting of one with one liquid curable by high-energy radiation filled pan, one moving inside the liquid Lichen holder for the body and a radiation source for high-energy radiation, especially a laser. The laser is used to locally harden the liquid and can be targeted to specified surface elements align the surface of the liquid so that there are layers are curable, their depth of penetration into the liquid on the intensity and the sweeping speed depends on the laser beam. The bracket dips out gradually increasing from the surface of the liquid kal into the liquid and thus causes the be already hardened layers in the liquid ken. The control of the laser beam is dependent on speed of the surface coordinates of the to be manufactured Body.
Diese Vorrichtung zeichnet sich vor allem dadurch aus, daß sehr kompliziert geformte Körper, insbesondere Kunststoff teile, einstückig erzeugbar sind. Aber gerade derartige einstückig ausgebildetete und/oder komplizierte Konturen aufweisende Teile sind oft extremen Belastungen ausge setzt. Daher ist häufig eine nachträgliche Verfestigung der Oberfläche mittels aufwendiger Beschichtungstechnolo gien notwendig. Nachteilig ist neben den geringen Festig keitseigenschaften auch die geringe dynamische Belastbar keit der auf die genannte Weise hergestellten Kunststoff körper. Dies ist ein Grund dafür, daß eine breite Anwen dung der eingangs genannten Vorrichtung bisher nicht zum tragen kam.The main feature of this device is that very intricately shaped body, especially plastic parts that can be produced in one piece. But just such integrally formed and / or complicated contours showing parts are often subjected to extreme loads puts. Therefore, subsequent consolidation is often necessary the surface using complex coating technology necessary. Another disadvantage is the low strength the low dynamic resilience speed of the plastic produced in the manner mentioned body. This is one reason that a wide range of users So far, the device mentioned above has not been used for wear came.
Der Erfindung liegt die Aufgabe zugrunde, für eine Vor richtung der eingangs genannten Gattung, Mittel zur Festig keitssteigerung, insbesondere der Oberflächenschicht, des herzustellenden Körpers anzugeben, so daß der Einsatzbe reich der Vorrichtung erweitert wird.The invention has for its object for a front direction of the type mentioned, means for strengthening increase, especially of the surface layer, of the specify body to be manufactured, so that the Einsatzbe range of the device is expanded.
Diese Aufgabe wird mit den kennzeichnenden Merkmalen des Anspruchs 1 gelöst.This task is carried out with the characteristic features of the Claim 1 solved.
Die Erfindung liegt die Erkenntnis zugrunde, daß Fasern verschiedener Beschaffenheit in die Aushärtungszone der flüssigkeitsaushärtenden Strahlung und damit vorzugsweise auch in die Oberflächenschicht des herzustellenden Körpers einschmelzbar sind und somit festigkeitssteigernd im her gestellten Körper wirken. Faserverstärkte Kunststoffe wei sen hohe Festigkeitswerte und gute Beanspruchungseigen schaften auf und finden in vielen Bereichen Anwendung. Da bei sind allgemein die Beanspruchungsmöglickeiten eines faserverstärkten Kunststoffes um ein Vielfaches höher als bei den faserlosen Kunststoffen. Insbesondere erhöht sich die Zugfestigkeit des faserverstärkten Kunststoffes in Fa serrichtung.The invention is based on the finding that fibers different properties in the curing zone of the liquid-curing radiation and therefore preferably also in the surface layer of the body to be manufactured are fusible and thus increase strength in the forth placed body act. Fiber reinforced plastics white high strength values and good stress properties create and are used in many areas. There at are the possible uses in general fiber-reinforced plastic many times higher than for fiberless plastics. In particular, increases the tensile strength of the fiber-reinforced plastic in erection.
Besonders vorteilhaft ist hierbei, daß die Fasern im we sentlichen senkrecht zur Flüssigkeitsoberfläche gerichtet und an den unteren Enden mit einer Halterung während des Aushärtevorgang mitgeführt vorgesehen sind. Dadurch sind die Fasern auf einfache Weise in den auszuhärtenden Be reich der untersten Schicht des herzustellenden Körpers einbringbar. Bei Beginn des Fertigungsablaufes werden die Fasern an ihren unteren Enden vom Aushärtungsstrahl erfaßt und somit in den auszuhärtenden Bereich der Flüssigkeit eingebracht. Wahlweise sind dabei vorteilhaft die unteren Faserenden mit der, insbesondere siebartigen, Halterung oder einer, vorzugsweise mit Schlitzen zum Einklemmen der Faserenden versehenen, Scheibe am Boden der Wanne verbun den. Mit geringem Aufwand sind dadurch die Fasern bearbei tungsgerecht innerhalb der Flüssigkeit zum Aushärten fi xierbar, so daß die untersten, äußeren Konturen des herzu stellenden Körpers im wesentlichen der äquivalenten Form entsprechen, die die fixierten Faserenden in Ihrer Gesamt heit nebeneinander angeordnet einnnehmen.It is particularly advantageous here that the fibers in the we substantially perpendicular to the liquid surface and at the lower ends with a bracket during the Curing process are provided. Thereby the fibers in the Be to be cured in a simple manner rich in the bottom layer of the body to be manufactured applicable. At the beginning of the production process, the Fibers caught at their lower ends by the curing beam and thus in the area of the liquid to be hardened brought in. Optionally, the lower ones are advantageous Fiber ends with the, in particular sieve-like, holder or one, preferably with slots for clamping the Fiber ends provided, disc on the bottom of the tub verbun the. The fibers can be processed with little effort in line with the liquid for hardening fi xbare, so that the lowest, outer contours of the body essentially of the equivalent form that match the fixed fiber ends in their total take next to each other.
Zur Führung der Fasern sind vorzugsweise Durchführungsösen aufweisende Halterungen vorgesehen, die in einer zur Flüs sigkeitsoberfläche parallelen Ebene beweglich sind. Ent sprechend der Auslenkung des Aushärtungsstrahls sind die Bewegungen der Halterung über eine Steuerung derart auf einander abgestimmt, daß sich die von der beweglichen Hal terung geführte Faser und der Aushärtungsstrahl an der Flüssigkeitsoberfläche beim Aushärtevorgang kreuzen. Der Ansteuerimpuls zur Auslenkung des Strahls der Strahlungs quelle dient dabei gleichzeitig zur Führung des Halters der jeweils nächsten von dem Aushärtungsstrahl zu kreuzen den Faser. Die Halterungen sind dementsprechend auf radia len Geraden mit gemeinsamem Schnittpunkt beweglich ange ordnet.Feed-through eyelets are preferably used to guide the fibers having brackets provided in a to the rivers liquid surface parallel plane are movable. Ent speaking of the deflection of the curing beam Movements of the holder on a controller in such a way coordinated with each other so that the moving Hal guided fiber and the curing beam on the Cross the liquid surface during the curing process. The Control pulse for deflecting the beam of radiation Source also serves to guide the holder to cross the next of the curing beam the fiber. The brackets are accordingly on radia len straight lines with a common intersection arranges.
Gemäß einer weiteren vorteilhaften Weiterbildung werden die Fasern durch die Ösen der angesteuerten Halter hin durchgeführt, innerhalb derer sie jeweils unter einer ge wissen Vorspannung gleitbar gelagert sind. Diese Vorspan nung wird mit herkömmlichen Mitteln, beispielsweise Feder anordnungen, annähernd konstant gehalten.According to a further advantageous development the fibers through the eyelets of the controlled holder carried out, within which they are each under a ge know preload are slidably mounted. This preload tion is by conventional means, such as spring arrangements, kept almost constant.
Vorzugsweise sind die Fasern auf axial drehbar gelagerten Vorratsspulen aufgewickelt, wobei sich immer genau die Fa serlänge von der Spule abwickelt, die entsprechend der Au ßenkontur des herzustellenden Körpers benötigt wird. Ist das Faserende mit der Halterung verbunden, wird auch der durch das schrittweise Eintauchen der Halterung in die strahlungshärtbare Flüssigkeit verursachte Anteil ausgeg lichen.The fibers are preferably mounted on axially rotatable Supply spools wound up, whereby exactly the company unwinds from the coil, which corresponds to the Au The outer contour of the body to be manufactured is required. Is the fiber end connected to the bracket, the by gradually immersing the bracket in the Radiation-curable liquid caused portion out lichen.
Die Vorrichtung eignet sich besonders zur Herstellung dünnwandiger Hohlkörper, wie beispielsweise Gehäuseteilen. Aber auch die Herstellung von Kompaktkörpern ist möglich. Die Verfestigung der Schichten innerhalb der von dem Aus härtungsstrahl verfestigten Außenkontur kann durch konti nuierliches Überstreichen mit dem Aushärtungsstrahl reali siert werden. Dieser Vorgang wiederholt sich nach jedem Umlauf das Aushärtungsstrahls innerhalb der neuen Kontur. Die Halter zur Führung der Fasern werden während dieser Programmphasen nicht angesteuert.The device is particularly suitable for production thin-walled hollow body, such as housing parts. However, the production of compact bodies is also possible. The solidification of the layers within the from the hardened blasting solidified outer contour can by continuous Nuclear painting with the curing beam reali be settled. This process is repeated after everyone Circulation of the curing beam within the new contour. The holders for guiding the fibers are made during this Program phases not controlled.
Handelt es sich bei der strahlungsaushärtbaren Flüssigkeit beispielsweise um bei UV-Licht aushärtenden Kunststoff, ist die Strahlungsquelle, vorzugsweise ein Laser, auf den ultravioletten Wellenlängenbereich abgestimmt.Is the radiation-curable liquid for example around plastic curing with UV light, is the radiation source, preferably a laser, on the tuned ultraviolet wavelength range.
