DE29521250U1 - Device for measuring the matrix potential in the soil - Google Patents
Device for measuring the matrix potential in the soilInfo
- Publication number
- DE29521250U1 DE29521250U1 DE29521250U DE29521250U DE29521250U1 DE 29521250 U1 DE29521250 U1 DE 29521250U1 DE 29521250 U DE29521250 U DE 29521250U DE 29521250 U DE29521250 U DE 29521250U DE 29521250 U1 DE29521250 U1 DE 29521250U1
- Authority
- DE
- Germany
- Prior art keywords
- housing
- measuring
- soil
- dielectric
- electrodes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000002689 soil Substances 0.000 title claims description 29
- 239000011159 matrix material Substances 0.000 title claims description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 18
- 238000005259 measurement Methods 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 4
- 239000004677 Nylon Substances 0.000 claims description 2
- 229920001778 nylon Polymers 0.000 claims description 2
- 239000000523 sample Substances 0.000 description 13
- 238000000034 method Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 2
- 229910052602 gypsum Inorganic materials 0.000 description 2
- 239000010440 gypsum Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000037039 plant physiology Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V9/00—Prospecting or detecting by methods not provided for in groups G01V1/00 - G01V8/00
- G01V9/02—Determining existence or flow of underground water
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G25/00—Watering gardens, fields, sports grounds or the like
- A01G25/16—Control of watering
- A01G25/167—Control by humidity of the soil itself or of devices simulating soil or of the atmosphere; Soil humidity sensors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/22—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
- G01N27/223—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance for determining moisture content, e.g. humidity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/24—Earth materials
- G01N33/246—Earth materials for water content
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Immunology (AREA)
- Pathology (AREA)
- General Health & Medical Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Electrochemistry (AREA)
- Control Or Security For Electrophotography (AREA)
- Environmental & Geological Engineering (AREA)
- Remote Sensing (AREA)
- Food Science & Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Geophysics (AREA)
- Geology (AREA)
- Medicinal Chemistry (AREA)
- Soil Sciences (AREA)
- Water Supply & Treatment (AREA)
- Environmental Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Electrostatic Charge, Transfer And Separation In Electrography (AREA)
Description
Der Gegenstand der Erfindung ist ein Aufsatz für die Sonde der Time-Domain Reflectrometry (TDR) , die zur Bestimmung des volumetrischen Wassergehalts im Boden konzipiert ist (Europäisches Patentnr.: 92402596.8). Unter Verwendung des Aufsatzes kann mit der Sonde das Matrixpotential im Boden gemessen werden.The subject of the invention is an attachment for the Time-Domain Reflectrometry (TDR) probe, which is designed to determine the volumetric water content in the soil (European Patent No.: 92402596.8). Using the attachment, the probe can measure the matrix potential in the soil.
Das Matrixpotential ist eine Größe für die Bindefestigkeit zwischen Wasser und Bodenpartikeln verursacht durch Kapillarkräfte im Boden. Für die Forschung in der Pflanzenphysiologie, Bodenkunde und Hydrologie sowie für die Land- und Forstwirtschaft ist die Kenntnis über das Matrixpotential von großer Bedeutung. Zu seiner Bestimmung sind mehrere Methoden bekannt: Tensiometer, Psychrometer und Gipsblock sowie Neutronensonde, gravimetrischer Wassergehalt und Time-Domain Reflectrometry (TDR). Alle diese Methoden haben entweder einen schmalen Meßbereich (Tensiometer) oder von Bodeneigenschaften abhängige Einsatzmöglichkeiten (Gipsblock, Psychrometer) oder sie benötigen eine Kennkurve über die Beziehung zwischen Wassergehalt und Matrixpotential (pF-Kurve) des zu untersuchenden Bodens (Neutronensonde, gravimetrischer Wassergehalt und Time-Domain Reflectrometry (TDR)) (zusammenfassende Bewertungen siehe Philip W. Rundel and Wesley M. Jarrell (1990): Water in the environment, in: R.W. Pearcy, J. Ehleringer, H.A. Mooney and P.W. Rundel (eds.): Plant Physiological Ecology, Chapman and Hall, London, New York, 29-41).The matrix potential is a value for the bond strength between water and soil particles caused by capillary forces in the soil. Knowledge of the matrix potential is of great importance for research in plant physiology, soil science and hydrology as well as for agriculture and forestry. Several methods are known for determining it: tensiometer, psychrometer and gypsum block as well as neutron probe, gravimetric water content and time-domain reflectrometry (TDR). All of these methods either have a narrow measuring range (tensiometer) or application options that depend on soil properties (gypsum block, psychrometer) or they require a characteristic curve of the relationship between water content and matrix potential (pF curve) of the soil to be examined (neutron probe, gravimetric water content and time-domain reflectrometry (TDR)) (for summary evaluations see Philip W. Rundel and Wesley M. Jarrell (1990): Water in the environment, in: R.W. Pearcy, J. Ehleringer, H.A. Mooney and P.W. Rundel (eds.): Plant Physiological Ecology, Chapman and Hall, London, New York, 29-41).
