DE3048857A1 - METHOD FOR PRODUCING AMORPHOUS SILICON AND DEVICE PRODUCED BY THIS METHOD - Google Patents
METHOD FOR PRODUCING AMORPHOUS SILICON AND DEVICE PRODUCED BY THIS METHODInfo
- Publication number
- DE3048857A1 DE3048857A1 DE19803048857 DE3048857A DE3048857A1 DE 3048857 A1 DE3048857 A1 DE 3048857A1 DE 19803048857 DE19803048857 DE 19803048857 DE 3048857 A DE3048857 A DE 3048857A DE 3048857 A1 DE3048857 A1 DE 3048857A1
- Authority
- DE
- Germany
- Prior art keywords
- layer
- amorphous silicon
- dopant
- antimony
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/10—Manufacture or treatment of devices covered by this subclass the devices comprising amorphous semiconductor material
- H10F71/103—Manufacture or treatment of devices covered by this subclass the devices comprising amorphous semiconductor material including only Group IV materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02491—Conductive materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02524—Group 14 semiconducting materials
- H01L21/02532—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/0257—Doping during depositing
- H01L21/02573—Conductivity type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02587—Structure
- H01L21/0259—Microstructure
- H01L21/02592—Microstructure amorphous
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/02631—Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F10/00—Individual photovoltaic cells, e.g. solar cells
- H10F10/10—Individual photovoltaic cells, e.g. solar cells having potential barriers
- H10F10/18—Photovoltaic cells having only Schottky potential barriers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/10—Semiconductor bodies
- H10F77/16—Material structures, e.g. crystalline structures, film structures or crystal plane orientations
- H10F77/162—Non-monocrystalline materials, e.g. semiconductor particles embedded in insulating materials
- H10F77/166—Amorphous semiconductors
- H10F77/1662—Amorphous semiconductors including only Group IV materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/548—Amorphous silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Photovoltaic Devices (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
Description
PATE NTANWA LT- DR. HERMAKN O. T H'. -D:f E-HL ]- DIPLOMPHYSIKER D - 8 000 MÖNCHEN 19 - FLD GG'e N STRAPS E *1*7 -TELEFON:.089/177061 PATE NTANWA LT- DR. HERMAKN O. T H '. -D : f E-HL] - DIPLOMPHYSICIST D - 8,000 MONKS 19 - FLD GG'e N STRAPS E * 1 * 7 -TELEPHONE: .089 / 177061
-5- 30A8857-5- 30A8857
E 1476-D 23.12.1980 E 1476-D December 23, 1980
EXXON RESEARCH AND ENGINEERING COMPANY, FLORHAM PARK, N.J. 07932 / USAEXXON RESEARCH AND ENGINEERING COMPANY, FLORHAM PARK, N.J. 07932 / USA
Verfahren zum Herstellen von amorphem Silicium und nach diesem Verfahren hergestellte VorrichtungA method of making amorphous silicon and a device made by this method
Poiticheckkonto München Nr. 848 54-läOr ^RiUictalbank München (BLZ 700 303 00) Konto Nr. 423.11343 T«Iex 5215145 Zeui Talegrammadreaie/Cable AdreM: ZeuspatentPoiticheckkonto Munich No. 848 54-läOr ^ RiUictalbank Munich (BLZ 700 303 00) Account No. 423.11343 T «Iex 5215145 Zeui Talegrammadreaie / Cable AdreM: Zeus patent
E 1476-D 23.12.198ο E 1476-D 23.12.198ο
EXXON EFSEARCH AND ENGINEERING COMPANY, FLORHAM PARK, N.J. 07932, U.S.A.EXXON EFSEARCH AND ENGINEERING COMPANY, FLORHAM PARK, N.J. 07932, U.S.A.
Verfahren zum Herstellen von amorphem SiliciumProcess for producing amorphous silicon
und nach diesem Verfahren hergestellte Vorrichtungand device made by this process
Die Erfindung betrifft ein Verfahren zum Herstellen von amorphem Silicium und eine nach diesem Verfahren hergestellte photovoltaische Vorrichtung nach dem Oberbegriff des Patentanspruchs 1 bzw. 1o.The invention relates to a method for producing amorphous silicon and a photovoltaic device produced by this method according to the preamble of claim 1 or 1o.
Es hat sich gezeigt, dass mit Wasserstoff angereichertes amorphes Silicium vorteilhafte photoleitende Eigenschaften besitzt, die-eine aussichtsreiche Alternative zu kristallinen Materialien versprechen, wie beispielsweise zu einkristallinem Silicium und Germanium. Wenn amorphes Silicium insbesondere als ein dünner Film hergestellt wird, so ergeben sich gegenüber seinen kristallinen Gegenstücken wesentliche Materialeinsparungen. Das bestehende Hindernis gegenüber seiner verbreiteten Ver-Wendung ist der bezüglich zu anderen Materialien gerin-It has been found that hydrogen-enriched amorphous silicon has advantageous photoconductive properties that promise a promising alternative to crystalline materials, such as to single crystal silicon and germanium. When amorphous silicon is made especially as a thin film there are significant material savings compared to its crystalline counterparts. The existing The obstacle to its widespread use is that of other materials.
130038/0929130038/0929
ge Wirkungsgrad einer daraus hergestellten Vorrichtung. Obwohl das Material eine günstige Quantenausbeute an photoerzeugten Ladungsträgern aufweist, begrenzen andere grundlegende elektrische Eigenschaften des Halbleiters, wie beispielsweise die Beweglichkeit, die Lebensdauer und Diffusionslänge von Ladungsträgern, den Wir τ-kungsgrad einer aus amorphem Silicium bestehenden Vorrichtung. Die sich ergebende Auswirkung auf eine Vorrichtung, wie beispielsweise eine Solarzelle, liegt darin, dass die wirksame Ansammlung von photoerzeugten Ladungsträgern auf den Sperrschichtbereich begrenzt ist oder ein Bereich ohne übergang elektrisch nicht neutral ist, jedoch den Transport von Ladungsträgern behindert, die im Sperrschicht- oder Verarmungsbereich erzeugt sind.ge efficiency of a device made from it. Although the material has a favorable quantum yield of photogenerated charge carriers, limit other basic electrical properties of the semiconductor, such as flexibility, the lifetime and diffusion length of charge carriers, which we τ- ciency an existing amorphous silicon device. The resulting effect on a device, such as a solar cell, is that the effective accumulation of photo-generated charge carriers is limited to the junction area or an area without a transition is not electrically neutral but hinders the transport of charge carriers that are in the junction or Depletion area are generated.