Im folgenden werden Aufbau und Handhabung einer mit einer Laserstrahlungsquelle ausgestatteten Vorrichtung zur Her stellung von Kunststoffteilen näher beschrieben. Bei die ser speziellen Vorrichtung sind die Verstärkungsfasern auf Spulen aufgewickelt und werden über ansteuerbare Faserhal ter geführt. Die Faserenden sind in Schlitzen einer kreis förmigen, am Boden der Kunststoffwanne fixierbaren Scheibe eingeklemmt.In the following, the structure and handling of one with a Laser radiation source equipped device for manufacturing position of plastic parts described in more detail. At the This special device are the reinforcing fibers Coils are wound and are controlled via controllable fiber neck ter led. The fiber ends are circular in slots shaped, fixable on the bottom of the plastic tub trapped.
Vor Inbetriebnahme der Anlage sind die Spulen auf Achsen aufzusetzen und die Faserenden sind über Faserspannungs konstanthalter durch Ösen der Faserhalter hindurchzufä deln. Diese Maßnahmen sind auch bei Spulenwechsel auszu führen. Danach werden die Faserenden durch bestimmte Ma schen der als Sieb ausgeführten Halterung geführt und in periphere Schlitze der kreisförmigen Scheibe eingeklemmt. Überkreuzungen der Fasern im gespannten Zustand sind zu vermeiden. Nach dem Plazieren der Scheibe auf der Boden platte der Wanne erfolgt das Einsetzen des Siebes und das Einstellen der Faserspannungen. Die Wanne wird bis zu ei ner Tiefe, die mindestens der Höhe des herzustellenden Kunststoffteiles entspricht mit flüssigem Kunststoff ge füllt. Die Form des herzustellenden Kunststoffteiles wird durch die Eingabe des Steuerprogramms für den Bewegungsab lauf des Laserstrahls festgelegt. Nach dem Starten des Programms führen der Laserstrahl, die Faserhalter und das Sieb genau aufeinander abgestimmte Bewegungen aus. Ist der Fertigungsprozeß abgeschlossen, können die Scheibe, das Sieb und das verfestigte Kunststoffteil aus der Wanne her ausgehoben werden. Abschließend wird das Kunststoffteil von den Fasern abgetrennt und die abgetrennten Enden der Fasern werden aus den Schlitzen der Scheibe entfernt.Before starting up the system, the coils are on axes put on and the fiber ends are over fiber tension constant holder through eyelets of the fiber holder deln. These measures must also be taken when changing bobbins to lead. Then the fiber ends are determined by certain dimensions the holder designed as a sieve and in peripheral slits of the circular disc pinched. Crossings of the fibers in the tensioned state are too avoid. After placing the disc on the floor insert the sieve and the plate of the tub Setting the fiber tensions. The tub will be up to ner depth that is at least the height of the to be manufactured Plastic part corresponds with liquid plastic ge fills. The shape of the plastic part to be produced by entering the control program for the movement course of the laser beam. After starting the The program will lead the laser beam, the fiber holder and that Sieve precisely coordinated movements. Is the Manufacturing process completed, the disc can Sieve and the solidified plastic part from the tub be excavated. Finally, the plastic part severed from the fibers and the severed ends of the Fibers are removed from the slits in the disc.
Um ein Abdecken der aushärtenden Strahlung durch die Fa sern zu vermeiden, sind letztere bezüglich ihrer freien Enden vorzugsweise in radialer Richtung verschieblich, während die Strahlungsquelle nicht nur in ihrer Richtung durch Neigung veränderlich ist, sondern bedarfsweise auch um einen Längenbetrag in tangentialer Richtung - bezogen auf eine vertikale Achse des Werkstücks.In order to cover the curing radiation by the company to avoid the latter are the latter with regard to their free Ends preferably displaceable in the radial direction, while the radiation source is not just in their direction is changeable by inclination, but also if necessary by a length in the tangential direction on a vertical axis of the workpiece.
Vorteilhafte Weiterbildungen der Erfindung sind in den Un teransprüchen gekennzeichnet bzw. werden nachstehend zu sammen mit der Beschreibung der bevorzugten Ausführung der Erfindung anhand der Figuren näher dargestellt. Es zeigen:Advantageous developments of the invention are in the Un claims marked or become below together with the description of the preferred embodiment of the Invention illustrated with reference to the figures. Show it:
Fig. 1 eine Ausführungsform einer erfindungsgemäßen Vorrichtung zu Beginn des Fertigungsablaufes, Fig. 1 shows an embodiment of a device according to the invention at the beginning of the production sequence,
Fig. 1a die Umrisse des verfestigten Körpers entspre chend Fig. 1, Fig. 1a, the outlines of the solidified body accordingly Fig. 1,
Fig. 2 die auf Darstellung nur einer Faser schematisch vereinfachte Vorrichtung gemäß Fig. 1 während des Ferti gungsablaufes, Fig. 2, only one fiber schematically simplified apparatus of FIG. 1 supply sequence on display during the Ferti,
Fig. 2a die Umrisse des verfestigten Körpers entspre chend Fig. 2, Fig. 2a shows the outline of the solidified body accordingly Fig. 2,
Fig. 3 die auf der Darstellung nur einer Faser schema tisch vereinfachte Vorrichtung gemäß Fig. 1 zum Ende des Fertigungsablaufes, Fig. 3, on the presentation of only a fiber schematically simplified device according to Fig. 1 to the end of the production sequence,
Fig. 3a die Umrisse des verfestigten Körpers entspre chend Fig. 3 mit umgebenden Fasern, Fig. 3a shows the outline of the solidified body accordingly FIG. 3 with surrounding fibers,
Fig. 4 einen Schnitt durch die stark vergrößerten Ver festigungsschichten und Fig. 4 shows a section through the greatly enlarged layers and Ver
Fig. 5 eine perspektivische Darstellung der verschie bungsgeraden der Faserführungselemente relativ zur Laser strahlauslenkung. Fig. 5 is a perspective view of the displacement straight line of the fiber guide elements relative to the laser beam deflection.
Die in Fig. 1 dargestellte Vorrichtung besteht im wesent lichen aus einer kastenförmigen Wanne 1, die mit flüssigem Kunststoff 2 gefüllt ist, einem innerhalb des Kunststoff bades senkrecht zu dessen Oberfläche 3 verschieblichen Sieb 4, einem Laser 5, dessen kunststoffhärtender Strahl 6 auf die Kunststoffoberfläche 3 gerichtet ist sowie mehre ren Fasern 7, welche in peripheren Schlitzen 8 einer am Boden der Wanne 1 fixierten Kreisscheibe 9 eingeklemmt sind, durch Maschen 10 (Fig. 4) des Siebes 4 über paral lel zur verfestigten Oberfläche 11 (Fig. 2′ und 3′) des herzustellenden Kunststoffteiles 12 (Fig. 3′) ver schieblichen Ösen 13, Mitteln 14 zum Einstellen und Kon stanthalten der Faserspannung und drehbar auf Achsen 15 gelagerten Spulen 16 geführt werden.The device shown in Fig. 1 consists in wesent union of a box-shaped trough 1 , which is filled with liquid plastic 2 , a within the plastic bath perpendicular to its surface 3 movable sieve 4 , a laser 5 , the plastic-curing beam 6 on the plastic surface 3 is directed as well as several fibers 7 , which are clamped in peripheral slots 8 of a circular disk 9 fixed to the bottom of the tub 1 , through meshes 10 ( FIG. 4) of the sieve 4 via parallel to the solidified surface 11 ( FIG. 2 'and 3 ') of the plastic part 12 to be produced ( Fig. 3') ver sliding eyelets 13 , means 14 for adjusting and Kon constant holding the fiber tension and rotatably mounted on axes 15 coils 16 are guided.
Der Laserstrahl 6 ist derart auslenkbar, daß auf der Kunststoffoberfläche 3 Konturen 17 aushärtbar sind, die schichtweise die Oberfläche 11 des herzustellenden Kunst stoffteiles 12 begrenzen, wobei das Sieb 4 ausgehend von der Kunststoffoberfläche 3 mit der Aushärtegeschwindigkeit senkrecht zur Kunststoffoberfläche 3 in das Kunststoffbad eintaucht. Die Ösen 13 sind in einer zur Kunststoffober fläche 3 parallelen Ebene beweglich und entsprechend der Auslenkung des Laserstrahls 6 einzeln ansteuerbar, so daß sich die mit der angesteuerten Öse 13 geführte Faser 7 und der Laserstrahl 6 an der Kunststoffoberfläche 3 kreuzen.The laser beam 6 can be deflected in such a way that contours 17 can be hardened on the plastic surface 3 , which delimit layers of the surface 11 of the plastic part 12 to be produced , the sieve 4 being immersed in the plastic bath 3 starting from the plastic surface 3 at the curing speed perpendicular to the plastic surface 3 . The eyelets 13 are movable in a plane parallel to the plastic surface 3 and individually controllable in accordance with the deflection of the laser beam 6 , so that the fiber 7 guided with the actuated eyelet 13 and the laser beam 6 cross on the plastic surface 3 .