Die TDR-Sonde ermittelt direkt den volumetrischen Wassergehalt im Boden (G.C. Topp and J.L. Davis (1985) : Measurement of Soil Water Content using Time-domain Reflectrometry (TDR)—A Field Evaluation. Soil Sei. Soc. Am. J., Vol. 49, 19-24). Um das Matrixpotential zu erhalten, müssen die Meßwerte über die pF-Kurve des Bodens umgerechnet werden. DerenThe TDR probe directly determines the volumetric water content in the soil (G.C. Topp and J.L. Davis (1985) : Measurement of Soil Water Content using Time-domain Reflectrometry (TDR)—A Field Evaluation. Soil Sei. Soc. Am. J., Vol. 49, 19-24). In order to obtain the matrix potential, the measured values must be converted using the pF curve of the soil.
Ermittlung ist nicht nur zeitaufwendig (in der Regel über vier Wochen), sondern auch kompliziert und daher kostspielig. Ferner können durch Schrumpfung und Quellung des Bodens kleine Zwischenräume zwischen den TDR-Meßstäben und dem Boden entstehen, wodurch erhebliche Meßfehler verursacht werden (T.J. Dean, J.P. Bell and A.J.B. Baty (1987): Soil Moisture Measurement by an improved Capacitance Technique, Part I. Sensor Design and Performance. Journal of Hydrology, 93, 67-78). Diese Fehler pflanzen sich bei der Umrechnung zum Matrixpotential fort.Determination is not only time-consuming (usually over four weeks), but also complicated and therefore expensive. Furthermore, shrinkage and swelling of the soil can create small gaps between the TDR measuring rods and the soil, causing significant measurement errors (T.J. Dean, J.P. Bell and A.J.B. Baty (1987): Soil Moisture Measurement by an improved Capacitance Technique, Part I. Sensor Design and Performance. Journal of Hydrology, 93, 67-78). These errors are propagated when converting to matrix potential.
Der Erfindung liegt die Aufgabe zugrunde, die zur Bestimmung des volumetrischen Wassergehalts im Boden konzipierte TDR-Sonde so umzurüsten, daß sie das Matrixpotential im Boden ohne Verwendung von pF-Kurven direkt mißt und dabei die Fehler behebt, die wegen der Zwischenräume zwischen den TDR-Meßstäben und dem Boden entstehen.The invention is based on the task of converting the TDR probe designed to determine the volumetric water content in the soil so that it directly measures the matrix potential in the soil without using pF curves and thereby eliminates the errors that arise due to the gaps between the TDR measuring rods and the soil.
Die Aufgabe wird nach der Erfindung dadurch gelöst, daß die TDR-Sonde entsprechend dem Anspruch 1 in einem Aufsatz angeordnet ist. Dadurch mißt die Sonde nicht den Wassergehalt im Boden, sondern den in der Füllung des Aufsatzes. Über die pF-Kurve der Füllung kann der ermittelte Wassergehalt durch eine integrierte elektronische Transformation als Matrixpotential der Füllung des Aufsatzes direkt ausgegeben werden oder nachträglich zum Matrixpotential der Füllung umgerechnet werden. Da die Füllung mit dem zu messenden Boden in Kontakt steht und zwischen den beiden nach einer bestimmten Zeit ein Gleichgewicht im Matrixpotential herrscht, ist das Matrixpotential der Füllung dem des umgebenden Bodens gleich. Somit erhält man direkt das Matrixpotential des Bodens. The object is achieved according to the invention in that the TDR probe is arranged in an attachment according to claim 1. As a result, the probe does not measure the water content in the soil, but rather that in the filling of the attachment. Using the pF curve of the filling, the determined water content can be output directly as the matrix potential of the filling of the attachment using an integrated electronic transformation or can be subsequently converted to the matrix potential of the filling. Since the filling is in contact with the soil to be measured and there is an equilibrium in the matrix potential between the two after a certain time, the matrix potential of the filling is the same as that of the surrounding soil. This gives the matrix potential of the soil directly.
