DE2353324A1 - Verfahren zur herstellung einer schicht aus kubischem bornitrid, die direkt mit einer tragmasse mit hohem elastizitaetsmodul verbunden ist - Google Patents
Verfahren zur herstellung einer schicht aus kubischem bornitrid, die direkt mit einer tragmasse mit hohem elastizitaetsmodul verbunden istInfo
- Publication number
- DE2353324A1 DE2353324A1 DE19732353324 DE2353324A DE2353324A1 DE 2353324 A1 DE2353324 A1 DE 2353324A1 DE 19732353324 DE19732353324 DE 19732353324 DE 2353324 A DE2353324 A DE 2353324A DE 2353324 A1 DE2353324 A1 DE 2353324A1
- Authority
- DE
- Germany
- Prior art keywords
- pressure
- boron nitride
- metal
- cubic boron
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 229910045601 alloy Inorganic materials 0.000 claims description 45
- 239000000956 alloy Substances 0.000 claims description 45
- 229910052751 metal Inorganic materials 0.000 claims description 41
- 239000002184 metal Substances 0.000 claims description 41
- 239000013078 crystal Substances 0.000 claims description 34
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims description 27
- 229910052582 BN Inorganic materials 0.000 claims description 25
- 239000002131 composite material Substances 0.000 claims description 19
- 238000000034 method Methods 0.000 claims description 18
- 238000009736 wetting Methods 0.000 claims description 13
- 238000010438 heat treatment Methods 0.000 claims description 11
- 238000001802 infusion Methods 0.000 claims description 10
- 230000008569 process Effects 0.000 claims description 9
- 238000001816 cooling Methods 0.000 claims description 6
- 229910000838 Al alloy Inorganic materials 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 4
- 239000004744 fabric Substances 0.000 claims description 2
- 230000001681 protective effect Effects 0.000 claims description 2
- 238000005299 abrasion Methods 0.000 claims 2
- 239000002245 particle Substances 0.000 description 20
- 239000000843 powder Substances 0.000 description 16
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 13
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 9
- 229910002804 graphite Inorganic materials 0.000 description 9
- 239000010439 graphite Substances 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- 238000005520 cutting process Methods 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 5
- 229910017052 cobalt Inorganic materials 0.000 description 5
- 239000010941 cobalt Substances 0.000 description 5
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 5
- 229910052759 nickel Inorganic materials 0.000 description 5
- 229910052726 zirconium Inorganic materials 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 229910001018 Cast iron Inorganic materials 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 238000007596 consolidation process Methods 0.000 description 3
- 239000010419 fine particle Substances 0.000 description 3
- 238000010902 jet-milling Methods 0.000 description 3
- 238000003754 machining Methods 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 150000001247 metal acetylides Chemical class 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 238000007639 printing Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910001092 metal group alloy Inorganic materials 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000007514 turning Methods 0.000 description 2
- 239000011800 void material Substances 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910002515 CoAl Inorganic materials 0.000 description 1
- 229910015372 FeAl Inorganic materials 0.000 description 1
- 229910000943 NiAl Inorganic materials 0.000 description 1
- NPXOKRUENSOPAO-UHFFFAOYSA-N Raney nickel Chemical compound [Al].[Ni] NPXOKRUENSOPAO-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910001315 Tool steel Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910002065 alloy metal Inorganic materials 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- NFFIWVVINABMKP-UHFFFAOYSA-N methylidynetantalum Chemical compound [Ta]#C NFFIWVVINABMKP-UHFFFAOYSA-N 0.000 description 1
- 229910001120 nichrome Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910000601 superalloy Inorganic materials 0.000 description 1
- 229910003468 tantalcarbide Inorganic materials 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23P—METAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
- B23P15/00—Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
- B23P15/28—Making specific metal objects by operations not covered by a single other subclass or a group in this subclass cutting tools
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J3/00—Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
- B01J3/06—Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies
- B01J3/062—Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies characterised by the composition of the materials to be processed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/24—After-treatment of workpieces or articles
- B22F3/26—Impregnating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F7/00—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
- B22F7/06—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/583—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
- C04B35/5831—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride based on cubic boron nitrides or Wurtzitic boron nitrides, including crystal structure transformation of powder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2203/00—Processes utilising sub- or super atmospheric pressure
- B01J2203/06—High pressure synthesis
- B01J2203/0605—Composition of the material to be processed
- B01J2203/0645—Boronitrides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2203/00—Processes utilising sub- or super atmospheric pressure
- B01J2203/06—High pressure synthesis
- B01J2203/065—Composition of the material produced
- B01J2203/066—Boronitrides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2203/00—Processes utilising sub- or super atmospheric pressure
- B01J2203/06—High pressure synthesis
- B01J2203/0675—Structural or physico-chemical features of the materials processed
- B01J2203/0685—Crystal sintering
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Ceramic Engineering (AREA)
- Composite Materials (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Crystallography & Structural Chemistry (AREA)
- Structural Engineering (AREA)
- Ceramic Products (AREA)
- Laminated Bodies (AREA)
- Powder Metallurgy (AREA)
Description
GENERAL ELECTBIC COMPANY
River Road 1
Schenectady - New York
River Road 1
Schenectady - New York
U. S. Αβ -
Verfahren zur Herstellung einer Schicht aus kubischem Bornitrid, die direkt mit einer Tragmasse mit hohem
Elastizitätsmodul verbunden ist.