Der Bewegungsablauf des Laserstrahles 6, der Öse 13′, die die herausgegriffene Faser 7′ führt und des Siebes 3 bei Fortgang des Fertigungsprozesses ist in den Fig. 2 und 3 dargestellt. Die Fig. 2a und 3a zeigen den im jewei ligen Produktionsstadium bereits verfestigten Abschnitt des herzustellenden Kunstststoffteiles 12. Die den Fig. 1, 2 und 3 zugeordneten Konturen sind mit 17a, 17b und 17c bezeichnet. Es ist ersichtlich, daß die Öse 13′ entlang einer Geraden parallel zur Kunststoffoberfläche 3 ver schieblich ist, wobei die Lageänderung der Öse 13′ gegenü ber dem vorangegangenen Durchgang des Laserstrahls von der Änderung des Auslenkungswinkels 18 des Laserstrahls 6 ab hängt.The sequence of movements of the laser beam 6 , the eyelet 13 ', which leads the picked fiber 7 ' and the sieve 3 as the manufacturing process continues is shown in FIGS. 2 and 3. Figs. 2a and 3a show the time in jewei production stage already solidified portion of the produced Kunstststoffteiles 12th The contours assigned to FIGS. 1, 2 and 3 are designated 17 a, 17 b and 17 c. It can be seen that the eyelet 13 'is slidable along a straight line parallel to the plastic surface 3 , the change in position of the eyelet 13 ' relative to the previous passage of the laser beam depending on the change in the deflection angle 18 of the laser beam 6 .
In Fig. 4 ist der dritte Durchgang und somit der Aufbau der dritten Schicht in einem stark vergrößerten Schnitt bild dargestellt.In Fig. 4, the third pass and thus the structure of the third layer is shown in a greatly enlarged sectional view.
Um Überschneidungen zwischen den mechanischen Steuerele menten 19 (Fig. 1), den Ösen 13 und den Fasern 7 einer seits und dem Laserstrahl 6 (Fig. 1) andererseits zu ver meiden, sind die verschiebungsgeraden 20 (Fig. 5) der Ösen 13 und der Steuerelemente 19 derart angeordnet, daß der Laserstrahl 6 bei der größtmöglichen Auslenkung, wie aus Fig. 5 ersichtlich, unmittelbar neben den Steuerele menten 19 bzw. Ösen 13 verläuft. Die Verschiebungsgeraden 20 schneiden sich demzufolge nicht in einem Punkt sondern auf einem konzentrisch um den Auslenkungskegel des Laser strahls 6 angeordneten Kreis 21. Da der Durchmesser dieses Kreises 21 der Verschiebungsgeradenschnittpunkte im Inte resse einer gleichmäßigen Überspannung der Oberfläche 11 des herzustellenden Kunststoffteiles 12 mit Fasern 7 mög lichst gering sein muß, ist die Ebene des Kreises 21 der Schnittpunkte der Verschiebungsgeraden 20 dicht unterhalb des Auslenkungszentrums 22 des Laserstrahles 6 angeordnet.In order to avoid overlaps between the mechanical control elements 19 ( FIG. 1), the eyelets 13 and the fibers 7 on the one hand and the laser beam 6 ( FIG. 1) on the other hand, the straight lines of displacement 20 ( FIG. 5) of the eyelets 13 and the control elements 19 arranged such that the laser beam 6 at the greatest possible deflection, as shown in FIG. 5, immediately adjacent to the control elements 19 or eyelets 13 . The straight lines of displacement 20 therefore do not intersect at one point but on a circle 21 arranged concentrically around the deflection cone of the laser beam 6 . Since the diameter of this circle 21 of the straight line intersection points inte resse a uniform overvoltage of the surface 11 of the plastic part 12 to be manufactured with fibers 7 must be as small as possible, the plane of the circle 21 of the intersection points of the straight line 20 is arranged just below the deflection center 22 of the laser beam 6 .
Die Ansteuerung der Ösen 13 gewährleistet auch, daß bei abnehmender Laserstrahlauslenkung zweier aufeinanderfol gender Durchgänge und folglich bei örtlicher Verjüngung des zu generierenden Kunststoffteiles nur die gerade ange steuerte Öse 13′ den Kreis 21 der Schnittpunkte der Ver schiebungsgeraden 20 tangiert. Diese Öse 13′ wird unmit telbar nach dem Einschmelzen der mit ihr geführten Faser 7′ bis weit außerhalb des Kreises 21 der Schnittpunkte zu rückbewegt. Damit ist gewährleistet, daß gegenseitige Be hinderungen der Fasern 7 nicht auftreten.The control of the eyelets 13 also ensures that with decreasing laser beam deflection two consecutive passages and consequently with local rejuvenation of the plastic part to be generated, only the eyelet 13 'just controlled affects the circle 21 of the intersection points of the straight line 20 Ver. This eyelet 13 'is immediately moved back to the far outside of the circle 21 of the intersection points after the melting of the fiber 7 ' carried with it. This ensures that mutual impediments to the fibers 7 do not occur.
Die Form des herzustellenden Kunststoffteiles wird von den Bewegungsabläufen des Laserstrahls 6 bestimmt. Im Rahmen des Auslenkungsspielraumes des Laserstrahls 6 und des Ver schiebebereiches der Ösen 13 ist bei entsprechender Wan nengröße jeder beliebig geformte Kunststoffkörper 12 gene rierbar und mit Fasern 7 überziehbar.The shape of the plastic part to be produced is determined by the movement sequences of the laser beam 6 . Within the scope of the deflection of the laser beam 6 and the Ver shifting area of the eyelets 13 , any shape of plastic body 12 can be genetically generated with fibers 7 and coated with fibers 7 .
Die Vorrichtung gestattet sowohl die Herstellung von Hohl körpern als auch von kompakten Körpern. Zur Verfestigung des innerhalb der Außenkontur 17 befindlichen Schicht ist das Programm für den Bewegungsablauf des Laserstrahls 6 derart zu gestalten, daß nach jedem vollen Umlauf des La serstrahls 6 ein meanderförmiges Überstreichen der von der Außenkontur 17 einbeschriebenen Schicht erfolgt. Die An steuerung der Ösen ist während des Verfestigungsvorganges der inneren Schicht unterbrochen.The device allows both the production of hollow bodies and compact bodies. To solidify the layer located within the outer contour 17 the program is to make for the movement of the laser beam 6 in such a way that after each full revolution of the La serstrahls 6, a meandering sweeping the inscribed by the outer contour 17 layer. The control of the eyelets is interrupted during the solidification process of the inner layer.
Nachfolgend wird die Handhabung der in den Fig. 1, 2 und 3 dargestellten bevorzugten Ausführungsform einer er findungsgemäßen Vorrichtung zur Herstellung von Kunst stoffteilen 12 beschrieben. Bei dieser Vorrichtung sind die Fasern 7 auf Spulen 16 aufgewickelt und werden über ansteuerbare Ösen 13 geführt. Die Faserenden sind in Schlitzen 7 einer kreisförmigen Scheibe 8 einklemmbar und die Scheibe 8 ist am Boden der Kunststoffwanne 1 fixier bar.The handling of the preferred embodiment shown in FIGS . 1, 2 and 3 of a device according to the invention for the production of plastic parts 12 is described. In this device, the fibers 7 are wound on spools 16 and are guided over controllable eyelets 13 . The fiber ends can be clamped in slots 7 of a circular disc 8 and the disc 8 is at the bottom of the plastic tub 1 fixier bar.
Nach dem Aufsetzen der Spulen 16 auf den Achsen 15 sind die Faserenden 7′′ über die Faserspannungskonstanthalter 14 durch die Ösen 13 hindurchzufädeln und durch die Maschen 10 des Siebes 4 zu führen, die der Kontur 17a der ersten Aushärtungsschicht am nächsten liegen. Danach werden die Faserenden 7′′ in den peripheren Schlitzen 8 der kreisför migen Scheibe 9 eingeklemmt. Dabei sind Überkreuzungen der Fasern 7 zu vermeiden. Nachdem die Scheibe 9 auf der Bo denplatte der Wanne 1 fixiert ist, erfolgt das Einsetzen des Siebes 4 in die Wanne 1 und das Einstellen der Faser spannungen. Die Wanne 1 wird bis zu einer Tiefe, die min destens der Höhe des herzustellenden Kunststoffteiles 12 entspricht mit flüssigem Kunststoff 2 gefüllt. Die Form des herzustellenden Kunststoffteiles 12 wird durch die Eingabe des Steuerprogramms für den Bewegungsablauf des Laserstrahls 6 festgelegt. Nach dem Starten des Programms führen der Laserstrahl 6, die Ösen 13 und das Sieb 4 genau aufeinander abgestimmte Bewegungen aus. Ist der Ferti gungsprozeß abgeschlossen, werden die Scheibe 9, das Sieb 4 und das verfestigte Kunststoffteil 12 aus der Wanne 1 herausgenommen. Das Kunststoffteil 12 liegt dann in der in Fig. 3a dargestellten Form vor. Abschließend werden die Faserreste von dem Kunststoffteil 12 abgetrennt und die Enden 7′′ der Fasern 7 werden aus den Schlitzen 8 der Scheibe 9 entfernt.After placing the bobbins 16 on the axes 15 , the fiber ends 7 '' are threaded through the fiber tension stabilizer 14 through the eyelets 13 and through the meshes 10 of the sieve 4 , which are the contour 17 a of the first curing layer closest. Then the fiber ends 7 '' are clamped in the peripheral slots 8 of the circular disk 9 . Crossings of the fibers 7 are to be avoided. After the disc 9 on the Bo denplatte the tub 1 is fixed, the sieve 4 is inserted into the tub 1 and the fiber tension is adjusted. The tub 1 is filled with liquid plastic 2 to a depth that corresponds at least to the height of the plastic part 12 to be produced. The shape of the plastic part 12 to be produced is determined by entering the control program for the movement sequence of the laser beam 6 . After starting the program, the laser beam 6 , the eyelets 13 and the sieve 4 execute movements which are precisely coordinated with one another. If the production process is completed, the disk 9 , the sieve 4 and the solidified plastic part 12 are removed from the tub 1 . The plastic part 12 is then in the form shown in Fig. 3a. Finally, the fiber remnants are separated from the plastic part 12 and the ends 7 '' of the fibers 7 are removed from the slots 8 of the disc 9 .