--
Es ist daher Aufgabe der Erfindung, das eingangs genannte Verfahren bzw. die eingangs genannte Vorrichtung so zu verbessern, dass der Wirkungsgrad wesentlich erhöht werden kann.It is therefore the object of the invention to provide the method mentioned at the beginning and the device mentioned at the beginning in this way improve so that the efficiency can be increased significantly.
Diese Aufgabe wird bei einem Verfahren nach dem Oberbegriff des Patentanspruchs 1 bzw. bei einer Vorrichtung nach dem Oberbegriff des Patentanspruchs 1o erfindungsgemäss durch die jeweils in deren kennzeichnendem Teil enthaltenen Merkmale gelöst.This object is achieved with a method according to the preamble of patent claim 1 or with a device according to the preamble of claim 1o according to the invention by each in the characterizing part contained features solved.
Die Erfindung überwindet also die oben aufgezeigten Mängel, indem selektiv das amorphe Silicium mit einem Störstellen-Dotierstoff geändert wird, der einerseits den wirksamen Feldbereich einer Ladungsansammlung im wesentlichen durch die amorphe Siliciumschicht ausdehnt und andererseits gleichzeitig die elektrischen Eigenschaften des keinen übergang aufweisenden oder Haupt- bzw. Volumenbereichs der Vorrichtung verbessert. Der Dotierstoff um-The invention overcomes the deficiencies outlined above, by selectively changing the amorphous silicon with an impurity dopant which, on the one hand, is the effective field area of a charge accumulation extends substantially through the amorphous silicon layer and on the other hand at the same time the electrical properties of the no transition or main or volume area the device improved. The dopant
130038/0929130038/0929
fasst ein ionisierbares Material, wie beispielsweise Antimon/ das thermoelektrisch in die amorphe Siliciumschicht diffundiert wird, während der Siliciumfilm durch Aufsprühen oder Sputtern abgeschieden oder aufgetragen wird. 5includes an ionizable material such as antimony / the thermoelectrically in the amorphous silicon layer is diffused while the silicon film is sprayed or sputtering is deposited or applied. 5
Die beiden Hauptverfahren zum Erzeugen von mit Wasserstoff angereichertem amorphem Silicium sind die Glimmentladungs-Zersetzung von Silan und das reaktive Sputtern in einem Plasma aus einer Mischung von Argon und Wasserstoff.The two main methods of producing hydrogen-enriched amorphous silicon are glow discharge decomposition of silane and reactive sputtering in a plasma of a mixture of argon and hydrogen.
In jedem Fall wird das Material N- und P-dotlert, indem der Entladung eine Menge an Phosphin (PH3) oder Diboran (B_H ) beigefügt wird. Solarzellen-Strukturen werden aus diesen Materialien hergestellt, indem abrupte übergänge benutzt werden, die durch Gasphasen-Dotierung hergestellt sind. Solche Strukturen umfassen beispielsweise Schottky-Sperrschichten, PIN-Ubergänge und Hetero-Übergänge. Die Schottky-Sperrschicht-Struktur ist eine Vielschicht-Anordnung aus eimern metallischen Substrat, einer o,o5/am (5oo S) dicken, stark mit Phosphin dotierten a-Si-Schicht (N ), einer eigenleitenden amorphen Siliciumschicht und einem halbtransparenten Metallkontakt mit hoher Austrittsarbeit. Die dünne N -amorphe Siliciumschicht, die durch Dotieren aus einer PH3 enthaltenden Entladung erhalten ist, wird verwendet, um den Ohm'sehen Kontakt auf der eigenleitenden amorphen Siliciumschicht herzustellen.In any case, the material is N- and P-doped by adding a quantity of phosphine (PH 3 ) or diborane (B_H) to the discharge. Solar cell structures are made from these materials using abrupt junctions made by gas phase doping. Such structures include, for example, Schottky barriers, PIN junctions and heterojunctions. The Schottky barrier layer structure is a multilayer arrangement of buckets of metallic substrate, an o, o5 / am (5oo S) thick, heavily doped with phosphine a-Si layer (N), an intrinsic amorphous silicon layer and a semi-transparent metal contact with high work function. The thin N -amorphic silicon layer obtained by doping from a discharge containing PH 3 is used to make the ohmic contact on the intrinsic amorphous silicon layer.
Zwar ist die Sputter-Abscheidung von photoleitendem amorphem Silicium üblich (vgl. den technischen Aufsatz von Moustakas et al "Preparation of Highly Photoconductive Amorphous Silicon by Reactive Sputtering" in der Zeitschrift "Solid State Communications", Bd.23, Juni 1977), wobei die Sputter-Abscheidung von photoleitendem amorphem Silicium beispielsweise in Wasserstoff erfolgen kann.The sputter deposition of photoconductive amorphous silicon is common (cf. the technical article von Moustakas et al "Preparation of Highly Photoconductive Amorphous Silicon by Reactive Sputtering" in of the journal "Solid State Communications", Vol. 23, June 1977), with the sputter deposition of photoconductive amorphous silicon can take place, for example, in hydrogen.