Die Herstellung von Werkzeugeinsätzen unter hohen Temperaturen
und ultrahohen Drücken aus kubischen Bornitridkristallen, die miteinander verbunden sind und mit einer gesinterten Karbidmasse
verbunden sind und von dieser Masse getragen werden,
wobei besondere Aluminiumlegierungen als Bindemittel verwendet werden, ist in einem Vorschlag der Anmelderin (USA
Patentanmeldung Serien Nr. ±58,711) beschriften. Die Metalle
zur Legierung mit dem Aluminium werden aus Nickel, Kobalt, Mangan, Eisen, Vanadium und Chrom ausgewählt. Die verwendeten
Temperaturen liegen im Bereich zwischen 1300 und l600°C, und
die verwendeten Drücke liegen im Bereich von 55 Kilobar.
Die Werkzeugeinsätze, die durch diese tiltrahochdruckverfahren
hergestellt, werden, sind ein einzigartiger und wertvoller Beitrag zu "der Bearbeitungstechnik, es wäre jedoch sehr wünsch-
A09819/0804
enswert, Verfahren mit geringeren Drücken (im Verhältnis zu den ultrahohen Drücken) für die Herstellung von Verbundwerkzeugeinsätzen,
die aus kubischem Bornitrid und gesintertem Karbid bestehen, zu entwickeln.
Kristalle von kubischem Bornitrid (kBN) mit abgestufter
Teilchengröße werden chemisch gereinigt und in einer Metallschutzschale zusammen mit einer Masse aus gesintertem Karbid
und einer Metallkonzentration angeordnet, wobei das Metall eine vorgeformte Legierung ist oder aus mehreren Metallbestandteilen
besteht, die eine Legierung bilden. Die Dichte des KBN-Gehaltes wird auf mehr als 70 Vol.-$ erhöht (beispielsweise
durch Vibration der Metallschale und ihres Inhalts unter leichter Druckanwendung), wonach die Metallschale in einem
semi-isostatischen Drucksystem angebracht wird, das beispielsweise aus sehr feinem hexagonalem Bornitridpulver besteht.
Druck in der Größenordnung von etwa 1^00 bis etwa 7000 kp/cm
wird semi-isostatisch auf das System und damit auf die Metallschale und ihren Inhalt ausgeübt. Das die Metallschale und
ihren Inhalt enthaltene semi-isostatische System wird dann von der Druckform in eine Heizform gebracht. Wärme (bis zu
1500°C) und Druck (beispielsweise etwa 7OOO kp/cm ) werden
gleichzeitig auf das semi-isostatische System ausgeübt, um die kritische Benetzungstemperatur der Legierung (vorgeformt
oder an Ort und Stelle gebildet) zu übersteigen. Die geschmolzene Legierung tritt in die Zwischenräume zwischen
den KBN-Kristallen ein, um diese miteinander zu verbinden. Die KBN-Kristalle werden ferner direkt mit der gesinterten
Karbidmasse verbunden, von der ein Teil zwischen KBN-Kristalle an der Grenzfläche zwischen gesintertem Karbid und KBN gepresst
wird. Das semi-isostatische System wird abgekühlt, und der starke Verbundkörper aus KBN und gesintertem Karbid
wird herausgenommen.
