DE3809010C2 - Process for producing microcrystalline, n- or p-type silicon layers using the glow discharge plasma technique, suitable for solar cells - Google Patents
Process for producing microcrystalline, n- or p-type silicon layers using the glow discharge plasma technique, suitable for solar cellsInfo
- Publication number
- DE3809010C2 DE3809010C2 DE3809010A DE3809010A DE3809010C2 DE 3809010 C2 DE3809010 C2 DE 3809010C2 DE 3809010 A DE3809010 A DE 3809010A DE 3809010 A DE3809010 A DE 3809010A DE 3809010 C2 DE3809010 C2 DE 3809010C2
- Authority
- DE
- Germany
- Prior art keywords
- glow discharge
- argon
- type silicon
- sccm
- hydrogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims description 15
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims description 12
- 229910052710 silicon Inorganic materials 0.000 title claims description 12
- 239000010703 silicon Substances 0.000 title claims description 12
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 18
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims description 9
- 229910052786 argon Inorganic materials 0.000 claims description 9
- 239000001257 hydrogen Substances 0.000 claims description 9
- 229910052739 hydrogen Inorganic materials 0.000 claims description 9
- 239000007789 gas Substances 0.000 claims description 8
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 claims description 7
- 229910000077 silane Inorganic materials 0.000 claims description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 4
- 150000001875 compounds Chemical class 0.000 claims description 3
- 150000002431 hydrogen Chemical class 0.000 claims description 3
- 229910000073 phosphorus hydride Inorganic materials 0.000 claims description 3
- 239000010409 thin film Substances 0.000 claims description 3
- ZOCHARZZJNPSEU-UHFFFAOYSA-N diboron Chemical compound B#B ZOCHARZZJNPSEU-UHFFFAOYSA-N 0.000 claims description 2
- 239000002019 doping agent Substances 0.000 claims description 2
- IVHVNMLJNASKHW-UHFFFAOYSA-M Chlorphonium chloride Chemical compound [Cl-].CCCC[P+](CCCC)(CCCC)CC1=CC=C(Cl)C=C1Cl IVHVNMLJNASKHW-UHFFFAOYSA-M 0.000 claims 2
- 230000008878 coupling Effects 0.000 claims 1
- 238000010168 coupling process Methods 0.000 claims 1
- 238000005859 coupling reaction Methods 0.000 claims 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 6
- 229910021424 microcrystalline silicon Inorganic materials 0.000 description 6
- 238000000151 deposition Methods 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 239000011521 glass Substances 0.000 description 3
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 3
- 230000031700 light absorption Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000002800 charge carrier Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 210000003608 fece Anatomy 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000010849 ion bombardment Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 150000003376 silicon Chemical class 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/121—The active layers comprising only Group IV materials
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/24—Deposition of silicon only
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/10—Manufacture or treatment of devices covered by this subclass the devices comprising amorphous semiconductor material
- H10F71/103—Manufacture or treatment of devices covered by this subclass the devices comprising amorphous semiconductor material including only Group IV materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/547—Monocrystalline silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Photovoltaic Devices (AREA)
Description
Die Erfindung betrifft ein Verfahren zum Herstellen mikrokri stalliner (µc), n- oder p-leitender Siliziumschichten, wie sie insbesondere in Dünnschicht-Solarzellenanordnungen des Bautyps Glas/elektrisch-leitende lichtdurchlässige Elektrode/pin-Si : H-Halb leiterkörper/Metall-Elektrode verwendet werden, wobei die Schichten folge im Halbleiterkörper im Glimmentladungsplasma mit kapazitativ eingekoppelter Hochfrequenz-Energie und einem Pro zeßgas, bestehend aus einer mit dem Dotierstoff versetzten Sili zium und Wasserstoff enthaltenden gasförmigen Verbindung er zeugt wird.The invention relates to a method for producing microcri stalliner (µc), n- or p-type silicon layers, like them especially in thin-film solar cell arrangements of the construction type Glass / electroconductive translucent electrode / pin-Si: H-half conductor body / metal electrode are used, the Layers follow in the semiconductor body in the glow discharge plasma capacitively coupled high-frequency energy and a pro zeßgas, consisting of a Sili mixed with the dopant Zium and hydrogen containing gaseous compound is fathered.