130038/0929130038/0929
Die Erfindung ermöglicht ein Verfahren zum Dotieren von amorphem Silicium. Ein Störstellen-Dotierstoff, wie beispielsweise Antimon, wird thermoelektrisch in das amorphe Silicium diffundiert, wodurch dessen eigenleitende HaIbleitereigenschaften geändert werden. Das thermoelektrisch diffundierte Material liefert ein Gradienten-Dotierungsprofil Über dem Hauptteil der Siliciumschicht. In einer photovoltaischen Vorrichtung, wie beispielsweise einer Solarzelle, dehnt die Erfindung den wirksamen Feldbereich einer photoerzeugten Ladungsansammlung im wesentlichen durch die Siliciumschicht aus, während gleichzeitig die Leitfähigkeit des sperrschichtfreien oder Hauptbzw. Volumen-Bereichs der Vorrichtung gesteigert wird. Der Dotierungsprozess liefert auch einen verbesserten Ohm1sehen Kontakt zwischen dem Halbleiter und einer herkömmlichen Metallelektrode.The invention enables a method for doping amorphous silicon. An impurity dopant such as antimony is thermoelectrically diffused into the amorphous silicon, thereby changing its intrinsic semiconductor properties. The thermoelectrically diffused material provides a gradient doping profile over the majority of the silicon layer. In a photovoltaic device, such as a solar cell, the invention extends the effective field area of a photo-generated charge accumulation substantially through the silicon layer, while at the same time the conductivity of the barrier layer-free or main or. Volume range of the device is increased. The doping process also provides improved ohm 1 see contact between the semiconductor and a conventional metal electrode.
Ein amorpher Silicium-Halbleiter hat also erfindungsgemäss ein Gradienten-Dotierungsprofil, das durch thermoelektrisches Diffundieren eines ionisierbaren Abscheidungsmaterials, wie beispielsweise Antimon oder Aluminium, in eine amorphe Siliciumschicht erzeugt ist. Bei einer photovoltaischen Vorrichtung steigert das Gradienten-Dotierungsprofil die Breite des Verarmungs- oder Sperr-Schichtbereichs und gewährleistet gleichzeitig einen Ohm'sehen Kontakt zwischen amorphem Silicium und stromführenden Elektroden. According to the invention, an amorphous silicon semiconductor has a gradient doping profile obtained by thermoelectric diffusion of an ionizable deposition material, such as antimony or aluminum, is produced in an amorphous silicon layer. At a photovoltaic device increases the gradient doping profile the width of the depletion or barrier layer area and at the same time ensures one Ohm's see contact between amorphous silicon and current-carrying electrodes.
Nachfolgend wird die Erfindung anhand der Zeichnung näher erläutert. Es zeigen:The invention is explained in more detail below with reference to the drawing. Show it:
Fig.1 einen Schnitt einer nach der Erfindung hergestellten Schottky-Photodiode und1 shows a section of a manufactured according to the invention Schottky photodiode and
Fig.2 eine Strom/Spannungs-Kennlinie für zwei photovoltaische Vorrichtungen aus amorphem Silicium,Fig.2 shows a current / voltage characteristic for two photovoltaic Amorphous silicon devices,
130038/0 9 29130038/0 9 29
von denen eine das nach der Erfindung hergestellone of which manufactures the according to the invention
te amorphe Silicium enthält.te amorphous silicon contains.
Die Erfindung ermöglicht eine verbesserte Halbleiter-Vorrichtung mit einem Körper aus amorphem Silicium, das geändert ist, indem thermoelektrisch in die Siliciumschicht ein Störstellen-DotierStoffmaterial diffundiert wird.The invention enables an improved semiconductor device with a body of amorphous silicon that is modified by thermoelectrically in the silicon layer an impurity dopant material is diffused.
Zur Erläuterung der Erfindung zeigt Pig.1 eine Schottky-Obergang-Photodiode mit einem Körper aus amorphem Silicium, der durch die erfindungsgemässe Dotierungsart geändert wurde. In der Fig.1 liefert ein Substrat 1o eine tragende Unterlage für Jie Abscheidung von Dünnfilmmaterialien. Das Substrat 1o umfasst ein Material, das die erforderlichen Prozesstemperaturen der darüberliegenden Schichten aushalten kann, die weiter unten näher erläutert werden. Das Substrat 1o ist vorzugsweise frei von Oberflächen-Diskontinuitäten, oder ünregelmässigkeiten der Grossen-Ordnung von 1 /am oder weniger, um Nadelloch- bzw. Peinlunker- oder ähnliche Mängel in den anschliessend abgeschiedenen Filmen zu vermeiden. Das Substrat wird mit einer Schicht 12 aus Chrom (etwa o,1/um bzw. 1.ooo 8 dick) und einer etwa o,oo5 film bis o,o1 /im (5o % bis 1oo 8) dicken Schicht 13 eines ionisierbaren Dotierstoffs aus Antimon, Phosphor, Aluminium, Lithium, Arsen oder einer Mischung hiervon belegt. In einem bevorzugten Ausführungsbeispiel umfasst die Schicht 13 eine ungefähr o,o1/im (1oo S) dicke Antimonschicht, die durch thermische Verdampfung abgeschieden ist. Bei der Erfindung weist die Schicht 13 den ionisierbaren Dotierstoff auf, und die Chromschicht 12 dient in erster Linie zur Stromleitung. Diese Folge der beiden metallischen Schichten wird verwendet, da dicke Antimonschichten nicht gut an einem Glassubstrat haften.To explain the invention, Pig.1 shows a Schottky transition photodiode with a body made of amorphous silicon, which has been changed by the doping type according to the invention. In Figure 1, a substrate 10 provides a supporting base for the deposition of thin film materials. The substrate 1o comprises a material that can withstand the required process temperatures of the overlying layers, which are explained in more detail below. The substrate 1o is preferably free from surface discontinuities or irregularities of the order of magnitude of 1 / am or less in order to avoid pinholes or pinholes or similar defects in the subsequently deposited films. The substrate is coated with a layer 12 of chrome (approximately o, 1 / thick to or 1.ooo 8) and an approximately o, oo5 film to o.o1 / thick in (5o% to 1oo 8) layer 13 of an ionizable dopant made of antimony, phosphorus, aluminum, lithium, arsenic or a mixture thereof. In a preferred exemplary embodiment, the layer 13 comprises an approximately 0.01 / im (100 S) thick antimony layer which is deposited by thermal evaporation. In the case of the invention, the layer 13 has the ionizable dopant, and the chromium layer 12 primarily serves to conduct electricity. This sequence of two metallic layers is used because thick layers of antimony do not adhere well to a glass substrate.
