DE3941865A1 - Effective impurity removal from optical fibre preform - by diffusion into layer removed before tube collapsing - Google Patents
Effective impurity removal from optical fibre preform - by diffusion into layer removed before tube collapsingInfo
- Publication number
- DE3941865A1 DE3941865A1 DE19893941865 DE3941865A DE3941865A1 DE 3941865 A1 DE3941865 A1 DE 3941865A1 DE 19893941865 DE19893941865 DE 19893941865 DE 3941865 A DE3941865 A DE 3941865A DE 3941865 A1 DE3941865 A1 DE 3941865A1
- Authority
- DE
- Germany
- Prior art keywords
- diffusion
- impurities
- diffusion layer
- layer
- preform
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000009792 diffusion process Methods 0.000 title claims abstract description 39
- 239000012535 impurity Substances 0.000 title claims abstract description 24
- 239000013307 optical fiber Substances 0.000 title abstract description 7
- 238000000034 method Methods 0.000 claims description 31
- 238000005530 etching Methods 0.000 claims description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 7
- 239000011521 glass Substances 0.000 claims description 7
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 6
- 239000000126 substance Substances 0.000 claims description 6
- 229910052698 phosphorus Inorganic materials 0.000 claims description 5
- 239000011574 phosphorus Substances 0.000 claims description 5
- -1 B 2 O 3 Inorganic materials 0.000 claims description 4
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims description 4
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 4
- 229910052731 fluorine Inorganic materials 0.000 claims description 4
- 239000011737 fluorine Substances 0.000 claims description 4
- 239000001257 hydrogen Substances 0.000 claims description 4
- 229910052739 hydrogen Inorganic materials 0.000 claims description 4
- 239000002019 doping agent Substances 0.000 claims description 3
- 230000003287 optical effect Effects 0.000 claims description 3
- 229910004261 CaF 2 Inorganic materials 0.000 claims description 2
- 229910003902 SiCl 4 Inorganic materials 0.000 claims description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 2
- 150000001342 alkaline earth metals Chemical class 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- 239000000758 substrate Substances 0.000 claims description 2
- 239000000460 chlorine Substances 0.000 claims 3
- 239000000203 mixture Substances 0.000 claims 2
- 235000012239 silicon dioxide Nutrition 0.000 claims 2
- 239000000377 silicon dioxide Substances 0.000 claims 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims 1
- 229910005793 GeO 2 Inorganic materials 0.000 claims 1
- 229910052783 alkali metal Inorganic materials 0.000 claims 1
- 150000001340 alkali metals Chemical class 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 claims 1
- 229910052801 chlorine Inorganic materials 0.000 claims 1
- 238000011109 contamination Methods 0.000 claims 1
- 238000010438 heat treatment Methods 0.000 claims 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims 1
- 229910052723 transition metal Inorganic materials 0.000 claims 1
- 150000003624 transition metals Chemical class 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims 1
- 239000010410 layer Substances 0.000 description 18
- 238000005253 cladding Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 238000013016 damping Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 235000013405 beer Nutrition 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 239000012792 core layer Substances 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 229910052756 noble gas Inorganic materials 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000005049 silicon tetrachloride Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/018—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
- C03B37/01876—Means for heating tubes or rods during or immediately prior to deposition, e.g. electric resistance heaters
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
Abstract
Description
Die Erfindung betrifft ein Verfahren zum Entfernen von Verunreinigungen aus einer Vorform für Lichtwellenleiter nach dem Oberbegriff des An spruchs 1.The invention relates to a method for removing contaminants from a preform for optical fibers according to the preamble of the An saying 1.