Bei Dünnschicht-Solarzellen aus amorphem Silizium (a-Si : H) des Bautyps Glas/Zinndioxid mit Fluor dotiert/pin-a-Si : H/Metall sol len die p- und n-leitenden a-Si : H-Schichten möglichst licht durchlässig sein, denn in diesen Schichten durch Lichtabsorp tion erzeugte Ladungsträger tragen nicht zum Zellenstrom bei. In p-leitenden, mit Bor dotierten Frontschichten kann durch Koh lenstoff-Dotierung der Bandabstand vergrößert werden, um die Lichtdurchlässigkeit zu erhöhen. In bestimmten Fällen ist auch bei p-Si : H-Schichten eine p-µc-Si : H-Schicht von Vorteil. Der Weg über die Kohlenstoffdotierung kann bei n-leitenden, mit Phosphor dotierten Rückseitenschichten wegen der dort geringen Photoleitung nicht beschritten werden. Man versucht vor allem hier, n-Schichten auf der lichtabgewandten Seite der Zelle mi krokristallin (µc) abzuscheiden, um eine höhere Rotdurchlässig keit und damit eine geringere Lichtabsorption zu erreichen. Die se Rotdurchlässigkeit wird besonders für die n-Schicht einer Frontzelle und die p-Schicht der zweiten Zelle von Tandemzellen gefordert. Außerdem weisen µc-Siliziumschichten einen geringen elektrischen Widerstand auf. Die Abscheidung solcher (µc-Si : H)- Schichten bereitet beim Abscheiden im Glimmentladungsplasma verfahren jedoch Probleme.For thin-film solar cells made of amorphous silicon (a-Si: H) des Type glass / tin dioxide doped with fluorine / pin-a-Si: H / metal sol len the p- and n-type a-Si: H layers as light as possible be permeable, because in these layers through light absorption tion generated charge carriers do not contribute to the cell current. In p-type front layers doped with boron, Koh lenstoff-doping the bandgap can be increased to the Increase light transmission. In certain cases, too With p-Si: H layers, a p-µc-Si: H layer is advantageous. Of the Way over the carbon doping can with n-type, with Phosphorus-doped back layers because of the small amount there Photoconductor cannot be used. Above all, you try here, n-layers on the light-facing side of the cell mi Deposits crocrystalline (µc) for a higher red permeability speed and thus lower light absorption. The This red permeability is particularly important for the n-layer Front cell and the p-layer of the second cell of tandem cells required. In addition, µc silicon layers have a small electrical resistance. The deposition of such (µc-Si: H) - Layers prepared when deposited in the glow discharge plasma process problems however.
Aus Japanese Journal of Applied Physics, Vol. 20, No. 11, No vember 1981, L793-L796 ist es bekannt, Siliziumfilme in einem induktiv gekoppelten Glimmentladungsplasma unter Anwesenheit von Argon abzuscheiden, wobei eine sowohl mikrokristalline als auch amorphe Phasen enthaltende Siliziumschicht erhalten wird.From Japanese Journal of Applied Physics, Vol. 20, No. 11, no vember 1981, L793-L796 it is known to make silicon films in one inductively coupled glow discharge plasma in the presence to separate from argon, being both microcrystalline as well as amorphous phases containing silicon layer becomes.
Aus Journal of Non-Crystalline Solids, 34 (1979) 1-11, ist es bekannt, mikrokristalline Wasserstoff enthaltende Silizium schichten in einem induktiv gekoppelten Hochfrequenzplasma bei einer Leistung von 100 bis 120 Watt aus einer Silan, Ar gon und Phosphin enthaltenden Atmosphäre abzuscheiden.From Journal of Non-Crystalline Solids, 34 (1979) 1-11, it is known, microcrystalline hydrogen containing silicon layers in an inductively coupled high-frequency plasma with a power of 100 to 120 watts from a silane, Ar to separate gon and phosphine-containing atmosphere.