Die Erfindung beschränkt sich in ihrer Ausführung nicht auf das vorstehend angegebene bevorzugte Ausführungsbei spiel. Vielmehr ist eine Anzahl von Varianten denkbar, welche von der dargestellten Lösung auch bei grundsätzlich anders gearteten Ausführungen Gebrauch machen.The invention is not restricted in its implementation to the preferred embodiment given above game. Rather, a number of variants are conceivable which of the solution shown also in principle make use of different types.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4102257A DE4102257A1 (en) | 1991-01-23 | 1991-01-23 | Appts. for mfg. reinforced components in laser-cured polymer - has laser-curable polymer in bath, laser directed at polymer surface where fibres pass through polymer and are guided relative to laser beam angle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4102257A DE4102257A1 (en) | 1991-01-23 | 1991-01-23 | Appts. for mfg. reinforced components in laser-cured polymer - has laser-curable polymer in bath, laser directed at polymer surface where fibres pass through polymer and are guided relative to laser beam angle |
Publications (1)
Publication Number | Publication Date |
---|---|
DE4102257A1 true DE4102257A1 (en) | 1992-07-30 |
Family
ID=6423731
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE4102257A Withdrawn DE4102257A1 (en) | 1991-01-23 | 1991-01-23 | Appts. for mfg. reinforced components in laser-cured polymer - has laser-curable polymer in bath, laser directed at polymer surface where fibres pass through polymer and are guided relative to laser beam angle |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE4102257A1 (en) |
Cited By (77)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001078968A1 (en) * | 2000-04-17 | 2001-10-25 | Envision Technologies Gmbh | Device and method for the production of three-dimensional objects |
US7783371B2 (en) | 2006-04-28 | 2010-08-24 | Envisiontec Gmbh | Device and method for producing a three-dimensional object by means of mask exposure |
US7831328B2 (en) | 2006-07-19 | 2010-11-09 | Envisiontec Gmbh | Method and device for producing a three-dimensional object, and computer and data carrier useful therefor |
US7845930B2 (en) | 2004-05-07 | 2010-12-07 | Envisiontec Gmbh | Process for the production of a three-dimensional object with an improved separation of hardened material layers from a construction plane |
US7892474B2 (en) | 2006-11-15 | 2011-02-22 | Envisiontec Gmbh | Continuous generative process for producing a three-dimensional object |
US7894921B2 (en) | 2006-04-28 | 2011-02-22 | Envisiontec Gmbh | Device and method for producing a three-dimensional object by means of mask exposure |
US8003040B2 (en) | 2007-10-26 | 2011-08-23 | Envisiontec Gmbh | Process and freeform fabrication system for producing a three-dimensional object |
USRE43955E1 (en) | 2004-05-10 | 2013-02-05 | Envisiontec Gmbh | Process for the production of a three-dimensional object with resolution improvement by pixel-shift |
US8372330B2 (en) | 2009-10-19 | 2013-02-12 | Global Filtration Systems | Resin solidification substrate and assembly |
US8465689B2 (en) | 2007-01-17 | 2013-06-18 | 3D Systems, Inc. | Elevator and method for tilting solid image build platform for reducing air entrainment and for build release |
WO2013017284A3 (en) * | 2011-08-04 | 2013-10-03 | Arburg Gmbh + Co. Kg | Method and device for producing a three-dimensional object comprising a fiber feed |
US8845316B2 (en) | 2007-07-04 | 2014-09-30 | Envisiontec Gmbh | Process and device for producing a three-dimensional object |
US8862260B2 (en) | 2004-05-10 | 2014-10-14 | Envisiontec Gmbh | Process for the production of a three-dimensional object with resolution improvement by “pixel shift” |
US9126367B1 (en) | 2013-03-22 | 2015-09-08 | Markforged, Inc. | Three dimensional printer for fiber reinforced composite filament fabrication |
US9126365B1 (en) | 2013-03-22 | 2015-09-08 | Markforged, Inc. | Methods for composite filament fabrication in three dimensional printing |
US9149988B2 (en) | 2013-03-22 | 2015-10-06 | Markforged, Inc. | Three dimensional printing |
US9156205B2 (en) | 2013-03-22 | 2015-10-13 | Markforged, Inc. | Three dimensional printer with composite filament fabrication |
US9186848B2 (en) | 2013-03-22 | 2015-11-17 | Markforged, Inc. | Three dimensional printing of composite reinforced structures |
US9186846B1 (en) | 2013-03-22 | 2015-11-17 | Markforged, Inc. | Methods for composite filament threading in three dimensional printing |
US9370896B2 (en) | 2013-06-05 | 2016-06-21 | Markforged, Inc. | Methods for fiber reinforced additive manufacturing |
US9511543B2 (en) | 2012-08-29 | 2016-12-06 | Cc3D Llc | Method and apparatus for continuous composite three-dimensional printing |
US9527244B2 (en) | 2014-02-10 | 2016-12-27 | Global Filtration Systems | Apparatus and method for forming three-dimensional objects from solidifiable paste |
US9539762B2 (en) | 2013-03-22 | 2017-01-10 | Markforged, Inc. | 3D printing with kinematic coupling |
US9579851B2 (en) | 2013-03-22 | 2017-02-28 | Markforged, Inc. | Apparatus for fiber reinforced additive manufacturing |
US9688028B2 (en) | 2013-03-22 | 2017-06-27 | Markforged, Inc. | Multilayer fiber reinforcement design for 3D printing |
US9694544B2 (en) | 2013-03-22 | 2017-07-04 | Markforged, Inc. | Methods for fiber reinforced additive manufacturing |
US9808991B2 (en) | 2014-07-29 | 2017-11-07 | Cc3D Llc. | Method and apparatus for additive mechanical growth of tubular structures |
US9815268B2 (en) | 2013-03-22 | 2017-11-14 | Markforged, Inc. | Multiaxis fiber reinforcement for 3D printing |
US9840035B2 (en) | 2016-04-15 | 2017-12-12 | Cc3D Llc | Head and system for continuously manufacturing composite hollow structure |
US9956725B2 (en) | 2013-03-22 | 2018-05-01 | Markforged, Inc. | Three dimensional printer for fiber reinforced composite filament fabrication |
US10040240B1 (en) | 2017-01-24 | 2018-08-07 | Cc3D Llc | Additive manufacturing system having fiber-cutting mechanism |
US10076876B2 (en) | 2013-03-22 | 2018-09-18 | Markforged, Inc. | Three dimensional printing |
US10081129B1 (en) | 2017-12-29 | 2018-09-25 | Cc3D Llc | Additive manufacturing system implementing hardener pre-impregnation |
US10105910B2 (en) | 2016-04-15 | 2018-10-23 | Cc3D Llc | Method for continuously manufacturing composite hollow structure |
US10131088B1 (en) | 2017-12-19 | 2018-11-20 | Cc3D Llc | Additive manufacturing method for discharging interlocking continuous reinforcement |
US10216165B2 (en) | 2016-09-06 | 2019-02-26 | Cc3D Llc | Systems and methods for controlling additive manufacturing |
US10259160B2 (en) | 2013-03-22 | 2019-04-16 | Markforged, Inc. | Wear resistance in 3D printing of composites |
US10319499B1 (en) | 2017-11-30 | 2019-06-11 | Cc3D Llc | System and method for additively manufacturing composite wiring harness |
US10345068B2 (en) | 2017-02-13 | 2019-07-09 | Cc3D Llc | Composite sporting equipment |
EP3347904B1 (en) * | 2015-10-28 | 2019-08-28 | LEONI Kabel GmbH | Method for sheathing a product in strand form, apparatus for the method and computer program product |
US10543640B2 (en) | 2016-09-06 | 2020-01-28 | Continuous Composites Inc. | Additive manufacturing system having in-head fiber teasing |
US10589463B2 (en) | 2017-06-29 | 2020-03-17 | Continuous Composites Inc. | Print head for additive manufacturing system |
US10603840B2 (en) | 2016-09-06 | 2020-03-31 | Continuous Composites Inc. | Additive manufacturing system having adjustable energy shroud |
US10625467B2 (en) | 2016-09-06 | 2020-04-21 | Continuous Composites Inc. | Additive manufacturing system having adjustable curing |
US10682844B2 (en) | 2013-03-22 | 2020-06-16 | Markforged, Inc. | Embedding 3D printed fiber reinforcement in molded articles |
US10717512B2 (en) | 2016-11-03 | 2020-07-21 | Continuous Composites Inc. | Composite vehicle body |
US10723073B2 (en) | 2017-01-24 | 2020-07-28 | Continuous Composites Inc. | System and method for additively manufacturing a composite structure |
US10737479B2 (en) | 2017-01-12 | 2020-08-11 | Global Filtration Systems | Method of making three-dimensional objects using both continuous and discontinuous solidification |
US10759114B2 (en) | 2017-12-29 | 2020-09-01 | Continuous Composites Inc. | System and print head for continuously manufacturing composite structure |
US10759113B2 (en) | 2016-09-06 | 2020-09-01 | Continuous Composites Inc. | Additive manufacturing system having trailing cure mechanism |
US10798783B2 (en) | 2017-02-15 | 2020-10-06 | Continuous Composites Inc. | Additively manufactured composite heater |