Die Füllung des Aufsatzes wird dabei von unten mit einer Federvorrichtung angedrückt, so daß auch im trockenen Zustand zwischen den TDR-Meßstäben und der Füllung des Aufsatzes keine Zwischenräume entstehen und dadurch bedingte Meßfehler vermieden werden können.The filling of the attachment is pressed from below with a spring device so that even when dry, no gaps arise between the TDR measuring rods and the filling of the attachment, thus avoiding measurement errors.
• · · t · · t
Der Meßbereich und die Meßgenauigkeit der mit dem Aufsatz ausgerüsteten TDR-Sonde werden durch die Eigenschaften der Füllung (pF-Kurve) bestimmt und können nach Bedarf variiert werden.The measuring range and the measuring accuracy of the TDR probe equipped with the attachment are determined by the properties of the filling (pF curve) and can be varied as required.
Die mit dem Aufsatz ausgerüstete TDR-Sonde mißt in einem weiten Bereich direkt das Matrixpotential, vermeidet Fehler infolge Zwischenraumbildung zwischen den TDR-Meßstäben und dem Boden und eignet sich vor allem für Dauermessungen.The TDR probe equipped with the attachment measures the matrix potential directly over a wide range, avoids errors due to gap formation between the TDR measuring rods and the ground and is particularly suitable for continuous measurements.
Nachfolgend wird anhand der Zeichnungen ein Ausführungsbeispiel der Erfindung erläutert. Dabei zeigt in jeweils perspektivischer Ansicht:An embodiment of the invention is explained below with reference to the drawings. Each of these shows a perspective view:
Fig. l: den Aufsatz nach der Erfindung, teilweiseFig. l: the attachment according to the invention, partially
geschnitten,
Fig. 2: die Sonde und
Fig. 3: die Halterung des Aufsatzes.cut,
Fig. 2: the probe and
Fig. 3: the holder of the attachment.
Hieran wird deutlich, daß die handelsübliche TDR-Sonde 1 zwei Meßstäbe 2 enthält. Diese sind in einem Aufsatz angeordnet, der von außen nach innen aus einem feinen Nylonnetz 5, einer Halterung 3 aus Kunststoff, einer Füllung aus einem wasserdurchlässigen Material 4 und einer Federvorrichtung 6, 7 besteht. Als Füllung können Materialien verwendet werden, die eine geringe Dieletrizitätskonstante, unter Einfluß von Bodenlösungen eine stabile pF-Charakteristik und eine ausreichende Wasserdurchlässigkeit aufweisen.This makes it clear that the commercially available TDR probe 1 contains two measuring rods 2. These are arranged in an attachment which, from the outside to the inside, consists of a fine nylon net 5, a holder 3 made of plastic, a filling made of a water-permeable material 4 and a spring device 6, 7. Materials that have a low dielectric constant, a stable pF characteristic under the influence of soil solutions and sufficient water permeability can be used as the filling.