Mikrokristalline Siliziumschichten las sen sich mit der Glim mentladungsplasma-Technik mit kapazitiv eingekoppelter Hoch frequenz nur mit relativ hoher (ca. 100facher) Hochfre quenz-Leistung im Vergleich zur Abscheidung von homogenen amorphen a-Si : H aus der Gasphase abscheiden (siehe H. Simon, G. Winterling, G. Müller, Proceed. 4th EC Photovoltaic Conf. Stresa (1982)). Die hohe HF-Leistung bewirkt durch die dann auftretende hohe self-bias-Spannung einen schädlichen Ionen beschuß der schon abgeschiedenen i-Schicht. Außerdem kommt es zu stärkerer Verunreinigung nachfolgender Beschichtungen durch Verschleppung von Phosphor im Vergleich zur Abscheidung homogen amorpher a-Si : H-Schichten mit relativ geringer HF-Leistung. Desweiteren ist die Reproduzierbarkeit und Gleich mäßigkeit der Abscheidung mikrokristalliner Si : H-Schichten auf diese Weise ungenügend und es treten neben gut mikrokri stallinen Schichtbereichen (Kristallitgröße größer 12 nm, RF kleiner 100 KOhm) auch oft amorphe Schichtbereiche auf (Kristallgröße kleiner 2 nm, RF größer 100 KOhm).Microcrystalline silicon layers can only be separated from the gas phase using the glow charge plasma technology with capacitively coupled high frequency with a relatively high (approx. 100 times) high frequency power compared to the deposition of homogeneous amorphous a-Si: H (see H. Simon , G. Winterling, G. Müller, Proceed. 4 th EC Photovoltaic Conf. Stresa (1982)). The high RF power causes a harmful ion bombardment of the already deposited i-layer by the high self-bias voltage that then occurs. In addition, subsequent coatings become more contaminated due to the carryover of phosphorus compared to the deposition of homogeneously amorphous a-Si: H layers with a relatively low HF power. Furthermore, the reproducibility and uniformity of the deposition of microcrystalline Si: H layers are inadequate in this way and, in addition to well microcrystalline layer areas (crystallite size larger than 12 nm, R F less than 100 KOhm), amorphous layer areas often occur (crystal size less than 2 nm, R F greater than 100 KOhm).
Aufgabe der Erfindung ist es, ein Verfahren anzugeben, mit dem eine mikrokristalline, hydrogenisierte Siliziumabschei dung ohne diese Nachteile, das heißt insbesondere mit mög lichst niedriger HF-Leistung, möglich ist.The object of the invention is to provide a method with a microcrystalline, hydrogenated silicon deposit dung without these disadvantages, that is, especially with poss lowest possible RF power is possible.
Diese Aufgabe wird bei einem Verfahren der eingangs genannten Art dadurch gelöst, daß erfindungsgemäß dem Prozeßgas während der Schichtherstellung Argon zugesetzt wird. Dabei liegt es im Rahmen der Erfindung, daß ein Prozeßgas verwendet wird, welches aus einer Mischung von Silan (SiH₄), Wasserstoff (H₂), Phosphin (PH₃) oder Diboran (B₂H₆) und Argon (Ar) be steht, wobei das Mischungsverhältnis Silan/Wasserstoff zu Ar gon auf einen Wert vonThis task is carried out in a method of the type mentioned at the beginning Art solved in that according to the process gas during argon is added to the layer production. It is there in the context of the invention that a process gas is used, which consists of a mixture of silane (SiH₄), hydrogen (H₂), phosphine (PH₃) or diborane (B₂H₆) and argon (Ar) be stands, the mixing ratio of silane / hydrogen to Ar gon to a value of
eingestellt wird.is set.
Weitere Einzelheiten der Erfindung werden nachfolgend anhand der in der Zeichnung befindlichen Figur noch näher beschrieben. Die Figur zeigt in schematischer Darstellung einen Glimmentla dungsreaktor mit kapazitiver Elektrodenanordnung.Further details of the invention are described below the figure in the drawing described in more detail. The figure shows a Glimmentla in a schematic representation dungsreaktor with capacitive electrode arrangement.