US10814569B2 (en) | 2017-06-29 | 2020-10-27 | Continuous Composites Inc. | Method and material for additive manufacturing |
US10821720B2 (en) | 2016-11-04 | 2020-11-03 | Continuous Composites Inc. | Additive manufacturing system having gravity-fed matrix |
US10857729B2 (en) | 2017-12-29 | 2020-12-08 | Continuous Composites Inc. | System and method for additively manufacturing functional elements into existing components |
US10919222B2 (en) | 2017-12-29 | 2021-02-16 | Continuous Composites Inc. | System and method for additively manufacturing functional elements into existing components |
US10953609B1 (en) | 2013-03-22 | 2021-03-23 | Markforged, Inc. | Scanning print bed and part height in 3D printing |
US11052603B2 (en) | 2018-06-07 | 2021-07-06 | Continuous Composites Inc. | Additive manufacturing system having stowable cutting mechanism |
US11110654B2 (en) | 2018-04-12 | 2021-09-07 | Continuous Composites Inc. | System and print head for continuously manufacturing composite structure |
US11110656B2 (en) | 2018-04-12 | 2021-09-07 | Continuous Composites Inc. | System for continuously manufacturing composite structure |
US11161300B2 (en) | 2018-04-11 | 2021-11-02 | Continuous Composites Inc. | System and print head for additive manufacturing system |
US11167495B2 (en) | 2017-12-29 | 2021-11-09 | Continuous Composites Inc. | System and method for additively manufacturing functional elements into existing components |
US11235539B2 (en) | 2018-09-13 | 2022-02-01 | Continuous Composites Inc. | Fiber management arrangement and method for additive manufacturing system |
US11235522B2 (en) | 2018-10-04 | 2022-02-01 | Continuous Composites Inc. | System for additively manufacturing composite structures |
US11247395B2 (en) | 2018-10-26 | 2022-02-15 | Continuous Composites Inc. | System for additive manufacturing |
US11292192B2 (en) | 2018-11-19 | 2022-04-05 | Continuous Composites Inc. | System for additive manufacturing |
US11312083B2 (en) | 2019-05-28 | 2022-04-26 | Continuous Composites Inc. | System for additively manufacturing composite structure |
US11338503B2 (en) | 2019-01-25 | 2022-05-24 | Continuous Composites Inc. | System for additively manufacturing composite structure |
US11358331B2 (en) | 2018-11-19 | 2022-06-14 | Continuous Composites Inc. | System and head for continuously manufacturing composite structure |
US11420390B2 (en) | 2018-11-19 | 2022-08-23 | Continuous Composites Inc. | System for additively manufacturing composite structure |
US11465348B2 (en) | 2020-09-11 | 2022-10-11 | Continuous Composites Inc. | Print head for additive manufacturing system |
US11760021B2 (en) | 2021-04-27 | 2023-09-19 | Continuous Composites Inc. | Additive manufacturing system |
US11760030B2 (en) | 2020-06-23 | 2023-09-19 | Continuous Composites Inc. | Systems and methods for controlling additive manufacturing |
US11840022B2 (en) | 2019-12-30 | 2023-12-12 | Continuous Composites Inc. | System and method for additive manufacturing |
US11904534B2 (en) | 2020-02-25 | 2024-02-20 | Continuous Composites Inc. | Additive manufacturing system |
US11981069B2 (en) | 2013-03-22 | 2024-05-14 | Markforged, Inc. | Three dimensional printing of composite reinforced structures |
US12128607B2 (en) | 2021-10-20 | 2024-10-29 | Continuous Composites Inc. | Systems and methods for additive manufacturing |
US12290983B2 (en) | 2022-11-29 | 2025-05-06 | Continuous Composites Inc. | Print head for additive manufacturing system |
-
1991
- 1991-01-23 DE DE4102257A patent/DE4102257A1/en not_active Withdrawn
Cited By (209)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6942830B2 (en) | 2000-04-17 | 2005-09-13 | Envisiontec Gmbh | Device and method for the production of three-dimensional objects |
WO2001078968A1 (en) * | 2000-04-17 | 2001-10-25 | Envision Technologies Gmbh | Device and method for the production of three-dimensional objects |
US7845930B2 (en) | 2004-05-07 | 2010-12-07 | Envisiontec Gmbh | Process for the production of a three-dimensional object with an improved separation of hardened material layers from a construction plane |
US8394313B2 (en) | 2004-05-07 | 2013-03-12 | Envisiontec Gmbh | Process for the production of a three-dimensional object with an improved separation of hardened material layers from a construction plane |
US8862260B2 (en) | 2004-05-10 | 2014-10-14 | Envisiontec Gmbh | Process for the production of a three-dimensional object with resolution improvement by “pixel shift” |
USRE43955E1 (en) | 2004-05-10 | 2013-02-05 | Envisiontec Gmbh | Process for the production of a three-dimensional object with resolution improvement by pixel-shift |
US8126580B2 (en) | 2006-04-26 | 2012-02-28 | Envisiontec Gmbh | Device and method for producing a three-dimensional object by means of mask exposure |
US7894921B2 (en) | 2006-04-28 | 2011-02-22 | Envisiontec Gmbh | Device and method for producing a three-dimensional object by means of mask exposure |
US7783371B2 (en) | 2006-04-28 | 2010-08-24 | Envisiontec Gmbh | Device and method for producing a three-dimensional object by means of mask exposure |
US8815143B2 (en) | 2006-04-28 | 2014-08-26 | Envisiontec Gmbh | Method for producing a three-dimensional object by means of mask exposure |
US7831328B2 (en) | 2006-07-19 | 2010-11-09 | Envisiontec Gmbh | Method and device for producing a three-dimensional object, and computer and data carrier useful therefor |
US7892474B2 (en) | 2006-11-15 | 2011-02-22 | Envisiontec Gmbh | Continuous generative process for producing a three-dimensional object |
US8465689B2 (en) | 2007-01-17 | 2013-06-18 | 3D Systems, Inc. | Elevator and method for tilting solid image build platform for reducing air entrainment and for build release |
US8845316B2 (en) | 2007-07-04 | 2014-09-30 | Envisiontec Gmbh | Process and device for producing a three-dimensional object |
US9067361B2 (en) | 2007-07-04 | 2015-06-30 | Envisiontec Gmbh | Process and device for producing a three-dimensional object |
US10220565B2 (en) | 2007-07-04 | 2019-03-05 | Envisiontec Gmbh | Process and device for producing a three-dimensional object |
US8658076B2 (en) | 2007-10-26 | 2014-02-25 | Envisiontec Gmbh | Process and freeform fabrication system for producing a three-dimensional object |
US8110135B2 (en) | 2007-10-26 | 2012-02-07 | Envisiontec Gmbh | Process and freeform fabrication system for producing a three-dimensional object |
US8003040B2 (en) | 2007-10-26 | 2011-08-23 | Envisiontec Gmbh | Process and freeform fabrication system for producing a three-dimensional object |
US8372330B2 (en) | 2009-10-19 | 2013-02-12 | Global Filtration Systems | Resin solidification substrate and assembly |
US9486944B2 (en) | 2009-10-19 | 2016-11-08 | Global Filtration Systems | Resin solidification substrate and assembly |
US10894355B2 (en) | 2009-10-19 | 2021-01-19 | Global Filtration Systems | Resin solidification substrate and assembly |
US11633910B2 (en) | 2009-10-19 | 2023-04-25 | Global Filtration Systems | Resin solidification substrate and assembly |
WO2013017284A3 (en) * | 2011-08-04 | 2013-10-03 | Arburg Gmbh + Co. Kg | Method and device for producing a three-dimensional object comprising a fiber feed |
US12128613B2 (en) | 2012-08-29 | 2024-10-29 | Continuous Composites Inc. | Method and apparatus for continuous composite three-dimensional printing |
US12162215B2 (en) | 2012-08-29 | 2024-12-10 | Continuous Composites Inc. | Method and apparatus for continuous composite three-dimensional printing |
US10759109B2 (en) | 2012-08-29 | 2020-09-01 | Continuous Composites Inc. | Method and apparatus for continuous composite three-dimensional printing |
US11865775B2 (en) | 2012-08-29 | 2024-01-09 | Continuous Composites Inc. | Method and apparatus for continuous composite three-dimensional printing |
US10744707B2 (en) | 2012-08-29 | 2020-08-18 | Continuous Composites Inc. | Method and apparatus for continuous composite three-dimensional printing |
US10744708B2 (en) | 2012-08-29 | 2020-08-18 | Continuous Compostites Inc. | Method and apparatus for continuous composite three-dimensional printing |
US9511543B2 (en) | 2012-08-29 | 2016-12-06 | Cc3D Llc | Method and apparatus for continuous composite three-dimensional printing |
US11926094B2 (en) | 2012-08-29 | 2024-03-12 | Continuous Composites Inc. | Method and apparatus for continuous composite three-dimensional printing |
US11945160B2 (en) | 2012-08-29 | 2024-04-02 | Continuous Composites Inc. | Method and apparatus for continuous composite three-dimensional printing |
US11590699B2 (en) | 2012-08-29 | 2023-02-28 | Continuous Composites Inc. | Method and apparatus for continuous composite three-dimensional printing |
US11584069B2 (en) | 2012-08-29 | 2023-02-21 | Continuous Composites Inc. | Method and apparatus for continuous composite three-dimensional printing |