130038/0929130038/0929
Das mit den Schichten 12 und 13 belegte Substrat 1o ist an der Anodenelektrode eines herkömmlichen Vakuum-Sputter- oder Zerstäubungs- oder Aufsprühgeräts befestigt, das in geeigneter Weise einstellbar ist, um eine gesteuerte Erwärmung und elektrische Vorspannung des Substrate zu erlauben. Das Substrat wird auf eine Temperatur zwischen 2oo°C und 3oo°C erwärmt, und eine positive Gleichvorspannung zwischen etwa 3o V bis etwa 1oo V liegt am Substrat. Wenn dieses Substrat 1o ein elektrisch isolierendes Material umfasst, wird ein direkter elektrischer Kontakt zwischen der Vorspannanode und der Schicht 13 hergestellt, was das Anlegen der Vorspannung an die Dotierstoffschicht 13 gewährleistet.The substrate 1o covered with layers 12 and 13 is attached to the anode electrode of a conventional vacuum sputtering or atomizing or spraying device, which is suitably adjustable to provide controlled heating and electrical biasing of the Allow substrates. The substrate is heated to a temperature between 200 ° C and 300 ° C, and a positive one DC bias between about 30 V to about 100 V is applied to the substrate. If this substrate 1o a comprises electrically insulating material, there is direct electrical contact between the bias anode and of the layer 13, which ensures the application of the bias voltage to the dopant layer 13.
Das einer Vorspannung ausgesetzte und erwärmte Substrat wird dann einer Sputter-Abscheidung einer eigenleitenden amorphen Siliciumschicht 14 unterworfen. Diese Abscheidung umfasst beispielsweise ein Evakuieren des Sputtergeräts auf einen Druck von etwa 133 χ 1o Pa bisThe biased and heated substrate is then subjected to a sputter deposition of an intrinsic amorphous silicon layer 14 subjected. This deposition includes, for example, evacuating the sputtering device to a pressure of about 133 χ 10 Pa
-7 -7-7 -7
4oo χ Io Pa (1 bis 3 χ Io Torr) und ein Rückfüllen desselben mit einem Partialdruck von Argon und Wasserstoff. Der Partialdruck von Argon kann zwischen etwa 1,33 Pa (1o mTorr) und etwa 2,66 Pa (2o mTorr) liegen; der Partialdruck von Wasserstoff kann zwischen etwa δ χ Io Pa4oo χ Io Pa (1 to 3 χ Io Torr) and backfilling the same with a partial pressure of argon and hydrogen. The partial pressure of argon can be between about 1.33 Pa (1o mTorr) and about 2.66 Pa (2o mTorr); the partial pressure of hydrogen can be between about δ χ Io Pa
-4 -3-4 -3
(6 χ 1o Torr) und etwa o,133 Pa (1 χ 1o Torr) liegen, wobei ausserhalb dieses Bereichs die hier angegebene Dotierungsart unwirksam ist, was in erster Linie auf der vorherrschenden Auswirkung eines Mangels oder eines grossen Überflusses an Wasserstoff im amorphen Siliciumfilm beruht. Das Target bzw. die Speicherelektrode, nämlich eine polykristalline Siliciumscheibe mit einem Durchmesser von 12,7 cm (5 Zoll) liegt 4,5 cm über der Anode und wird mit einer Leistung zwischen etwa 1oo W bis 5oo W von einer Hochfrequenz- oder HF-Quelle versorgt.(6 χ 1o Torr) and about o, 133 Pa (1 χ 1o Torr), with the doping type specified here outside this range is ineffective, which is primarily due to the predominant effect of a defect or one large excess of hydrogen in the amorphous silicon film. The target or the storage electrode, namely a polycrystalline silicon wafer with a diameter of 12.7 cm (5 inches) lies 4.5 cm above the anode and is supplied with a power between about 100 W to 500 W from a radio frequency or HF source.
130038/0929130038/0929
Bei höheren Leistungsdichten (ungefähr 5oo W) ist die Katode wassergekühlt, wobei bei geringeren Leistungsdichten die Katode eine Gleichgewichtstemperatur von etwa 2oo°C erreichen kann. Diese Parameter führen zu einer Abscheidungsgeschwindigkeit oder -rate zwischenAt higher power densities (approx. 500 W) the cathode is water-cooled, whereas at lower power densities the cathode can reach an equilibrium temperature of about 200 ° C. These parameters lead to a deposition rate or rate between
—4 —4 ο—4 —4 ο
2 χ Io /um/s und 4 χ Io /ωη/s (2 bis 4 a/s), wobei die Filmdicke zwischen 1 ^m und etwa 3/im schwankt.2 χ Io / µm / s and 4 χ Io / ωη / s (2 to 4 a / s), with the film thickness varying between 1 ^ m and about 3 / im.