"Kritische Benetzungstemperatur" ist hier als diejenige
Temperatur definiert, bei der eine Infusion einer geschmolzenen
409819/0804
Metallegierung in einen reinen Durchgang von Kapillargröße stattfindet, der durch das geschmolzene Metall benetzbar ist.
Die vorliegende Erfindung geht ebenso wie ihre Ziele und Vorteile
ohne weiteres aus der nachfolgenden Beschreibung unter Bezugnahme auf die beigefügten Zeichnungen hervor. In den
Zeichüngen sind
Fig. 1 eine Querschnittsansicht einer Zelle zur Bewirkung
der Metallinfusion gemäß der vorliegenden Erfindung,
Fig. 2 eine schematische Darstellung eines Gerätes zur Anwendung leichten Druckes auf die in Fig. 1 gezeigte
Zelle, wobei die Zelle einer Vibration unterworfen wird, um die Dichte der Masse der KBN-Kristalle zu
erhöhen,
Fig. 3 eine Schnittansicht durch ein Gerät zur Anwendung von.
Druck auf die Zelle in einem semi-isostätischen System,
Fig. 4 eine Schnittansicht durch eine Graphitform zur gleichzeitigen
Anwendung von Wärme und Druck auf das semiisostatische System und die darin eingeschlossene Zelle
und
Fig. 5 eine Aufrissansicht eines Verbundkörpers aus KBN und
gesintertem Karbid, der gemäß der vorliegenden Erfindung hergestellt worden ist.
Bei der Herstellung von Schneidwerkzeugeinsätzen gemäß der vorliegenden Erfindung, bei der eine Masse von KBN-Kristallen
in sieh durch ein Legierungssystem und direkt mit einer Verstärkungsmasse
aus einem Stoff mit hohem Elastizitätsmodul verbunden wird, kann die KBN-Schicht mehr als 70 Vol.-% (bis
etwa 80 Vol.-%) kubisches Bornitrid enthalten. Vorzugsweise
ist die größte Abmessung der KBN-Kristalle weniger als 2OyAi9.
wenngleich die Größenordnung der Teilchengrößen auch höher sein kann, beispielsweise 4Q bis 100 u.
Gesintertes Karbid wird aus sinterfähigem Karbidpulver (Mischung von Karbidpulver und einem Metallpulver, das
Kobald, Nickel oder Eisen sein kann) hergestellt. Der Karbidteil des Formpulvers wird vorzugsweise aus Wolfrarakarbid,
Titankarbid, Tantalkarbid und Mischungen dieser Karbide ausgewählt, obwohl andere Karbide hinzugefügt werden können,
um besondere Eigenschaften zu erzielen. Kobalt wird als das Sintermetall für das Karbidformpulver bevorzugt. Die Zusammensetzung
des für die Durchführung der vorliegenden Erfindung verwendbaren Karbidformpulvers kann etwa 75 bis 97
Gewichtsprozent' Karbid und etwa 3 bis 25 Gewichtsprozent Kobalt enthalten. Bevorzugte gesinterte Karbide sind Carboloy
883, 55A und 55B,
Bei der in Fig. 1 gezeigten bevorzugten Anordnung besteht die Zelle 10 aus einer Metallschale 11 (runde Zylinderwand
mit Boden) aus einem Metall, das Zirkonium, Titan, Tantal, Wolfram oder Molybdän sein kann. In der Schale 11 wird eine
Scheibe 12 einer Legierung, eine Masse 13 aus KBN-Kristallen
und ein dicker Stopfen Ik aus gesintertem Karbid angebracht,
der eng in der Schale 11 sitzt und als ein Verschluß für die Schale wirkt. Andere Anordnungen für die Anbringung dieser
Bestandteile in der Schale 11 können jedoch auch angewandt werden.
Die KBN-Kristalle sollten abgestufte Teilchengröße haben, so
daß die Masse der KBN-Kristalle sehr kleine, mittelgroße und große Kristalle enthält, wobei der gesamte Größenbereich der
Teilchen vorzugsweise von weniger als 1 /vl bis etwa 20^ reicht.
Die abgestuften KBN-Teilchen sollten etwa 60 bis 80 VoI,-%
von Teilchen am größeren Ende des Größenbereichs, etwa 5 bis
10 Gewichtsprozent von Teilchen im mittleren Bereich und den Rest von sehr kleinen Teilchen umfassen. Bevor die KBN-Teilchen
in die Schale 11 eingeführt werden, werden sie chemisch gereinigt,
um jegliches B2^S von ißrer Oberfläche zu entfernen.