Die für die Herstellung der dotierten, mikrokristallinen, hydro genisierten zum Beispiel n-dotierten Siliziumschicht vorgesehe nen gasförmigen Verbindungen, bestehend aus zum Beispiel 2 sccm Silan, 200 sccm Wasserstoff, 0,8 sccm Phosphin und 20 sccm Ar gon werden an der mit dem Pfeil 1 bezeichneten Zuleitung in den, in diesem Beispiel überwiegend aus Quarz bestehenden Reaktor 2, der zuvor an dem mit dem Pfeil 3 bezeichneten Anschluß auf einen Druck von ca. 10-6 mbar evakuiert worden ist, eingeleitet. Der Reaktor 2 ist nach oben und unten mit aus Edelstahl bestehenden Deck- und Grundplatten 4, 5 verschlossen, welche Durchführungen für die im Reaktor 2 horizontal und parallel zueinander angeord neten Elektroden 6 und 7 enthalten. Dabei dient die Elektrode 6 als Halter für die Substrate 8 und ist an der mit 9 bezeichne ten Stelle geerdet, während über die Elektrode 7 durch Einspei sen von HF-Energie die Glimmentladung in Gang gesetzt wird. Bei de Elektroden 6 und 7 werden mittels Elektrodenheizung (in der Zeichnung nicht dargestellt) auf 200 bis 300°C aufgeheizt. Die Substrate 8 bestehen aus Glasplatten, die mit einer Schichten folge bestehend aus: mit Fluor dotiertem Zinnoxid, mit Bor do tiertem Silizium und intrinsischem Silizium versehen sind (der besseren Übersicht wegen ist die Schichten folge nicht im einzel nen dargestellt).The gaseous compounds provided for the production of the doped, microcrystalline, hydrogenated, for example, n-doped silicon layer, consisting of, for example, 2 sccm silane, 200 sccm hydrogen, 0.8 sccm phosphine and 20 sccm ar gon are indicated by the arrow 1 designated supply line into the reactor 2 , in this example consisting predominantly of quartz, which was previously evacuated to a pressure of approx. 10 -6 mbar at the connection indicated by the arrow 3 . The reactor 2 is closed at the top and bottom with stainless steel cover and base plates 4 , 5 , which contain bushings for the electrodes 6 and 7 arranged horizontally and parallel to each other in the reactor 2 . In this case, the electrode 6 serves as a holder for the substrates 8 and is grounded at the point designated 9 , while the glow discharge is started via the electrode 7 by feeding in HF energy. In the electrodes 6 and 7 are heated to 200 to 300 ° C by means of electrode heating (not shown in the drawing). The substrates 8 consist of glass plates which are provided with a layer sequence consisting of: with fluorine-doped tin oxide, with boron-doped silicon and intrinsic silicon (for the sake of clarity, the layer sequence is not shown in detail).
Bei der oben angegebenen Zusammensetzung des Prozeßgases erge ben sich mit einer HF-Anregung von ca. 1 Watt/cm² reproduzier bar homogene, mikrokristalline Si : H-Schichten (ohne Argonzusatz müßten ca. 4 Watt/cm² HF-Leistung eingekoppelt werden). In den mikrokristallinen Siliziumschichten konnten 1 bis 5 Promille Argon nachgewiesen werden; eine Qualitätsverminderung der Schichten bzw. eine Wirkungsgradverschlechterung der Zellen konnte nicht festgestellt werden.With the composition of the process gas indicated above reproduce with an RF excitation of approx. 1 watt / cm² bar homogeneous, microcrystalline Si: H layers (without argon addition about 4 watts / cm² RF power would have to be injected). In the microcrystalline silicon layers could 1 to 5 parts per thousand Argon can be detected; a reduction in the quality of the Layers or a deterioration in the efficiency of the cells it could not be detected.
Claims (4)
2 sccm Silan, 200 sccm Wasserstoff, 0,8 sccm Phosphin und 20 sccm Argon.4. The method according to any one of claims 1 to 3, wherein the process gas ( 1 ) has the following composition in the production of an n-type silicon layer:
2 sccm silane, 200 sccm hydrogen, 0.8 sccm phosphine and 20 sccm argon.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3809010A DE3809010C2 (en) | 1988-03-17 | 1988-03-17 | Process for producing microcrystalline, n- or p-type silicon layers using the glow discharge plasma technique, suitable for solar cells |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3809010A DE3809010C2 (en) | 1988-03-17 | 1988-03-17 | Process for producing microcrystalline, n- or p-type silicon layers using the glow discharge plasma technique, suitable for solar cells |
Publications (2)
Publication Number | Publication Date |
---|---|
DE3809010A1 DE3809010A1 (en) | 1989-09-28 |
DE3809010C2 true DE3809010C2 (en) | 1998-02-19 |
Family
ID=6350015