Es wird angenommen, dass das Antimon mit den anschliessend abgeschiedenen Schichten des abgeschiedenen amorphen Siliciums reagiert und diese N-dotiert. Durch die erhöhte Temperatur des Substrats können die Dotierstoffatome positiv ionisiert werden. Während der anschliessenden Siliciumabscheidung diffundieren und dotieren die ionisierten Fremdstoffe - unterstützt durch die Vorspannung - die gerade abgeschiedenen Siliciumschichten mittels der Antriebskraft der angelegten positiven Vorspannung. Die thermoelektrische Diffusion erzeugt eine Gradientenzusammensetzung des Dotierstoffmaterials, das am meisten in der Nähe des Ursprungs der Dotierstoffquelle konzentriert ist und in der Konzentration über die Filmdicke abnimmt. Das Gradientenprofil und die Tiefe der Eindringung wird erfindungsgemäss zusammen durch die Temperatur und die Vorspannung gesteuert.It is assumed that the antimony with the subsequently deposited layers of the deposited amorphous Silicon reacts and these are N-doped. Due to the increased temperature of the substrate, the dopant atoms can be positive be ionized. During the subsequent silicon deposition, the ionized ones diffuse and dope Foreign matter - supported by the bias - the just deposited silicon layers by means of the driving force the applied positive bias. The thermoelectric diffusion creates a gradient composition the dopant material that is most concentrated in the vicinity of the origin of the dopant source and its concentration decreases over the film thickness. The gradient profile and the depth of penetration will be according to the invention together by the temperature and the Controlled preload.
Eine einen üblichen übergang bildende Schicht 16 wird auf der amorphen Siliciumschicht 14 abgeschieden. Der übergang kann einen Schottky-Übergang, einen PN-Übergang, einen Hetero-übergang oder einen ähnlichen derartigen Halbleiterübergang aufweisen, wie dies üblich ist. In einem Ausführungsbeispiel wird eine halbtransparente Schicht eines Metalls mit einer Austrittsarbeit von etwa 4,5 eV auf dem amorphem Silicium abgeschieden, um einen Schottky-Übergang zu bilden.A layer 16 which forms a conventional transition is applied the amorphous silicon layer 14 deposited. The junction can be a Schottky junction, a PN junction, a heterojunction or a similar one Have semiconductor junction, as is common. In one embodiment, a semi-transparent Layer of a metal with a work function of about 4.5 eV deposited on the amorphous silicon to create a To form Schottky junction.
130038/0929130038/0929
Ea wird angenommen, dass der diffundierte Dotierstoff das Fermi-Niveau des eigenleitenden amorphen Siliciums zum Leitungsband verschiebt. Das einen Gradienten aufweisende Dotierungsprofil in der Siliciumschicht erzeugt eine monotone Abnahme in der Verschiebung des Fermi-Niveaus durch den Film. Dies führt zu einem eingebauten Feld in der amorphen Siliciumschicht, das den Bereich der Sperrschicht-Ansammlung von photoerzeugten Ladungen im wesentlichen durch die Siliciumschicht ausdehnt. Die Verschiebung des Fermi-Niveaus zum Leitungsband im sperrschichtfreien Haupt- oder Volumenbereich der Vorrichtung steigert auch die Leitfähigkeit des Halbleitermaterials in diesem Bereich, wodurch die innere, mit Verlust behaftete Last der Vorrichtung verringert wird. Zusätzlich gewährleistet die starke Dotierung der amorphen Siliciumschicht an der Zwischenflache mit der Metallschicht 13 den Ohm1sehen Charakter dieses Kontakts.Ea, it is assumed that the diffused dopant shifts the Fermi level of the intrinsic amorphous silicon to the conduction band. The gradient doping profile in the silicon layer creates a monotonous decrease in the shift in Fermi level through the film. This results in a built-in field in the amorphous silicon layer which extends the area of the barrier layer accumulation of photogenerated charges substantially through the silicon layer. The shift in the Fermi level to the conduction band in the main or bulk area of the device without a barrier layer also increases the conductivity of the semiconductor material in that area, thereby reducing the internal lossy load on the device. In addition, the heavy doping of the amorphous silicon layer at the interface with the metal layer 13 ensures the ohm 1 character of this contact.
Die Leistungsfähigkeit der oben beschriebenen photovoltaischen Vorrichtung wurde mit einer solchen mit einem abrupten übergang verglichen.The performance of the above-described photovoltaic device was compared with that of a abrupt transition compared.
In diesem Vergleich der photovoltaischen Vorrichtung wird das übliche Vorgehen mit einem Dazwischenlegen einer amorphen N -a-Si-Schicht zwischen eine stromführende Metallschicht und die eigenleitende amorphe Siliciumschicht verwendet, um einen Ohm'sehen Kontakt zwischen dem Metall und dem Halbleiter herzustellen. In der Fig.2 ist ein Vergleich mit der Abhängigkeit des photovoltaischen Stroms von der Spannung für die zwei Vorrichtungen gezeigt. Eine Kurve 2o stellt die Strom/Spannungskennlinie einer beleuchteten photovoltaischen Vorrichtung mit einem Antimon-Dotierungsgradienten nach der Erfindung dar. Dagegen gibt eine Kurve 22 die gleiche "beleuchtete" Strom/Spannungs-Kennlinie für eine herkömmliche amorpheIn this comparison of the photovoltaic device, the usual procedure with an interposition of a amorphous N -a-Si layer between a current-carrying metal layer and the intrinsic amorphous silicon layer used to see an ohmic contact between the metal and manufacture the semiconductor. In Fig.2 there is a comparison with the dependence of the photovoltaic Current versus voltage for the two devices is shown. A curve 2o represents the current / voltage characteristic an illuminated photovoltaic device with an antimony doping gradient according to the invention. In contrast, a curve 22 gives the same "illuminated" current / voltage characteristic curve for a conventional amorphous one
130038/0929130038/0929
3535
Siliciumvorrichtung an, woraus eine wesentliche Verringerung im Kurzschlusstrom und eine allgemein herabgesetzte
Fähigkeit ersichtlich wird, Leistung an eine mit Verlust behaftete Last abzugeben.
5Silicon device, showing a substantial reduction in short circuit current and a generally reduced ability to deliver power to a lossy load.