Der Zweck der Verwendung von KBN-Kristallen mit abgestufter
Teilchengröße wird durch die in Fig. 2 gezeigte Anordnung ver-
409819/0804
ansehaulicht. Die Zelle IQ wird auf einem Rütteltisch 16 angebracht
und dort während der Vibration der Zelle IQ unter leichtem Druck (etwa 3j5 kp/cm -) gehalten, um eine Neuanordnung
der KBN-Teilchen zu fördern, durch die Zwischenräume
ausgefüllt werden und. der Hohlraumgehalt herabgesetzt wird,
um die Dichte der KBN-Schieht auf mehr als 70 % zu erhöhen.
Nachdem der erforderliche Grad der Konsolidierung (der durch unabhängige Prüfung der gleichen abgestuften KBN-Mischung in
einer Matrize mit festen Abmessungen bestimmt wird) erreicht
ist, wird die Zelle 10 in dem zylindrischen Kern einer Druckform 20 angebracht, der von einer Masse 21 aus sehr feinen
Teilchen von hexagonalem Bornitrid (mit einer Siebdurchgangsgröße von etwa l60 Maschen/cm) umgeben ist. Diese Masse aus
feinen Teilchen bildet ein annähernd isostatisches System für
die Ausübung von Drück auf die Zelle 10, wodurch die Form und
Dichte des Inhalts der Schale 11 bestimmt wird. Danach wird diese Form und Dichte zumindest in Ebenen beibehalten, die
durch die Schale 11 parallel zu der Grenzfläche zwischen der Metallschicht und der KBN-Schicht verlaufen, während der
(unten beschriebenen) Übertragung des druckübertragenden Mediums und der Schale 11 zu dem Gerät zur gleichzeitigen
Anwendung von Druck und Wärme auf diese. Die Druckform 20
(Ring 22 und Druckkolben 23, 23a) können aus Werkzeugstahl
bestehen und erforderlichenfalls kann der Ring 22 mit einer Buchse 22a aus gesintertem Karbid versehen sein, wie es in
der Zeichnung gezeigt ist, um die Anwendung von Drücken bis zu einer Höhe von 7000 kp/cm zu gestatten. Nachdem das semiisostatische
System in dem durch den Kolben 23, die Buchse 22a und den Kolben 23a umgrenzten Raum untergebracht ist, wird
Druck in der Größenordnung zwischen etwa 1400 und etwa 7000 kp/cm auf das semi-isostatische System ausgeübt, indem die
Kolben in bekannter Weise betätigt werden, bis der ausgeübte Druck stabilisiert wird, wie es in der herkömmlichen Pulververdichtungstechnik
üblich ist.
409319/0804
Die Art des hexagonalen Bornitrids ist derart, daß die feinen
Teilchen unter dem in einer Achsrichtung ausgeübten Druck übereinander gleiten und sich in annähernd hydrostatischer i,
Weise zueinander verlagern, um einen Druck über die gesamte Fläche der Zelle 10 auszuüben. Es wird angenommen, daß der
ausgeübte Druck im wesentlichen unverringert auf die Zelle 10 übertragen wird. Der Hauptzweck dieser Druckausübung besteht
darin, eine Konsolidierung hervorzurufen, durch die alle eventuell bestehenden Oxyd-,Borid- oder Nitridablagerungen
auf den Oberflächen (Kristalle, Metalle und gesintertes Karbid) innerhalb der Zelle 10 aufgebrochen werden. Auf diese
Weise werden reine Flächen freigelegt, zu denen die geschmolzene
Legierung (in dem weiter unten beschreibenen nachfolgenden Schritt) Zugang haben, um die erforderliche Benetzungswirkung
zu erzielen. Gleichzeitig verringert die durch Druck herbeigeführte Konsolidierung (ebenso wie die
Vibration) die Größe der Hohlräume, um das Vorhandensein von Durchgängen in Kapillargröße in der KBN-Masse auf ein
Höchstmaß zu erhöhen. Zusätzlich zur Bildung der erforderlichen Kapillarkraft zur Infusion des aus der Legierung bestehenden
Bindemittels verringert die Herabsetzung des Hohlraumvolumens
den Endmetallgehalt der KBN-Masse und schafft mehr nebeneinanderliegende Kristallflächen, die zur wirksamen Verbindung
durch die einfließende Metallschicht in geeigneter Weise angeordnet
sind.