Es ist bekannt, Lichtwellenleiter (LWL = optische Fasern) zum Zweck der optischen Nachrichtenübertragung durch Innenbeschichtung eines Rohres aus reinem Quarzglas, Kollabieren und Ziehen zur Faser herzustellen. Die für die Lichtausbreitung verantwortlichen Moden werden nicht nur im Kern des Lichtwellenleiters geführt, sondern auch im Mantelbereich, in dem sie exponentiell abklingen. Es muß deshalb dafür Sorge getragen werden, daß weder der Mantel- noch der Kernbereich Verunreinigungen enthalten, welche im Bereich der zur Übertragung vorgesehenen Frequenzen eine hohe Zusatzdämpfung bewirken.It is known to use optical fibers (LWL = optical fibers) for the purpose of optical transmission of messages by coating the inside of a pipe made of pure quartz glass, collapsing and pulling to the fiber. The Modes responsible for light propagation are not just at the core of the optical waveguide, but also in the cladding area, in which they subside exponentially. Therefore care must be taken that neither the jacket nor the core area contain impurities, which is high in the range of the frequencies intended for transmission Cause additional damping.
Die Dämpfungserhöhung beruht dabei hauptsächlich auf Wasserstoff- oder OH-Ionen, wobei der leicht diffundierende Wasserstoff in der SiO2-Matrix mit dem Matrixsauerstoff zu einem OH⁻-Radikal rekombinieren kann.The increase in damping is based mainly on hydrogen or OH ions, the slightly diffusing hydrogen in the SiO 2 matrix being able to recombine with the matrix oxygen to form an OH⁻ radical.
Aus diesem Grunde ist ein hochreines Vorformrohr erforderlich. Zur Reinigung wird meistens die Innenfläche mit halogenhaltigen Gasen bei höherer Temperatur gespült. Dieses Verfahren ist allerdings nicht ge eignet, die im Volumen des Quarzrohres befindlichen Wasserstoffionen zu entfernen. Auch Metallionen, die beim MCVD-Verfahren im Kern- oder Mantelglas eingelagert worden sind, sind schädlich und müssen entfernt werden.For this reason, a high-purity preform tube is required. To The inner surface is mostly cleaned with halogen-containing gases rinsed at a higher temperature. However, this procedure is not ge is suitable for the hydrogen ions in the volume of the quartz tube remove. Also metal ions that are in the MCVD process in the core or Cladding glass that has been stored is harmful and must be removed will.
Der Erfindung liegt die Aufgabe zugrunde, bei einem Vorformrohr der eingangs genannten Art ein zur Entfernung von Verunreinigungen besonders wirksames Verfahren anzugeben, das die Verunreinigungen auch im Volumen weitgehend zu entfernen gestattet. The invention has for its object in a preform tube type mentioned above to remove impurities particularly effective method to specify that the impurities also in volume allowed to remove largely.
Die Aufgabe wird erfindungsgemäß durch die im Kennzeichen des Anspruchs 1 aufgeführten Merkmale gelöst. Weiterbildungen der Erfindung sind in den Unteransprüchen beschrieben.The object is achieved by the characterizing part of the claim 1 listed features solved. Developments of the invention are in described the subclaims.
Die mit der Erfindung erzielten Vorteile bestehen nicht nur in einer schnelleren Reinigung der Vorformrohre, sondern auch darin, daß Ver unreinigungen weitgehend entfernt werden können.The advantages achieved by the invention are not only one faster cleaning of the preform tubes, but also that Ver impurities can largely be removed.