5
Zur weiteren Erläuterung der Erfindung wird im folgenden ein Beispiel in Einzelheiten für den Aufbau und die elektrische Bewertung von photovoltaischen Vorrichtungen gegeben, die einen Körper aus amorphem Silicium haben, das nach der Erfindung hergestellt ist.To further explain the invention, an example is given below in detail for the structure and the electrical rating given to photovoltaic devices having an amorphous silicon body, which is made according to the invention.
Mehrere Borsilikat-Glassubstrate werden genau gereinigt, um Oberflächenschmutz zu entfernen, und sie werden anschliessend mit einer etwa o,1/um ("l.ooo R) dicken Chromschicht und einer etwa o,o1/um (1oo 8) dicken Antimonschicht belegt. Diese beiden Schichten werden durch Widerstands-Heiz-Verdampfung abgeschieden. Diese belegten oder beschichteten Substrate werden auf die Anode eines üblichen Sputter- oder Zerstäubungs- oder Aufsprühsystems gelegt. Der elektrische Kontakt zwischen der Anode und der Antimonschicht wird gewährleistet, indem die Antimonschicht körperlich elektrisch leitende Schrauben berührt, die an der Anode befestigt sind. Eine andere Folge von Substraten wird mit o,1/um (l.ooo 8) dickem gesputterten Chromnickel beschichtet, und o,o5/am (5oo 2) dickes N+- a-Si, das durch Glimmentladung von 1 % Phosphen enthaltendem Silan abgeschieden ist, wird in der Anode des Sputtersystems befestigt, wie dies oben erläutert wurde. Die Anode und die Substrate werden auf 275 C erwärmt und mit einer positiven Vorspannung von etwa 5o V beaufschlagt. Die Vakuumkammer, die unter 665 χ 1o~ Pa (5 χ 1o" Torr) evakuiert wurde, wird mit PartialdrückenSeveral borosilicate glass substrates are carefully cleaned to remove surface dirt, and they are then covered with an approximately 0.1 / µm ("1.ooo R) thick layer of chrome and an approximately 0.01 / µm (1008) thick layer of antimony. These two layers are deposited by resistance heating evaporation. These coated or coated substrates are placed on the anode of a conventional sputtering or atomizing or spraying system. The electrical contact between the anode and the antimony layer is ensured by the antimony layer being physically electrically conductive Another sequence of substrates is coated with 0.1 / µm (1.ooo 8) thick sputtered chromium-nickel and 0.05 / am (5oo 2) thick N + - a-Si , deposited by glow discharge of 1% phosphene-containing silane, is mounted in the anode of the sputtering system as discussed above, and the anode and substrates are heated to 275.degree and applied with a positive bias voltage of about 5o V. The vacuum chamber, which was evacuated below 665 χ 1o ~ Pa (5 χ 1o "Torr), is partial pressures
130038/0929130038/0929
-4 von Wasserstoff und Argon von etwa 931 χ 1ο Pa-4 of hydrogen and argon of about 931 χ 1ο Pa
(7,0 x 1o~4Torr) bzw. 1,9 Pa (15 χ 1o"3Torr) rückgefüllt. Das Target, nämlich eine polykristalline Siliciumschelbe mit einem Durchmesser von 12,7 cm (5 Zoll) ist nicht wassergekühlt, wie in herkömmlichen Sputteranlagen, und wird mit einer HF-Leistung von 2oo W während der Siliciumabscheidung versorgt. Die Antimonschicht diffundiert und dotiert die Siliciumschicht unter dem gemeinsamen Antrieb durch die angelegte Vorspannung und die Temperatur.' Dagegen bleibt das Silicium undotiert, das auf die Substrate abgeschieden ist, die mit den N -a-Si-Substraten belegt sind.(7.0 x 10 ~ 4 Torr) or 1.9 Pa (15 χ 1o " 3 Torr) back filled. The target, namely a polycrystalline silicon disk with a diameter of 12.7 cm (5 inches) is not water-cooled, such as in conventional sputtering systems, and is supplied with an RF power of 2oo W during the silicon deposition. The antimony layer diffuses and dopes the silicon layer under the common drive by the applied bias voltage and the temperature. ' In contrast, the silicon that is deposited on the substrates that are covered with the N -a-Si substrates remains undoped.
Die Proben werden auf Raumtemperatur, nämlich etwa 23°C, gekühlt und dann mit einer durchsichtigen Schicht aus Palladium belegt oder beschichtet, wie dies zur Herstellung eines Schottky-Überganges mit amorphem Silicium üblich ist. Die Proben werden anschliessend herkömmlichen photoelektrischen Messungen ausgesetzt. Ein Vergleich der mit Antimon dotierten Proben mit undotierten Proben zeigt eine Steigerung um 65 % im Kurzschluss-Photostrom derThe samples are cooled to room temperature, namely about 23 ° C, and then covered with a clear layer Palladium is covered or coated, as is the case for the production of a Schottky junction with amorphous silicon is common. The samples are then exposed to conventional photoelectric measurements. A comparison of the samples doped with antimony with undoped samples shows an increase of 65% in the short-circuit photocurrent of the
2 dotierten Proben, wenn mit 1oo mW/cm eines simulierten Solarspektrum-Lichts beleuchtet wird. Eine übliche spektrale Abhängigkeit von Messungen des Sammelwirkungsgrades zeigt eine wesentliche Steigerung in der Breite des Sperrschicht- oder Verarmungsbereichs.2 spiked samples, if simulated with 1oo mW / cm Solar spectrum light is illuminated. A common one spectral dependence on measurements of the collection efficiency shows a substantial increase in the width of the junction or depletion region.
130038/0929130038/0929
-4b--4b-
LeerseiteBlank page
Claims (17)
251 / m and about 3 / um thick.