Die Füllung 4, das Netz 5 und die Federvorrichtung 6, 7 sind durch die Halterung auf der TDR-Sonde 1 so angebracht, daß sich der für die Wassergehaltsbestimmung relevante Ausbreitungsbereich der Magnetwellen von den TDR-Meßstäben 2 vollständig in der Füllung 4 befindet, und daß ein Austausch von Wasser in flüssiger bzw. in gasförmiger Form zwischen der Füllung 4 und dem zu messenden Boden gewährleistet ist.The filling 4, the net 5 and the spring device 6, 7 are attached to the TDR probe 1 by the holder in such a way that the propagation area of the magnetic waves from the TDR measuring rods 2 relevant for determining the water content is completely in the filling 4 and that an exchange of water in liquid or gaseous form between the filling 4 and the soil to be measured is ensured.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE29521250U DE29521250U1 (en) | 1995-04-28 | 1995-04-28 | Device for measuring the matrix potential in the soil |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE29521250U DE29521250U1 (en) | 1995-04-28 | 1995-04-28 | Device for measuring the matrix potential in the soil |
DE19515698 | 1995-04-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
DE29521250U1 true DE29521250U1 (en) | 1996-10-31 |
Family
ID=26014720
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE29521250U Expired - Lifetime DE29521250U1 (en) | 1995-04-28 | 1995-04-28 | Device for measuring the matrix potential in the soil |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE29521250U1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2398637A (en) * | 2002-12-16 | 2004-08-25 | Sentek Pty Ltd | Soil matric potential and salinity measurement |
DE202019103996U1 (en) * | 2019-07-19 | 2020-10-20 | Manuel Friedrich | Soil moisture meter and probe |
-
1995
- 1995-04-28 DE DE29521250U patent/DE29521250U1/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2398637A (en) * | 2002-12-16 | 2004-08-25 | Sentek Pty Ltd | Soil matric potential and salinity measurement |
GB2398637B (en) * | 2002-12-16 | 2006-07-05 | Sentek Pty Ltd | Soil matric potential and salinity measurement apparatus and method of use |
DE202019103996U1 (en) * | 2019-07-19 | 2020-10-20 | Manuel Friedrich | Soil moisture meter and probe |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE2626144C3 (en) | Calibration method for a measuring device for determining the amount of a substance transported by a moving material web from the absorption of optical radiation | |
DE19629745C2 (en) | Device and method for determining soil properties | |
DE2640087A1 (en) | MEASURING PROBES AND METHOD FOR DETERMINING FLOW DATA | |
Rajkai et al. | Measuring areal soil moisture distribution with the TDR method | |
DE3876517T2 (en) | REFLECTOMETER FOR MEASURING THE MOISTURE OF POROESE MATERIALS CONTAINING CAPILLARY TUBES, ESPECIALLY FROM EARTH. | |
DE19755052C2 (en) | Method for determining the volumetric liquid water content and the density of snow and device for carrying out the method | |
DE102005037632A1 (en) | Wall detector for detecting underground embedded object, has permittivity measuring instrument which measures permittivity measuring signals of underground with low permittivity measuring frequency for measuring frequency | |
DE2439413A1 (en) | PHOTOMETRIC PROCESS FOR THE QUANTITATIVE DETERMINATION OF A SUBSTANCE IN A MIXED PHASE | |
DE3819101A1 (en) | METHOD AND DEVICE FOR PROCESSING MEASURED VALUES | |
DE10261138B4 (en) | Soil sensor and method for measuring soil parameters | |
DE112006001212T5 (en) | Method and measuring device for measuring water content | |
DE4105445C2 (en) | Method and arrangement for measuring meteorological quantities using a radio probe | |
DE29521250U1 (en) | Device for measuring the matrix potential in the soil | |
Gregory et al. | Use of time-domain reflectometry (TDR) to measure the water-content of sandy soils | |
DE10202198A1 (en) | Device for measuring matrix potential in material comprises unit for measuring water content, and reference body made from fibers and in contact with measured object | |
DE3402708C2 (en) | ||
DE102020003382B4 (en) | Moisture measuring device with antibacterial effect | |
DE3909851A1 (en) | MEASURING DEVICE | |
EP0911628B1 (en) | Sensor for determining water content | |
EP2215459B1 (en) | Method and device for determining biomass by means of a microwave resonator | |
DE3507206A1 (en) | Method and configuration for determining the properties of rocks | |
DE4305934B4 (en) | Arrangement of sensors for measuring the humidity | |
DE2536777A1 (en) | Plant irrigation system water content sensor - using thermal pulse probe in defined earth sample | |
DE3115961C2 (en) | hygrometer | |
DE19846241C2 (en) | Method and device for moisture measurement on masonry materials with ultrasonic signal analysis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R207 | Utility model specification |
Effective date: 19961212 |
|
R150 | Utility model maintained after payment of first maintenance fee after three years |
Effective date: 19980428 |
|
R151 | Utility model maintained after payment of second maintenance fee after six years |
Effective date: 20010504 |
|
R152 | Utility model maintained after payment of third maintenance fee after eight years |
Effective date: 20030513 |
|
R071 | Expiry of right |