Dabei macht sich die Erfindung auch einen sog. Getter-Effekt zunutze, bei dem Verunreinigungs-Bestandteile eine chemische Bindung mit dem Gettermaterial eingehen. Zeitbestimmend für den Vorgang ist die Diffu sion der Verunreinigungen zum Gettermaterial. Deshalb ist es auch von Vorteil, wenn die Schicht, in die die Verunreinigungen hineindiffun dieren sollen, auf beiden Seiten des Rohres aufgebracht wird. Ein besonderer Vorteil des Verfahrens ergibt sich dadurch, daß auch für längere Zeiten eine niedrige Dämpfung der übertragenen Moden in der optischen Faser gewährleistet ist. Vorzugsweise wird als Diffusions schicht ein Material aufgebracht, welches einen hohen Phosphorgehalt aufweist. Phosphor bildet mit Hydroxylionen bekanntlich eine stabile Verbindung. Durch Ätzen wird die Diffusionsschicht entfernt und das Vorformrohr zum Stab kollabiert. Konzentration der Ätzgase, Zeit und Temperatur werden so gewählt, daß die Diffusionsschicht mit Sicherheit entfernt wird.The invention also makes use of a so-called getter effect, a chemical bond with the impurity constituents Enter getter material. The Diffu is decisive for the process sion of impurities to getter material. That is why it is from Advantage if the layer into which the impurities diffuse dieren, is applied to both sides of the tube. A The particular advantage of the method results from the fact that long periods of low attenuation of the transmitted modes in the optical fiber is guaranteed. Preferably as a diffusion layer applied a material that has a high phosphorus content having. As is known, phosphorus forms a stable one with hydroxyl ions Connection. The diffusion layer is removed by etching and that Preform tube collapses to the rod. Concentration of etching gases, time and Temperature are chosen so that the diffusion layer is certain Will get removed.
Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und wird im folgenden näher beschrieben. Die Fig. 1 zeigt einen quer schnitt durch ein innenbeschichtetes Vorformrohr 1 mit Diffusionsschicht 2 und Verunreinigungen 5, die Fig. 2 das Vorformrohr vor dem Kolla bieren. Auf ein Substratrohr wurden vorher die Mantelschicht 3 und die Kernschicht 4 der zukünftigen optischen Faser aufgebracht.An embodiment of the invention is shown in the drawing and will be described in more detail below. Fig. 1 shows a cross section through an internally coated preform tube 1 with diffusion layer 2 and impurities 5 , Fig. 2 beers the preform tube before collapse. The cladding layer 3 and the core layer 4 of the future optical fiber were previously applied to a substrate tube.
Die Diffusionsschicht 2 besteht entweder aus SiO2 oder aus SiO2 mit Dotierungskomponente. Als Dotierungsstoff kommt in erster Linie Phosphor infrage, da er insbesondere mit OH-Gruppen reagiert. Weitere bevorzugte Komponenten für die Dotierung sind Fluor oder Bor. Als Diffusionsschicht 2 kann man aber auch einen anderen Glasbildner als Silizium heranziehen; hier sind Phosphor, Germanium, Bor oder auch CaF2 geeignet. Sollten Alkali-, Erdalkalimetalle oder Aluminium im Rohr aus handelsüblichem Quarz vorhanden sein, so empfiehlt es sich, in die Glassubstanz Stoffe einzubringen, welche mit diesen Atomen eine Reaktion eingehen. Die Diffusionsschicht wird also als Glas aufgefaßt, wobei auch andere Glasbildner als Silizium zugelassen sind. Wichtig ist nur, daß die Diffusion der Verunreinigungen 5 aus dem Rohr mit genügend hoher Ge schwindigkeit erfolgen kann. Deshalb ist es erforderlich, den Diffu sionsvorgang bei einer erhöhten Temperatur ablaufen zu lassen. Vorzugs weise ist diese Temperatur 1500 bis 1700°C. Eine solche Temperatur wird bei der Abscheidung des durch das MCVD-Verfahren aufgebrachten Diffu sionsschicht ohnehin angewendet.The diffusion layer 2 consists either of SiO 2 or of SiO 2 with a doping component. Phosphorus is primarily considered as a dopant, since it reacts in particular with OH groups. Other preferred components for the doping are fluorine or boron. However, a glass former other than silicon can also be used as the diffusion layer 2 ; here phosphorus, germanium, boron or also CaF 2 are suitable. If there are alkali, alkaline earth metals or aluminum in the tube made of commercially available quartz, it is advisable to incorporate substances into the glass substance that react with these atoms. The diffusion layer is thus understood as glass, although glass formers other than silicon are also permitted. It is only important that the diffusion of the impurities 5 from the tube can take place at a sufficiently high speed. It is therefore necessary to let the diffusion process take place at an elevated temperature. This temperature is preferably 1500 to 1700 ° C. Such a temperature is used anyway in the deposition of the diffusion layer applied by the MCVD process.