25th
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US06/108,024 US4251289A (en) | 1979-12-28 | 1979-12-28 | Gradient doping in amorphous silicon |
Publications (1)
Publication Number | Publication Date |
---|---|
DE3048857A1 true DE3048857A1 (en) | 1981-09-17 |
Family
ID=22319829
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE19803048857 Withdrawn DE3048857A1 (en) | 1979-12-28 | 1980-12-23 | METHOD FOR PRODUCING AMORPHOUS SILICON AND DEVICE PRODUCED BY THIS METHOD |
Country Status (8)
Country | Link |
---|---|
US (1) | US4251289A (en) |
JP (1) | JPS56101741A (en) |
AU (1) | AU538266B2 (en) |
CA (1) | CA1148669A (en) |
DE (1) | DE3048857A1 (en) |
FR (1) | FR2472835A1 (en) |
GB (1) | GB2066858B (en) |
IT (1) | IT1141597B (en) |
Families Citing this family (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4533450A (en) * | 1979-12-31 | 1985-08-06 | Exxon Research And Engineering Co. | Control of the hydrogen bonding in reactively sputtered amorphous silicon |
US4539283A (en) * | 1981-01-16 | 1985-09-03 | Canon Kabushiki Kaisha | Amorphous silicon photoconductive member |
US5258250A (en) * | 1981-01-16 | 1993-11-02 | Canon Kabushiki Kaisha | Photoconductive member |
US4490453A (en) * | 1981-01-16 | 1984-12-25 | Canon Kabushiki Kaisha | Photoconductive member of a-silicon with nitrogen |
US5582947A (en) * | 1981-01-16 | 1996-12-10 | Canon Kabushiki Kaisha | Glow discharge process for making photoconductive member |
US4464451A (en) * | 1981-02-06 | 1984-08-07 | Canon Kabushiki Kaisha | Electrophotographic image-forming member having aluminum oxide layer on a substrate |
US4417092A (en) * | 1981-03-16 | 1983-11-22 | Exxon Research And Engineering Co. | Sputtered pin amorphous silicon semi-conductor device and method therefor |
US4490208A (en) * | 1981-07-08 | 1984-12-25 | Agency Of Industrial Science And Technology | Method of producing thin films of silicon |
JPS5868971A (en) * | 1981-10-19 | 1983-04-25 | Konishiroku Photo Ind Co Ltd | Amorphous silicon semiconductor device |
US4536460A (en) * | 1981-11-09 | 1985-08-20 | Canon Kabushiki Kaisha | Photoconductive member |
US4423133A (en) * | 1981-11-17 | 1983-12-27 | Canon Kabushiki Kaisha | Photoconductive member of amorphous silicon |
US4460669A (en) * | 1981-11-26 | 1984-07-17 | Canon Kabushiki Kaisha | Photoconductive member with α-Si and C, U or D and dopant |
US4460670A (en) * | 1981-11-26 | 1984-07-17 | Canon Kabushiki Kaisha | Photoconductive member with α-Si and C, N or O and dopant |
US4465750A (en) * | 1981-12-22 | 1984-08-14 | Canon Kabushiki Kaisha | Photoconductive member with a -Si having two layer regions |
GB2115570B (en) * | 1981-12-28 | 1985-07-10 | Canon Kk | Photoconductive member |
DE3303266A1 (en) * | 1982-02-01 | 1983-08-11 | Canon K.K., Tokyo | PHOTO ELECTRICAL ELEMENT |
US4522905A (en) * | 1982-02-04 | 1985-06-11 | Canon Kk | Amorphous silicon photoconductive member with interface and rectifying layers |
US4452874A (en) * | 1982-02-08 | 1984-06-05 | Canon Kabushiki Kaisha | Photoconductive member with multiple amorphous Si layers |
US4452875A (en) * | 1982-02-15 | 1984-06-05 | Canon Kabushiki Kaisha | Amorphous photoconductive member with α-Si interlayers |
GB2117971A (en) * | 1982-04-05 | 1983-10-19 | Hitachi Ltd | Amorphous silicon photovoltaic device |
EP0103168A3 (en) * | 1982-09-10 | 1986-07-02 | Hitachi, Ltd. | Amorphous silicon solar battery |
JPS5955012A (en) * | 1982-09-24 | 1984-03-29 | Mitsubishi Chem Ind Ltd | Amorphous silicon semiconductor material substrate |
US4471036A (en) * | 1983-06-29 | 1984-09-11 | The United States Of America As Represented By The United States Department Of Energy | Electrochemical photovoltaic cells and electrodes |
DE3427637A1 (en) * | 1983-07-26 | 1985-02-14 | Konishiroku Photo Industry Co., Ltd., Tokio/Tokyo | PHOTO RECEPTOR AND METHOD FOR THE PRODUCTION THEREOF |
DE3417732A1 (en) * | 1984-05-12 | 1986-07-10 | Leybold-Heraeus GmbH, 5000 Köln | METHOD FOR APPLYING SILICON-CONTAINING LAYERS TO SUBSTRATES BY CATODIZING AND SPRAYING CATODE FOR CARRYING OUT THE METHOD |
JPS613471A (en) * | 1984-06-15 | 1986-01-09 | Kanegafuchi Chem Ind Co Ltd | semiconductor equipment |
US4681061A (en) * | 1985-04-05 | 1987-07-21 | Square D Company | Button indicator and switch assembly |
JPH0228372A (en) * | 1988-04-20 | 1990-01-30 | Konica Corp | Image sensor |
TWI298472B (en) * | 2003-12-15 | 2008-07-01 | Hannstar Display Corp | Pixel driving circuit and method thereof |
US7601246B2 (en) * | 2004-09-29 | 2009-10-13 | Lam Research Corporation | Methods of sputtering a protective coating on a semiconductor substrate |
BRPI0911763A2 (en) * | 2008-10-30 | 2019-04-02 | Panasonic Corp | photochemistry cell and power system that uses the same |
WO2011016244A1 (en) | 2009-08-05 | 2011-02-10 | パナソニック株式会社 | Photoelectrochemical cell and energy system using same |
WO2011049933A1 (en) * | 2009-10-19 | 2011-04-28 | The University Of Toledo | Back contact buffer layer for thin-film solar cells |