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE3809010A Expired - Fee Related DE3809010C2 (en) | 1988-03-17 | 1988-03-17 | Process for producing microcrystalline, n- or p-type silicon layers using the glow discharge plasma technique, suitable for solar cells |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE3809010C2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6726955B1 (en) * | 2000-06-27 | 2004-04-27 | Applied Materials, Inc. | Method of controlling the crystal structure of polycrystalline silicon |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3021876A1 (en) * | 1979-07-16 | 1981-02-12 | Rca Corp | METHOD FOR IMPROVING THE DARK AND PHOTO CONDUCTIVITY OF HYDRATED AMORPHOUS SILICON LAYERS AND SOLAR CELL PRODUCED BY THE PROCESS |
DE3119481C2 (en) * | 1980-05-19 | 1986-01-02 | Energy Conversion Devices, Inc., Troy, Mich. | Process for the production of doped semiconductor material |
US4599971A (en) * | 1983-09-14 | 1986-07-15 | Canon Kabushiki Kaisha | Vapor deposition film forming apparatus |
-
1988
- 1988-03-17 DE DE3809010A patent/DE3809010C2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3021876A1 (en) * | 1979-07-16 | 1981-02-12 | Rca Corp | METHOD FOR IMPROVING THE DARK AND PHOTO CONDUCTIVITY OF HYDRATED AMORPHOUS SILICON LAYERS AND SOLAR CELL PRODUCED BY THE PROCESS |
DE3119481C2 (en) * | 1980-05-19 | 1986-01-02 | Energy Conversion Devices, Inc., Troy, Mich. | Process for the production of doped semiconductor material |
US4599971A (en) * | 1983-09-14 | 1986-07-15 | Canon Kabushiki Kaisha | Vapor deposition film forming apparatus |
Non-Patent Citations (6)
Title |
---|
Bd.22, Nr.1, 1983, S. L34-L36 * |
Bd.25, Nr.12,1986, S. 1805-1810 * |
J. of Non-Crystalline Solids 34 (1979) 1-11 * |
JP-Z: Jap.J.Appl.Phys.: Bd.20, Nr.11,1981, S. L793-L796 * |
US-Z: J.Appl.Phys., Bd.61, Nr.1, 1987, S.446-448 * |
US-Z: Physical Review B, Vol.18, Nr.4, 1978, S.1880-1891 * |
Also Published As
Publication number | Publication date |
---|---|
DE3809010A1 (en) | 1989-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3280418T2 (en) | AMORPHOUS SEMICONDUCTOR AND PHOTOVOLTAIC DEVICE MADE OF AMORPHOUS SILICON. | |
DE3650012T2 (en) | Semiconductor device. | |
EP0062079B1 (en) | Thin silicon film and process for preparing same | |
DE19727253A1 (en) | Multiple or single junction photovoltaic device especially solar cell | |
DE3153270C2 (en) | Process for the production of doped semiconductor material by glow discharge | |
DE69225373T2 (en) | Solar cell | |
DE3105819C2 (en) | ||
DE10101035B4 (en) | Thin-film solar cell, solar cell module and method of manufacturing a thin-film solar cell | |
DE2940994C2 (en) | ||
DE3686576T2 (en) | METHOD FOR PRODUCING AN ELECTRONIC DEVICE WITH A MULTILAYER STRUCTURE. | |
DE69217287T2 (en) | Multi-junction photovoltaic device and manufacturing method | |
DE3244626A1 (en) | BARRIER LAYER PHOTOELEMENT AND MANUFACTURING METHOD THEREFOR | |
DE2632987A1 (en) | SEMICONDUCTOR COMPONENT | |
DE69213759T2 (en) | SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD BY MEANS OF MICROWAVE DEPOSITION. | |
DE3135393A1 (en) | METHOD FOR PRODUCING A LIGHT-SENSITIVE AMORPHOUS ALLOY AND COMPONENT CONTAINING THIS | |
DE69738152T2 (en) | Photovoltaic device and method for producing the same | |
DE112012003057T5 (en) | Process for stabilizing hydrogenated amorphous silicon and amorphous hydrogenated silicon alloys | |
DE2711365C2 (en) | ||
DE3751209T2 (en) | Deposition and dopants useful in the manufacture of hydrogenated, amorphous silicon alloys for photovoltaic and other semiconductor devices. | |
DE102012104140A1 (en) | Improved emitter structure and method of making a silicon solar cell with heterojunction | |
DE3742110A1 (en) | METHOD FOR FORMING FUNCTIONAL EVAPORATIVE FILMS BY A CHEMICAL MICROWAVE PLASMA EVAPORATION METHOD | |
EP0181113A2 (en) | Improved boron doped semiconductor materials and method for producing | |
EP0949688A1 (en) | Thin film solar cell, method of manufacturing the same, and apparatus for carrying out the method of manufacturing | |
JP2692091B2 (en) | Silicon carbide semiconductor film and method for manufacturing the same | |
DE3732617C2 (en) | Photoelement |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OM8 | Search report available as to paragraph 43 lit. 1 sentence 1 patent law | ||
8110 | Request for examination paragraph 44 | ||
D2 | Grant after examination | ||
8364 | No opposition during term of opposition | ||
8339 | Ceased/non-payment of the annual fee |