Es ist aber von Vorteil, den für das MCVD-Verfahren verwendeten Ofen nach der Abscheidung der Diffusionsschicht zusätzlich ein paarmal in Längsrichtung des Rohres hin und her zu führen. Bei diesen Ofendurch läufen diffundieren die Verunreinigungen in dem gewünschtem Maße in die Diffusionsschicht 2.However, it is advantageous to additionally move the furnace used for the MCVD process back and forth a couple of times in the longitudinal direction of the tube after the diffusion layer has been deposited. In these furnace runs, the impurities diffuse into the diffusion layer 2 to the desired extent.
Die Diffusionsschicht 2 kann eine unterschiedliche Konzentration an Dotierstoffen aufweisen. In einer vorteilhaften Ausgestaltung der Erfin dung nimmt der Phosphorgehalt mit jeder abgeschiedenen Schicht zu. Die Schichtdicke beträgt 50 bis 800 µm, vorzugsweise 60 bis 300 µm.The diffusion layer 2 can have a different concentration of dopants. In an advantageous embodiment of the inven tion, the phosphorus content increases with each deposited layer. The layer thickness is 50 to 800 microns, preferably 60 to 300 microns.
Nachdem die Verunreinigungen 5 in die Diffusionsschicht gewandert sind, wird diese Schicht weggeätzt. Dies kann ganz oder teilweise geschehen.After the impurities 5 have migrated into the diffusion layer, this layer is etched away. This can be done in whole or in part.
Nach dem Wegätzen kann erneut eine Diffusionsschicht aufgebracht werden, welche dann nach erfolgter Diffusion wieder weggeätzt wird. Als Ätz mittel werden fluorhaltige Verbindungen eingesetzt. Insbesondere kommen SF6 und/oder CCl2F2 infrage. Diesen Stoffen wird Sauerstoff und/oder Helium oder ein anderes Edelgas beigemischt. Auch mit Siliciumtetra chlorid SiCl4 und GeCl4 bzw. BCl3 sind gute Ätzergebnisse zu erzielen. After the etching away, a diffusion layer can be applied again, which is then etched away again after the diffusion has taken place. Fluorine-containing compounds are used as etching agents. SF 6 and / or CCl 2 F 2 are particularly suitable. Oxygen and / or helium or another noble gas is added to these substances. Good etching results can also be achieved with silicon tetrachloride SiCl 4 and GeCl 4 or BCl 3 .
Am Schluß wird das Rohr in üblicher Weise in Schutzgasatmosphäre oder unter Vakuum zu einem Vollstab (Vorform) kollabiert.At the end, the tube is in the usual manner in a protective gas atmosphere or collapsed under vacuum to a full rod (preform).