TWI497730B (en) * | 2009-10-20 | 2015-08-21 | Iner Aec Executive Yuan | Thin film photovoltaic device and manufacturing method thereof |
US8821700B2 (en) * | 2009-11-10 | 2014-09-02 | Panasonic Corporation | Photoelectrochemical cell and energy system using same |
US9159851B2 (en) | 2010-05-26 | 2015-10-13 | The University Of Toledo | Photovoltaic structures having a light scattering interface layer and methods of making the same |
US9112103B1 (en) | 2013-03-11 | 2015-08-18 | Rayvio Corporation | Backside transparent substrate roughening for UV light emitting diode |
WO2014064769A1 (en) * | 2012-10-23 | 2014-05-01 | 三洋電機株式会社 | Solar cell |
CN105132875B (en) * | 2015-08-31 | 2017-07-28 | 辽宁工业大学 | A kind of method that diffusion method prepares high concentration gradient AZO monocrystalline conductive films |
EP4379427A1 (en) * | 2022-12-01 | 2024-06-05 | Consejo Superior De Investigaciones Científicas | Silicon carbide dosimeter for high dose pulsed radiation |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3271637A (en) * | 1963-07-22 | 1966-09-06 | Nasa | Gaas solar detector using manganese as a doping agent |
GB1062998A (en) * | 1964-12-16 | 1967-03-22 | Ca Atomic Energy Ltd | Large volume lithium-drifted diodes |
US4196438A (en) * | 1976-09-29 | 1980-04-01 | Rca Corporation | Article and device having an amorphous silicon containing a halogen and method of fabrication |
US4177474A (en) * | 1977-05-18 | 1979-12-04 | Energy Conversion Devices, Inc. | High temperature amorphous semiconductor member and method of making the same |
US4177473A (en) * | 1977-05-18 | 1979-12-04 | Energy Conversion Devices, Inc. | Amorphous semiconductor member and method of making the same |
US4178415A (en) * | 1978-03-22 | 1979-12-11 | Energy Conversion Devices, Inc. | Modified amorphous semiconductors and method of making the same |
US4163677A (en) * | 1978-04-28 | 1979-08-07 | Rca Corporation | Schottky barrier amorphous silicon solar cell with thin doped region adjacent metal Schottky barrier |
-
1979
- 1979-12-28 US US06/108,024 patent/US4251289A/en not_active Expired - Lifetime
-
1980
- 1980-09-17 CA CA000360413A patent/CA1148669A/en not_active Expired
- 1980-12-23 AU AU65809/80A patent/AU538266B2/en not_active Ceased
- 1980-12-23 DE DE19803048857 patent/DE3048857A1/en not_active Withdrawn
- 1980-12-24 IT IT26956/80A patent/IT1141597B/en active
- 1980-12-26 FR FR8027634A patent/FR2472835A1/en active Granted
- 1980-12-27 JP JP18516180A patent/JPS56101741A/en active Pending
- 1980-12-29 GB GB8041380A patent/GB2066858B/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
GB2066858B (en) | 1983-08-24 |
AU538266B2 (en) | 1984-08-09 |
IT1141597B (en) | 1986-10-01 |
US4251289A (en) | 1981-02-17 |
JPS56101741A (en) | 1981-08-14 |
IT8026956A0 (en) | 1980-12-24 |
AU6580980A (en) | 1981-07-02 |
GB2066858A (en) | 1981-07-15 |
FR2472835A1 (en) | 1981-07-03 |
CA1148669A (en) | 1983-06-21 |
FR2472835B1 (en) | 1985-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3048857A1 (en) | METHOD FOR PRODUCING AMORPHOUS SILICON AND DEVICE PRODUCED BY THIS METHOD | |
DE3280455T2 (en) | Flexible photovoltaic device. | |
DE3153270C2 (en) | Process for the production of doped semiconductor material by glow discharge | |
DE2632987C2 (en) | Photovoltaic semiconductor device and method for its manufacture | |
DE2820824C2 (en) | ||
DE10101035B4 (en) | Thin-film solar cell, solar cell module and method of manufacturing a thin-film solar cell | |
DE3650012T2 (en) | Semiconductor device. | |
EP0468094B1 (en) | Process for producing a chalcopyrite solar cell | |
EP0025872B1 (en) | Semiconductor component part for the conversion of solar rays into electrical energy | |
DE69529529T2 (en) | MANUFACTURING PROCESS OF THIN-LAYER SOLAR CELLS | |
DE2711365C2 (en) | ||
DE4207411A1 (en) | THICK-LAYER SOLAR CELL AND METHOD FOR THE PRODUCTION THEREOF | |
DE3015706A1 (en) | SOLAR CELL WITH SCHOTTKY BARRIER | |
DE69738152T2 (en) | Photovoltaic device and method for producing the same | |
DE2743141A1 (en) | COMPONENTS CONTAINING AMORPHIC SILICON | |
DE2639841B2 (en) | Solar cell and process for its manufacture | |
DE10351674A1 (en) | Electronic component and method for its production | |
DE3426338C2 (en) | ||
DE102011054716A1 (en) | Mixed sputtering target of cadmium sulfide and cadmium telluride and method of use | |
EP3321973B1 (en) | Crystalline solar cell having a transparent, conductive layer between the front contacts and method for manufacturing such a solar cell | |
DE3732619C2 (en) | ||
DE3140139C2 (en) | ||
DE2846096A1 (en) | Solar cell with double insulating layer - of silicon oxide produced at low temp. and different insulant to decouple fixed surface charge | |
WO2021044232A1 (en) | Rear-emitter solar cell structure having a heterojunction, and method and device for producing same | |
DE4313625A1 (en) | Rectifier contact based on amorphous silicon on diamond and process for its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
8141 | Disposal/no request for examination |