Nach der Beendigung der oben genannten semi-isostatischen
Druckausübung wird einer der Kolben 23, 23a zurückgezogen und
das konsolidierte semi-isostatische System 21 wird aus der Buchse 22a in ein Loch mit gleichem Durchmesser in einer
Graphitform 30 gepresst, so daß. das übertragene semi-isostatische
System 21 nunmehr innerhalb der Wand des Loches 3i zwischen
Graphitkolben 32, 32a enthalten ist. Die Graphitform ist mit einem Thermoelement 33 für die Anzeige der Temperatur versehen,
die auf das semi-isostatische System 21 ausgeübt wird. Die Form 30 mit dem in ihr enthaltenen semi-isostatischen
System 21 wird in einen herkömmlichen Wärmedruckofen (nicht
409819/0 8 04
gezeigt) eingeführt, und während die Kolben 32, 32a einen
einachsigen Druck im Bereich zwischen 35 kp/cm bis etwa
700 kp/ctn'" (oder bis kurz unter die Grenze der Druckaufnahmefähigkeit der Form 3ö) auf das System 21 ausüben, wird seine Temperatur auf die kritische Benetzungstemperatur der Legierung erhöht. Vorzugsweise hat die Legierung eine kritische Benetzungstemperatur unter etwa 13000C, um nicht die Zu-*
samraensetzung des gesinterten Karbidblockes Ik in drastischer Weise zu ändern, indem zu viel Sintermetall (zum Beispiel
Kobalt.) von dem gesinterten Karbidblock in die Kristallmasse 13 ausgeschwitzt wird oder von der entgegengesetzten Fläche des gesinterten Karbidblockes Ik verloren geht.
einachsigen Druck im Bereich zwischen 35 kp/cm bis etwa
700 kp/ctn'" (oder bis kurz unter die Grenze der Druckaufnahmefähigkeit der Form 3ö) auf das System 21 ausüben, wird seine Temperatur auf die kritische Benetzungstemperatur der Legierung erhöht. Vorzugsweise hat die Legierung eine kritische Benetzungstemperatur unter etwa 13000C, um nicht die Zu-*
samraensetzung des gesinterten Karbidblockes Ik in drastischer Weise zu ändern, indem zu viel Sintermetall (zum Beispiel
Kobalt.) von dem gesinterten Karbidblock in die Kristallmasse 13 ausgeschwitzt wird oder von der entgegengesetzten Fläche des gesinterten Karbidblockes Ik verloren geht.
Unter dieser kombinierten Anwendung von Wärme und Druck wird
ein Teil des.erweichten, gesinterten Karbides nach oben zwischen
die-KBN-Kristalie an der Grenzfläche gedrückt und gleichzeitig-
entsteht eine Infusion des geschmolzenen Legierungssystems in die- Masse 13 der KBN-Kristalle durch Kapillarwirkung,
wenn- die interkristallinen Hohlräume genügend rein und klein sind. Das Legierungssystem muß geringfügig mit
den KBN-Kristallen reagieren, mit denen es in Berührung gebracht wird. An der Grenzfläche zwischen der Legierungskonzentration und der KBN-Masse erzeugt diese Reaktion Boride und/oder Nitride, die naturgemäß feuerfest sind, (hohe Schmelztemperatur). Bei Beginn der Schmelzung bricht der ausgeübte Druck die an der Grenzfläche vorhandene feuerfeste Schicht
auf, wodurch das Kapillardurchgangssystem für die geschmolzene Legierung freigelegt wird, woraufhin die Infusion durch Kapillarwirkung stattfinden kann, wenn die kritische Benetzungstemperatur der Legierung erreicht worden ist. Versuche haben gezeigt, daß die Infusion der KBN-Masse durch die Legierung nur dann stattfindet,·' wenn auf das System 21 Druck ausgeübt wird, wenn die Legierungsmasse in geschmolzenen Zustand gebracht worden ist und die Erhitzung auf die kritische Benetzungstemperatur stattfindet. Ferner sollte der Druck während
des Abkühlens des Systems aufrechterhalten werden, um die Abmessungen des Verbundkörpers stabil zu halten.