Claims (23)
daß auf das Vorformrohr (1) zunächst eine Diffusionsschicht (2) aufgebracht wird, welche durch Diffusion Verunreinigungen (5) aus dem Vorformrohr aufnimmt,
daß diese Schicht (2) dann wieder entfernt wird, wenn die Verunreinigungen aus dem Vorformrohr (1) in die Schicht (2) eindiffundiert sind, und
daß schließlich das Vorformrohr zur Vorform kollabiert wird.1. A method for removing impurities from a preform for optical waveguides, which is based on a preform tube that is cleaned before collapsing, characterized in that
that a diffusion layer ( 2 ) is first applied to the preform tube ( 1 ), which absorbs impurities ( 5 ) from the preform tube by diffusion,
that this layer ( 2 ) is then removed again when the impurities from the preform tube ( 1 ) have diffused into the layer ( 2 ), and
that the preform tube is finally collapsed into the preform.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19893941865 DE3941865A1 (en) | 1989-12-19 | 1989-12-19 | Effective impurity removal from optical fibre preform - by diffusion into layer removed before tube collapsing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19893941865 DE3941865A1 (en) | 1989-12-19 | 1989-12-19 | Effective impurity removal from optical fibre preform - by diffusion into layer removed before tube collapsing |
Publications (1)
Publication Number | Publication Date |
---|---|
DE3941865A1 true DE3941865A1 (en) | 1991-06-20 |
Family
ID=6395771
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE19893941865 Withdrawn DE3941865A1 (en) | 1989-12-19 | 1989-12-19 | Effective impurity removal from optical fibre preform - by diffusion into layer removed before tube collapsing |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE3941865A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0536631A1 (en) * | 1991-10-07 | 1993-04-14 | Kabelrheydt Aktiengesellschaft | Method for making a preform for optical fibers |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2746949A1 (en) * | 1976-10-19 | 1978-04-20 | Thomson Csf | METHOD FOR MANUFACTURING GLASS FIBERS WITH A RADIAL REFRACTIVE INDEX GRADIENT |
DE3107597A1 (en) * | 1980-03-03 | 1982-01-28 | Western Electric Co., Inc., 10038 New York, N.Y. | METHOD AND DEVICE FOR REMOVING REACTION PRODUCTS FROM A PREFORM TUBE FOR OPTICAL FIBERS |
WO1986001193A1 (en) * | 1984-08-14 | 1986-02-27 | Hughes Aircraft Company | Process for the removal of impurities from optical component materials |
EP0197585A1 (en) * | 1985-03-29 | 1986-10-15 | Philips Patentverwaltung GmbH | Method for making glass bodies |
EP0198510A1 (en) * | 1985-04-18 | 1986-10-22 | Sumitomo Electric Industries Limited | Method of producing glass preform for optical fiber |
DE3235465C2 (en) * | 1981-10-01 | 1987-11-19 | At & T Technologies, Inc., New York, N.Y., Us | |
DE3619510A1 (en) * | 1986-06-10 | 1987-12-17 | Philips Patentverwaltung | METHOD FOR PRODUCING GLASS OR CERAMIC BODIES |
US4729777A (en) * | 1985-08-22 | 1988-03-08 | Kokusai Denshin Denwa Kabushiki Kaisha | Method and apparatus for manufacturing preform for fluoride glass fiber |
DE3630479A1 (en) * | 1986-09-06 | 1988-03-17 | Schott Glaswerke | Process for the production of a planar, polarising, monomodal optical waveguide |
DE2946011C2 (en) * | 1978-11-20 | 1989-01-12 | Mitsubishi Kinzoku K.K., Tokio/Tokyo, Jp |
-
1989
- 1989-12-19 DE DE19893941865 patent/DE3941865A1/en not_active Withdrawn
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2746949A1 (en) * | 1976-10-19 | 1978-04-20 | Thomson Csf | METHOD FOR MANUFACTURING GLASS FIBERS WITH A RADIAL REFRACTIVE INDEX GRADIENT |
DE2946011C2 (en) * | 1978-11-20 | 1989-01-12 | Mitsubishi Kinzoku K.K., Tokio/Tokyo, Jp | |
DE3107597A1 (en) * | 1980-03-03 | 1982-01-28 | Western Electric Co., Inc., 10038 New York, N.Y. | METHOD AND DEVICE FOR REMOVING REACTION PRODUCTS FROM A PREFORM TUBE FOR OPTICAL FIBERS |
DE3235465C2 (en) * | 1981-10-01 | 1987-11-19 | At & T Technologies, Inc., New York, N.Y., Us | |