US11577455B2 (en) | 2012-08-29 | 2023-02-14 | Continuous Composites Inc. | Method and apparatus for continuous composite three-dimensional printing |
US10603836B2 (en) | 2012-08-29 | 2020-03-31 | Continuous Composites Inc. | Method and apparatus for continuous composite three-dimensional printing |
US11964426B2 (en) | 2012-08-29 | 2024-04-23 | Continuous Composites Inc. | Method and apparatus for continuous composite three-dimensional printing |
US10449711B2 (en) | 2012-08-29 | 2019-10-22 | Continuous Composites Inc. | Method and apparatus for continuous composite three dimensional printing |
US11173660B2 (en) | 2012-08-29 | 2021-11-16 | Continuous Composites Inc. | Method and apparatus for continuous composite three-dimensional printing |
US10315355B2 (en) | 2012-08-29 | 2019-06-11 | Cc3D Llc | Method and apparatus for continuous composite three-dimensional printing |
US9987798B2 (en) | 2012-08-29 | 2018-06-05 | Cc3D Llc. | Method and apparatus for continuous composite three-dimensional printing |
US10315356B2 (en) | 2012-08-29 | 2019-06-11 | Cc3D Llc | Method and apparatus for continuous composite three-dimensional printing |
US12257772B2 (en) | 2012-08-29 | 2025-03-25 | Continuous Composites Inc. | Method and apparatus for continuous composite three-dimensional printing |
US11161297B2 (en) | 2012-08-29 | 2021-11-02 | Continuous Composites Inc. | Control methods for additive manufacturing system |
US9126365B1 (en) | 2013-03-22 | 2015-09-08 | Markforged, Inc. | Methods for composite filament fabrication in three dimensional printing |
US9815268B2 (en) | 2013-03-22 | 2017-11-14 | Markforged, Inc. | Multiaxis fiber reinforcement for 3D printing |
US11065861B2 (en) | 2013-03-22 | 2021-07-20 | Markforged, Inc. | Methods for composite filament threading in three dimensional printing |
US10099427B2 (en) | 2013-03-22 | 2018-10-16 | Markforged, Inc. | Three dimensional printer with composite filament fabrication |
US9186846B1 (en) | 2013-03-22 | 2015-11-17 | Markforged, Inc. | Methods for composite filament threading in three dimensional printing |
US10076875B2 (en) | 2013-03-22 | 2018-09-18 | Markforged, Inc. | Methods for composite filament fabrication in three dimensional printing |
US9126367B1 (en) | 2013-03-22 | 2015-09-08 | Markforged, Inc. | Three dimensional printer for fiber reinforced composite filament fabrication |
US11148409B2 (en) | 2013-03-22 | 2021-10-19 | Markforged, Inc. | Three dimensional printing of composite reinforced structures |
US9156205B2 (en) | 2013-03-22 | 2015-10-13 | Markforged, Inc. | Three dimensional printer with composite filament fabrication |
US11759990B2 (en) | 2013-03-22 | 2023-09-19 | Markforged, Inc. | Three dimensional printing |
US10259160B2 (en) | 2013-03-22 | 2019-04-16 | Markforged, Inc. | Wear resistance in 3D printing of composites |
US10040252B2 (en) | 2013-03-22 | 2018-08-07 | Markforged, Inc. | Methods for fiber reinforced additive manufacturing |
US10016942B2 (en) | 2013-03-22 | 2018-07-10 | Markforged, Inc. | Three dimensional printing |
US10953610B2 (en) | 2013-03-22 | 2021-03-23 | Markforged, Inc. | Three dimensional printer with composite filament fabrication |
US9327453B2 (en) | 2013-03-22 | 2016-05-03 | Markforged, Inc. | Three dimensional printer for fiber reinforced composite filament fabrication |
US9956725B2 (en) | 2013-03-22 | 2018-05-01 | Markforged, Inc. | Three dimensional printer for fiber reinforced composite filament fabrication |
US11981069B2 (en) | 2013-03-22 | 2024-05-14 | Markforged, Inc. | Three dimensional printing of composite reinforced structures |
US9149988B2 (en) | 2013-03-22 | 2015-10-06 | Markforged, Inc. | Three dimensional printing |
US10434702B2 (en) | 2013-03-22 | 2019-10-08 | Markforged, Inc. | Additively manufactured part including a compacted fiber reinforced composite filament |
US10953609B1 (en) | 2013-03-22 | 2021-03-23 | Markforged, Inc. | Scanning print bed and part height in 3D printing |
US11420382B2 (en) | 2013-03-22 | 2022-08-23 | Markforged, Inc. | Apparatus for fiber reinforced additive manufacturing |
US10076876B2 (en) | 2013-03-22 | 2018-09-18 | Markforged, Inc. | Three dimensional printing |
US10603841B2 (en) | 2013-03-22 | 2020-03-31 | Markforged, Inc. | Multilayer fiber reinforcement design for 3D printing |
US9327452B2 (en) | 2013-03-22 | 2016-05-03 | Markforged, Inc. | Methods for composite filament fabrication in three dimensional printing |
US9694544B2 (en) | 2013-03-22 | 2017-07-04 | Markforged, Inc. | Methods for fiber reinforced additive manufacturing |
US10611082B2 (en) | 2013-03-22 | 2020-04-07 | Markforged, Inc. | Apparatus for fiber reinforced additive manufacturing |
US11577462B2 (en) | 2013-03-22 | 2023-02-14 | Markforged, Inc. | Scanning print bed and part height in 3D printing |
US10821662B2 (en) | 2013-03-22 | 2020-11-03 | Markforged, Inc. | Methods for fiber reinforced additive manufacturing |
US9688028B2 (en) | 2013-03-22 | 2017-06-27 | Markforged, Inc. | Multilayer fiber reinforcement design for 3D printing |
US9186848B2 (en) | 2013-03-22 | 2015-11-17 | Markforged, Inc. | Three dimensional printing of composite reinforced structures |
US10682844B2 (en) | 2013-03-22 | 2020-06-16 | Markforged, Inc. | Embedding 3D printed fiber reinforcement in molded articles |
US10696039B2 (en) | 2013-03-22 | 2020-06-30 | Markforged, Inc. | Multilayer fiber reinforcement design for 3D printing |
US10717228B2 (en) | 2013-03-22 | 2020-07-21 | Markforged, Inc. | Three dimensional printing |
US9579851B2 (en) | 2013-03-22 | 2017-02-28 | Markforged, Inc. | Apparatus for fiber reinforced additive manufacturing |
US9539762B2 (en) | 2013-03-22 | 2017-01-10 | Markforged, Inc. | 3D printing with kinematic coupling |
US9370896B2 (en) | 2013-06-05 | 2016-06-21 | Markforged, Inc. | Methods for fiber reinforced additive manufacturing |
US9527244B2 (en) | 2014-02-10 | 2016-12-27 | Global Filtration Systems | Apparatus and method for forming three-dimensional objects from solidifiable paste |
US9975296B2 (en) | 2014-02-10 | 2018-05-22 | Global Filtration Systems | Apparatus and method for forming three-dimensional objects from solidifiable paste |
US10814604B2 (en) | 2014-07-29 | 2020-10-27 | Continuous Composites Inc. | Method and apparatus for additive mechanical growth of tubular structures |
US9808991B2 (en) | 2014-07-29 | 2017-11-07 | Cc3D Llc. | Method and apparatus for additive mechanical growth of tubular structures |
EP3347904B1 (en) * | 2015-10-28 | 2019-08-28 | LEONI Kabel GmbH | Method for sheathing a product in strand form, apparatus for the method and computer program product |
US10105910B2 (en) | 2016-04-15 | 2018-10-23 | Cc3D Llc | Method for continuously manufacturing composite hollow structure |
US10668663B2 (en) | 2016-04-15 | 2020-06-02 | Continuous Composites Inc. | Head and system for continuously manufacturing composite hollow structure |
US9840035B2 (en) | 2016-04-15 | 2017-12-12 | Cc3D Llc | Head and system for continuously manufacturing composite hollow structure |
US10981327B2 (en) | 2016-04-15 | 2021-04-20 | Continuous Composites Inc. | Head and system for continuously manufacturing composite tube |
US10213957B2 (en) | 2016-04-15 | 2019-02-26 | Cc3D Llc | Head and system for continuously manufacturing composite hollow structure |
US10232551B2 (en) | 2016-04-15 | 2019-03-19 | Cc3D Llc | Head and system for continuously manufacturing composite hollow structure |
US10272615B2 (en) | 2016-04-15 | 2019-04-30 | Cc3D Llc | Head and system for continuously manufacturing composite hollow structure |
US10335999B2 (en) | 2016-04-15 | 2019-07-02 | Cc3D Llc | Head and system for continuously manufacturing composite hollow structure |
US10895858B2 (en) | 2016-09-06 | 2021-01-19 | Continuous Composites Inc. | Systems and methods for controlling additive manufacturing |
US10901386B2 (en) | 2016-09-06 | 2021-01-26 | Continuous Composites Inc. | Systems and methods for controlling additive manufacturing |
US10632673B2 (en) | 2016-09-06 | 2020-04-28 | Continuous Composites Inc. | Additive manufacturing system having shutter mechanism |
US11579579B2 (en) | 2016-09-06 | 2023-02-14 | Continuous Composites Inc. | Systems and methods for controlling additive manufacturing |
US10625467B2 (en) | 2016-09-06 | 2020-04-21 | Continuous Composites Inc. | Additive manufacturing system having adjustable curing |
US10603840B2 (en) | 2016-09-06 | 2020-03-31 | Continuous Composites Inc. | Additive manufacturing system having adjustable energy shroud |
US10543640B2 (en) | 2016-09-06 | 2020-01-28 | Continuous Composites Inc. | Additive manufacturing system having in-head fiber teasing |