den KBN-Kristallen reagieren, mit denen es in Berührung gebracht wird. An der Grenzfläche zwischen der Legierungskonzentration und der KBN-Masse erzeugt diese Reaktion Boride und/oder Nitride, die naturgemäß feuerfest sind, (hohe Schmelztemperatur). Bei Beginn der Schmelzung bricht der ausgeübte Druck die an der Grenzfläche vorhandene feuerfeste Schicht
auf, wodurch das Kapillardurchgangssystem für die geschmolzene Legierung freigelegt wird, woraufhin die Infusion durch Kapillarwirkung stattfinden kann, wenn die kritische Benetzungstemperatur der Legierung erreicht worden ist. Versuche haben gezeigt, daß die Infusion der KBN-Masse durch die Legierung nur dann stattfindet,·' wenn auf das System 21 Druck ausgeübt wird, wenn die Legierungsmasse in geschmolzenen Zustand gebracht worden ist und die Erhitzung auf die kritische Benetzungstemperatur stattfindet. Ferner sollte der Druck während
des Abkühlens des Systems aufrechterhalten werden, um die Abmessungen des Verbundkörpers stabil zu halten.
^098 19/0804
Während dieses Schrittes ist es von besonderer Bedeutung, daß die Stabilität der Abmessungen der Zelle IO in dem semiisostatischen
System 21 sowohl in der Form 20 als auch in .der Graphitform 30 hergestellt und aufrechterhalten worden
ist. Solange die konstanten Abmessungen der Masse in der Schale 11 aufrechterhalten wird, wenn die Legierung in flüssigen
Zustand gebracht wird, ist diese Flüssigkeit nicht in der Lage, zwischen der Masse 13 und der Schale 11 hindurchzugehen
und in nennenswertem Umfang zu entweichen, sondern wird durch die Masse 13 der KBN-Kristalle gepresst.
Bei der Erhitzung sollte die kritische Benetzungstemperatur schnell erreicht werden und für etwa eine Minute aufrechterhalten
werden. Die Aufrechterhaltung dieser Temperatur für längere Zeiträume (zum Beispiel in der Größenordnung von
30 bis hO Minuten) kann angewandt werden, um die Bildung von
Boriden und Nitriden in der mit Metall durchsetzten KBN-Masse zu erhöhen.
Obwohl schliesslich Wärme und Druck gleichzeitig auf das System 21 ausgeübt werden müssen, kann es je nach der verwendeten
Legierung von Vorteil sein, die Wärme vor der Ausübung des Druckes zuzuführen oder vor Einleitung des Erhitzungsvorganges
schon Druck auszuüben.
Nach der Beendigung der gleichzeitigen Ausübung von Wärme und Druck wild die Zelle 10 aus der Anlage herausgenommen und
gereinigt. Der Verbundkörper 36, der aus einer Unterlage 14a
aus gesintertem Karbid und einer direkt damit verbundenen.
Schicht 13a aus KBN (und durch Infusion darin enthaltener Legierung) besteht, wird aus der Zelle 10 herausgekommen.
Das Legierungsmetall 12 braucht nicht eine vorgeformte Legierung
zu sein, sondern kann aus gesonderten Scheiben (oder einer Pulvermischung) der Metalle bestehen, die an Ort und
Stelle legiert werden sollen. Kriterien für die Auswahl des
409819/0804
zu verwendenden Legierungssystems sind in einem weiteren Vorschlag
der Anmelderin (USA-Patentanmeldung SN 158,991) dargelegt.