WO1986001193A1 (en) * | 1984-08-14 | 1986-02-27 | Hughes Aircraft Company | Process for the removal of impurities from optical component materials |
EP0197585A1 (en) * | 1985-03-29 | 1986-10-15 | Philips Patentverwaltung GmbH | Method for making glass bodies |
EP0198510A1 (en) * | 1985-04-18 | 1986-10-22 | Sumitomo Electric Industries Limited | Method of producing glass preform for optical fiber |
US4729777A (en) * | 1985-08-22 | 1988-03-08 | Kokusai Denshin Denwa Kabushiki Kaisha | Method and apparatus for manufacturing preform for fluoride glass fiber |
DE3619510A1 (en) * | 1986-06-10 | 1987-12-17 | Philips Patentverwaltung | METHOD FOR PRODUCING GLASS OR CERAMIC BODIES |
DE3630479A1 (en) * | 1986-09-06 | 1988-03-17 | Schott Glaswerke | Process for the production of a planar, polarising, monomodal optical waveguide |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0536631A1 (en) * | 1991-10-07 | 1993-04-14 | Kabelrheydt Aktiengesellschaft | Method for making a preform for optical fibers |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0086533B1 (en) | Method of making fluordoped optical fibres | |
EP0046281B1 (en) | Process for making glass with a preselected refraction index profile having the form of a gradient index profile and a process for making a glass preform for drawing optical fibres for use in the communications industry | |
DE2546162B1 (en) | Optical fiber with a refractive index gradient for communication | |
DE69805934T2 (en) | Process for the production of preforms for optical waveguides with a segment core | |
DE2727054A1 (en) | METHOD OF MANUFACTURING A GLASS FIBER LIGHT GUIDE | |
WO1994010097A1 (en) | Process and device for producing preforms for silica glass optical waveguides | |
EP0309027A1 (en) | Method of manufacturing a monomode optical fibre | |
CH641427A5 (en) | METHOD FOR PRODUCING A MONO MODE LICHTLEITFASER elliptical core CROSS SECTION. | |
DE3447081A1 (en) | METHOD FOR PRODUCING A PREFORM FOR DRAWING OPTICAL FIBERS | |
EP0117009B1 (en) | Method of making a solid preform for drawing optical fibres | |
DE2313276A1 (en) | METHOD OF MANUFACTURING OPTICAL GLASS | |
DE3031160C2 (en) | ||
CH648815A5 (en) | METHOD FOR ETCHING GLASS SURFACES AND THEIR PARALLEL COATING, IN PARTICULAR FOR THE PRODUCTION OF LIGHT-CONDUCTING FIBERS. | |
DE69212017T2 (en) | Process for making a glass preform for optical fibers | |
DE69200393T2 (en) | Method for manufacturing optically active single-mode strip waveguides for optical communication. | |
DE3008416A1 (en) | METHOD FOR PRODUCING A FIBERGLASS FIBER | |
DE2935347A1 (en) | METHOD FOR PRODUCING GLASS FOR FIBER GLASS FIBER LOW DAMPING | |
DE2741314C3 (en) | Optical fibers for message transmission with high radiation stability | |
DE3510023A1 (en) | SINGLE WAVE LIGHT WAVE GUIDE MADE OF QUARTZ GLASS AND METHOD FOR THE PRODUCTION THEREOF | |
DE60200189T2 (en) | Process for producing optical fibers from preforms by regulating the partial pressure of oxygen during dehydration of the preform | |
DE3941865A1 (en) | Effective impurity removal from optical fibre preform - by diffusion into layer removed before tube collapsing | |
DE2827303A1 (en) | METHOD FOR MANUFACTURING OPTICAL OBJECTS | |
DE3941864A1 (en) | Impurity removal in optical fibre preform prodn. - by impurity diffusion into layers removed before collapsing | |
WO2010034843A1 (en) | Method for producing a tubular semifinished product from quartz glass, method for producing an optical component using the semifinished product, and semifinished product consisting of quartz glass doped with fluorine | |
DE3941863A1 (en) | Light wave conductors mfr. for optical fibres - by coating internal surface of tube with diffusion layer to remove impurities prior to coating when glass core layer and drawing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OM8 | Search report available as to paragraph 43 lit. 1 sentence 1 patent law | ||
8127 | New person/name/address of the applicant |
Owner name: KABEL RHEYDT AG, 4050 MOENCHENGLADBACH, DE |
|
8139 | Disposal/non-payment of the annual fee |