US10994481B2 (en) | 2016-09-06 | 2021-05-04 | Continuous Composites Inc. | Additive manufacturing system having in-head fiber-teasing |
US11000998B2 (en) | 2016-09-06 | 2021-05-11 | Continous Composites Inc. | Additive manufacturing system having in-head fiber-teasing |
US10759113B2 (en) | 2016-09-06 | 2020-09-01 | Continuous Composites Inc. | Additive manufacturing system having trailing cure mechanism |
US10864715B2 (en) | 2016-09-06 | 2020-12-15 | Continuous Composites Inc. | Additive manufacturing system having multi-channel nozzle |
US11029658B2 (en) | 2016-09-06 | 2021-06-08 | Continuous Composites Inc. | Systems and methods for controlling additive manufacturing |
US10216165B2 (en) | 2016-09-06 | 2019-02-26 | Cc3D Llc | Systems and methods for controlling additive manufacturing |
US10884388B2 (en) | 2016-09-06 | 2021-01-05 | Continuous Composites Inc. | Systems and methods for controlling additive manufacturing |
US10766191B2 (en) | 2016-09-06 | 2020-09-08 | Continuous Composites Inc. | Additive manufacturing system having in-head fiber weaving |
US10908576B2 (en) | 2016-09-06 | 2021-02-02 | Continuous Composites Inc. | Systems and methods for controlling additive manufacturing |
US10647058B2 (en) | 2016-09-06 | 2020-05-12 | Continuous Composites Inc. | Control methods for additive manufacturing system |
US12228901B2 (en) | 2016-09-06 | 2025-02-18 | Continuos Composites Inc. | Systems and methods for controlling additive manufacturing |
US10787240B2 (en) | 2016-11-03 | 2020-09-29 | Continuous Composites Inc. | Composite vehicle body |
US10766595B2 (en) | 2016-11-03 | 2020-09-08 | Continuous Composites Inc. | Composite vehicle body |
US10717512B2 (en) | 2016-11-03 | 2020-07-21 | Continuous Composites Inc. | Composite vehicle body |
US11383819B2 (en) | 2016-11-03 | 2022-07-12 | Continuous Composites Inc. | Composite vehicle body |
US10773783B2 (en) | 2016-11-03 | 2020-09-15 | Continuous Composites Inc. | Composite vehicle body |
US10766594B2 (en) | 2016-11-03 | 2020-09-08 | Continuous Composites Inc. | Composite vehicle body |
US10864677B2 (en) | 2016-11-04 | 2020-12-15 | Continuous Composites Inc. | Additive manufacturing system implementing in-situ anchor-point fabrication |
US10967569B2 (en) | 2016-11-04 | 2021-04-06 | Continuous Composites Inc. | Additive manufacturing system having interchangeable nozzle tips |
US10933584B2 (en) | 2016-11-04 | 2021-03-02 | Continuous Composites Inc. | Additive manufacturing system having dynamically variable matrix supply |
US10953598B2 (en) | 2016-11-04 | 2021-03-23 | Continuous Composites Inc. | Additive manufacturing system having vibrating nozzle |
US10843406B2 (en) | 2016-11-04 | 2020-11-24 | Continuous Composites Inc. | Additive manufacturing system having multi-flex nozzle |
US10828829B2 (en) | 2016-11-04 | 2020-11-10 | Continuous Composites Inc. | Additive manufacturing system having adjustable nozzle configuration |
US10821720B2 (en) | 2016-11-04 | 2020-11-03 | Continuous Composites Inc. | Additive manufacturing system having gravity-fed matrix |
US10870233B2 (en) | 2016-11-04 | 2020-12-22 | Continuous Composites Inc. | Additive manufacturing system having feed-tensioner |
US10737479B2 (en) | 2017-01-12 | 2020-08-11 | Global Filtration Systems | Method of making three-dimensional objects using both continuous and discontinuous solidification |
US11413856B2 (en) | 2017-01-12 | 2022-08-16 | Global Filtration Systems | Method of making three-dimensional objects using both continuous and discontinuous solidification |
US10857726B2 (en) | 2017-01-24 | 2020-12-08 | Continuous Composites Inc. | Additive manufacturing system implementing anchor curing |
US11014290B2 (en) | 2017-01-24 | 2021-05-25 | Continuous Composites Inc. | Additive manufacturing system having automated reinforcement threading |
US10850445B2 (en) | 2017-01-24 | 2020-12-01 | Continuous Composites Inc. | Additive manufacturing system configured for sheet-printing composite material |
US10940638B2 (en) | 2017-01-24 | 2021-03-09 | Continuous Composites Inc. | Additive manufacturing system having finish-follower |
US10843396B2 (en) | 2017-01-24 | 2020-11-24 | Continuous Composites Inc. | Additive manufacturing system |
US10919204B2 (en) | 2017-01-24 | 2021-02-16 | Continuous Composites Inc. | Continuous reinforcement for use in additive manufacturing |
US10723073B2 (en) | 2017-01-24 | 2020-07-28 | Continuous Composites Inc. | System and method for additively manufacturing a composite structure |
US10040240B1 (en) | 2017-01-24 | 2018-08-07 | Cc3D Llc | Additive manufacturing system having fiber-cutting mechanism |
US10345068B2 (en) | 2017-02-13 | 2019-07-09 | Cc3D Llc | Composite sporting equipment |
US10794650B2 (en) | 2017-02-13 | 2020-10-06 | Continuous Composites | Composite sporting equipment |
US10798783B2 (en) | 2017-02-15 | 2020-10-06 | Continuous Composites Inc. | Additively manufactured composite heater |
US10993289B2 (en) | 2017-02-15 | 2021-04-27 | Continuous Composites Inc. | Additive manufacturing system for fabricating custom support structure |
US10932325B2 (en) | 2017-02-15 | 2021-02-23 | Continuous Composites Inc. | Additive manufacturing system and method for discharging coated continuous composites |
US11130285B2 (en) | 2017-06-29 | 2021-09-28 | Continuous Composites Inc. | Print head and method for printing composite structure and temporary support |
US10814569B2 (en) | 2017-06-29 | 2020-10-27 | Continuous Composites Inc. | Method and material for additive manufacturing |
US10589463B2 (en) | 2017-06-29 | 2020-03-17 | Continuous Composites Inc. | Print head for additive manufacturing system |
US11135769B2 (en) | 2017-06-29 | 2021-10-05 | Continuous Composites Inc. | In-situ curing oven for additive manufacturing system |
US11052602B2 (en) | 2017-06-29 | 2021-07-06 | Continuous Composites Inc. | Print head for additively manufacturing composite tubes |
US10906240B2 (en) | 2017-06-29 | 2021-02-02 | Continuous Composites Inc. | Print head for additive manufacturing system |
US10319499B1 (en) | 2017-11-30 | 2019-06-11 | Cc3D Llc | System and method for additively manufacturing composite wiring harness |
US10131088B1 (en) | 2017-12-19 | 2018-11-20 | Cc3D Llc | Additive manufacturing method for discharging interlocking continuous reinforcement |
US10807303B2 (en) | 2017-12-29 | 2020-10-20 | Continuous Composites, Inc. | Additive manufacturing system implementing hardener pre-impregnation |
US11135770B2 (en) | 2017-12-29 | 2021-10-05 | Continuous Composites Inc. | System for continuously manufacturing composite structure |
US10919222B2 (en) | 2017-12-29 | 2021-02-16 | Continuous Composites Inc. | System and method for additively manufacturing functional elements into existing components |
US10759114B2 (en) | 2017-12-29 | 2020-09-01 | Continuous Composites Inc. | System and print head for continuously manufacturing composite structure |
US11110655B2 (en) | 2017-12-29 | 2021-09-07 | Continuous Composites Inc. | System, print head, and compactor for continuously manufacturing composite structure |
US11623393B2 (en) | 2017-12-29 | 2023-04-11 | Continuous Composites Inc. | System, print head, and compactor for continuously manufacturing composite structure |
US11623394B2 (en) | 2017-12-29 | 2023-04-11 | Continuous Composites Inc. | System, print head, and compactor for continuously manufacturing composite structure |
US11135764B2 (en) | 2017-12-29 | 2021-10-05 | Continuous Composites Inc. | Additive manufacturing system implementing hardener pre-impregnation |
US11167495B2 (en) | 2017-12-29 | 2021-11-09 | Continuous Composites Inc. | System and method for additively manufacturing functional elements into existing components |
US10857729B2 (en) | 2017-12-29 | 2020-12-08 | Continuous Composites Inc. | System and method for additively manufacturing functional elements into existing components |
US10081129B1 (en) | 2017-12-29 | 2018-09-25 | Cc3D Llc | Additive manufacturing system implementing hardener pre-impregnation |
US11161300B2 (en) | 2018-04-11 | 2021-11-02 | Continuous Composites Inc. | System and print head for additive manufacturing system |
US11958243B2 (en) | 2018-04-12 | 2024-04-16 | Continuous Composites Inc. | System for continuously manufacturing composite structure |
US11110654B2 (en) | 2018-04-12 | 2021-09-07 | Continuous Composites Inc. | System and print head for continuously manufacturing composite structure |
US11110656B2 (en) | 2018-04-12 | 2021-09-07 | Continuous Composites Inc. | System for continuously manufacturing composite structure |
US11130284B2 (en) | 2018-04-12 | 2021-09-28 | Continuous Composites Inc. | System and head for continuously manufacturing composite structure |
US11052603B2 (en) | 2018-06-07 | 2021-07-06 | Continuous Composites Inc. | Additive manufacturing system having stowable cutting mechanism |
US11235539B2 (en) | 2018-09-13 | 2022-02-01 | Continuous Composites Inc. | Fiber management arrangement and method for additive manufacturing system |
US11338528B2 (en) | 2018-09-13 | 2022-05-24 | Continouos Composites Inc. | System for additively manufacturing composite structures |
US11752696B2 (en) | 2018-10-04 | 2023-09-12 | Continuous Composites Inc. | System for additively manufacturing composite structures |
US11760013B2 (en) | 2018-10-04 | 2023-09-19 | Continuous Composites Inc. | System for additively manufacturing composite structures |
US11787112B2 (en) | 2018-10-04 | 2023-10-17 | Continuous Composites Inc. | System for additively manufacturing composite structures |
US11235522B2 (en) | 2018-10-04 | 2022-02-01 | Continuous Composites Inc. | System for additively manufacturing composite structures |
US11247395B2 (en) | 2018-10-26 | 2022-02-15 | Continuous Composites Inc. | System for additive manufacturing |
US11279085B2 (en) | 2018-10-26 | 2022-03-22 | Continuous Composites Inc. | System for additive manufacturing |
US11325304B2 (en) | 2018-10-26 | 2022-05-10 | Continuous Composites Inc. | System and method for additive manufacturing |
US11607839B2 (en) | 2018-10-26 | 2023-03-21 | Continuous Composites Inc. | System for additive manufacturing |
US11511480B2 (en) | 2018-10-26 | 2022-11-29 | Continuous Composites Inc. | System for additive manufacturing |
US11806923B2 (en) | 2018-10-26 | 2023-11-07 | Continuous Composites Inc. | System for additive manufacturing |
US11292192B2 (en) | 2018-11-19 | 2022-04-05 | Continuous Composites Inc. | System for additive manufacturing |
US11420390B2 (en) | 2018-11-19 | 2022-08-23 | Continuous Composites Inc. | System for additively manufacturing composite structure |
US12128615B2 (en) | 2018-11-19 | 2024-10-29 | Continuous Composites Inc. | System for additive manufacturing |
US11358331B2 (en) | 2018-11-19 | 2022-06-14 | Continuous Composites Inc. | System and head for continuously manufacturing composite structure |
US11400643B2 (en) | 2019-01-25 | 2022-08-02 | Continuous Composites Inc. | System for additively manufacturing composite structure |
US11478980B2 (en) | 2019-01-25 | 2022-10-25 | Continuous Composites Inc. | System for additively manufacturing composite structure |
US11958238B2 (en) | 2019-01-25 | 2024-04-16 | Continuous Composites Inc. | System for additively manufacturing composite structure utilizing comparison of data cloud and virtual model of structure during discharging material |
US11485070B2 (en) | 2019-01-25 | 2022-11-01 | Continuous Composites Inc. | System for additively manufacturing composite structure |
US11618208B2 (en) | 2019-01-25 | 2023-04-04 | Continuous Composites Inc. | System for additively manufacturing composite structure |
US11338503B2 (en) | 2019-01-25 | 2022-05-24 | Continuous Composites Inc. | System for additively manufacturing composite structure |
US11541603B2 (en) | 2019-05-28 | 2023-01-03 | Continuous Composites Inc. | System for additively manufacturing composite structure |
US11312083B2 (en) | 2019-05-28 | 2022-04-26 | Continuous Composites Inc. | System for additively manufacturing composite structure |
US11958245B2 (en) | 2019-05-28 | 2024-04-16 | Continuous Composites Inc. | System for additively manufacturing composite structure |
US11840022B2 (en) | 2019-12-30 | 2023-12-12 | Continuous Composites Inc. | System and method for additive manufacturing |
US11904534B2 (en) | 2020-02-25 | 2024-02-20 | Continuous Composites Inc. | Additive manufacturing system |
US12128630B2 (en) | 2020-06-23 | 2024-10-29 | Continuous Composites Inc. | Systems and methods for controlling additive manufacturing |
US11926100B2 (en) | 2020-06-23 | 2024-03-12 | Continuous Composites Inc. | Systems and methods for controlling additive manufacturing |
US11760029B2 (en) | 2020-06-23 | 2023-09-19 | Continuous Composites Inc. | Systems and methods for controlling additive manufacturing |
US11760030B2 (en) | 2020-06-23 | 2023-09-19 | Continuous Composites Inc. | Systems and methods for controlling additive manufacturing |
US11541598B2 (en) | 2020-09-11 | 2023-01-03 | Continuous Composites Inc. | Print head for additive manufacturing system |
US12083741B2 (en) | 2020-09-11 | 2024-09-10 | Continous Composites Inc. | Print heads for additive manufacturing systems |
US11613080B2 (en) | 2020-09-11 | 2023-03-28 | Continuous Composites Inc. | Print head for additive manufacturing system |
US11813793B2 (en) | 2020-09-11 | 2023-11-14 | Continuous Composites Inc. | Print head for additive manufacturing system |
US11465348B2 (en) | 2020-09-11 | 2022-10-11 | Continuous Composites Inc. | Print head for additive manufacturing system |
US12030252B2 (en) | 2021-04-27 | 2024-07-09 | Continuous Composites Inc. | Additive manufacturing system |
US11760021B2 (en) | 2021-04-27 | 2023-09-19 | Continuous Composites Inc. | Additive manufacturing system |
US11958247B2 (en) | 2021-04-27 | 2024-04-16 | Continuous Composites Inc. | Additive manufacturing system |
US12128607B2 (en) | 2021-10-20 | 2024-10-29 | Continuous Composites Inc. | Systems and methods for additive manufacturing |
US12134226B2 (en) | 2021-10-20 | 2024-11-05 | Continuous Composites Inc. | Systems and methods of additive manufacturing |
US12290983B2 (en) | 2022-11-29 | 2025-05-06 | Continuous Composites Inc. | Print head for additive manufacturing system |
US12290985B2 (en) | 2023-02-16 | 2025-05-06 | Continuous Composites Inc. | Print head for additive manufacturing system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE4102257A1 (en) | Appts. for mfg. reinforced components in laser-cured polymer - has laser-curable polymer in bath, laser directed at polymer surface where fibres pass through polymer and are guided relative to laser beam angle | |
DE1802913C3 (en) | Strangfönniger composite rod, consisting of a support frame made of synthetic resin-impregnated glass fibers and a sheath made of synthetic resin for use as a high-voltage insulator for overhead lines, method and device for its production and device for carrying out the method | |
WO2001072501A1 (en) | Method and device for producing components from light-curable materials | |
WO2017081253A1 (en) | Device for additively manufacturing a component | |
DE2159902C3 (en) | Method and device for producing a multilayer, tubular plastic support structure | |
WO1999014409A1 (en) | Rod-shaped thread-guiding element for textiles machines, especially a heald, and a method for producing the same | |
DE4127678A1 (en) | Braided core of opt. fibre reinforced plastic - is formed with variable up and down speeds for strength of junction points of complex shapes | |
EP3424690B1 (en) | Method and device for producing a reinforcement grid | |
DE102008046908B4 (en) | Method and device for the production of plastic products with partially provided structures | |
EP0442256A2 (en) | Bone implant | |
DE102016012594A1 (en) | Apparatus and method for the production of components made of fiber-reinforced plastic | |
DE102010049195B4 (en) | Method for the generative production of a component and production facilities | |
DE3204720A1 (en) | METHOD AND DEVICE FOR PRODUCING MULTILAYER HOSES | |
DE2030203A1 (en) | Method and device for the manufacture of nets and other non-woven goods | |
DE2421619C3 (en) | Process for producing a glass fiber reinforced plastic molded part and device for carrying out the process | |
DE102006035576B3 (en) | Device for producing a fiber structure | |
DE2018814A1 (en) | Process and device for the production of tubular hollow bodies from synthetic resin reinforced with inserts in a centrifugal process | |
DE4124015A1 (en) | Prodn. of wound fibre components | |
DE3005654C2 (en) | Machine for winding power transmission elements made of fiber-reinforced materials | |
DE2342789C2 (en) | Device for the discontinuous production of multilayer moldings | |
EP0035974B1 (en) | Device for producing a glass fibre reinforced plastics granulate | |
DE3315212A1 (en) | DEVICE FOR PRODUCING A COATED OPTICAL FIBER FROM A PREFORM | |
DE102007020906B4 (en) | Apparatus for laying reinforcing fibers and method for producing a fiber-reinforced component | |
DE4110903C2 (en) | ||
DE4016042A1 (en) | Vehicle suspension assembly of FRP - has reinforcing threads parallel at junction of members |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
8127 | New person/name/address of the applicant |
Owner name: ABATEC 3D PRODUKTION MODELLBAU VERWALTUNGS GMBH, 1 |
|
8139 | Disposal/non-payment of the annual fee |