Wie in diesem Vorschlag erwähnt, rauB die Legierung eine Schmelztemperatur unter etwa 15000C haben, sollte ferner
in der Lage sein, jeglichen dünnen BgO^-Glasfilm zu verringern,
mit dem die KBN-Kristalle beschichtet sein könnten, und sollte
ein begrenztes Reaktionsvermögen mit KBN haben. Bei der praktischen
Erprobung der vorliegenden Erfindung hat sich herausgestellt, daß der Wärmeausdehungskoeffizient der gewählten
Legierung möglichst genau mit demjenigen des besonderen Verstärkungsstoffes mit hohem Elastizitätsmodul übereinstimmen
sollte, um innere Spannungen so gering wie möglich zu halten,
die während der Herstellung in dem Verbundkörper 36 entstehen. Derartige Spannungen wurden zum Bruch oder zur Schichtentrennung
in dem Verbundkörper führen, der dadurch zu einem
nutzlosen Gebilde würde. Ferner darf die durch Infusion in
die KBN-Masse gelangte Legierung, die ein komplexes Metall-Keramiksystem
bildet, das (zusätzlich zu den Legierungsbestandteilen)
einiges Bor, Stickstoff und Sauerstoff enthält, nicht brüchig sein. Brüchigkeit in dem Verbindungssystem t <
wird während Bearbeitungsversuchen ohne weiteres offensichtlich, da Teilchen des KBN das Bestreben haben, aus dem Verbundkörper
herauszubrechen. Dies ist nicht der Fall, wenn die durch
, Infusion in die KBN-Masse gelangte Legierung richtig ausgewählt ist. Die bisher entdeckten erfolgreichsten Legierungssysteme sind Aluminiumlegierungen, aber selbst einige Aluminiumlegierungen
haben die Neigung zur Brüchigkeit. Einige der erfolgreichsten Legierungssysteme sind die folgenden: NiAl
(80-90 Gewichtsprozent Ni); CoAl (weniger als 20 Gewichtsprozent Co); FeAl (weniger als 15 Gewichtsprozent Fe) und
NiCr (weniger als 25 Gewichtsprozent Cr).
Im Falle einer vorgeformten Legierung sollte die Menge der
Legierung zwischen etwa 30 und etwa 60 Vol.-% der KBN-Masse
betragen. Wenn kombinierte Metalle.(vorzugsweise mehrere
Folienschichten) verwendet werden, sollte das Gesamtvolumen wie oben sein, und die einzelnen Mengen von der gewünschten
409819/0804
Legierung abhängen, zum Beispiel 80 Ni 20 Al. Im wesentlichen
der gesamte Hohlraum (20 bis 30 Volumenprozent) der KBN-Masse wird mit der durch Infusion in sie hineingelangende Legierung
angefüllt. Die Herstellungder erforderlichen Teilchengröße für die KBN-Kristalle wird durch das Strahlmahlen größerer
KBN-Körner erleichtert. Die chemische Reinigung der KBN-Körner kann durch Erwärmung (900°C, 1 Stunde) in Ammoniak
erzielt werden. Das Strahlmahlen der Kristalle ergibt Teilchen mit größerer Festigkeit durch Ausscheidung von Kristallschwächen.
Die auf diese Weise gebildeten festen KBN-Kristalle ergeben zusammen mit dem nicht brüchigen, sie umgebenden Polster
aus der durch Infusion in die KBN-Masse gelangten Legierung und durch die Verstärkung durch die Schicht mit sehr
hohem Elastizitätsmodul einen Verbundkörper mit sehr hoher Stoßfestigkeit. , .
Siliciumnitridpulver (oder ein anderer fein verteilter
stabiler Stoff, der unter den Behandlungsbedingungen ungesintert bleibt), kann an Stelle des heiagonalen Bornitrids
zur Erzeugung der semi- oder quasi-isostatischen Umgebung für die Zelle 10 verwendet werden.
Der Ausdruck "hoch" hinsichtlich des Stoffes mit hohem Elastizitätsmodul
bedeutet einen Wert über etwa k 200 000 kp/cm .
Für die einleitende semi-isostatische Druckausübung wurde ein
Druck im Bereich zwischen 1400 und 70Of) kp/cm wegen der anerkannten
Begrenzungen der Festigkeit von einfachen Kolben-Zylinderdruckapparaten angegeben. Dieser besondere Schritt
der Druckausübung ist jedoch nicht auf 7000 kp/cm begrenzt und es können auch höhere Drücke innerhalb des meta-stabilen
Bereichs des kubischen Bornitrids verwendet werden. Im Gegensatz zu der vorliegenden Erfindung erfordert die Erfindung in
der eingangs erwähnten Anmeldung der Anmelderin die Verwendung von Drücken im stabilen Bereich des kubischen Bornitrids. Die
vorliegende Erfindung liegt dagegen in der Entdeckung einer Reihe von Schritten, die in verhältnismäßig unkomplizierten
'"409819/0804
und nicht teueren Geräten durchgeführt werden können, um einen
hochwertigen, stoßfesten Verbundkörper aus KBN und gesintertem
Karbid zu erzeugen.
KBN-PuIver wurde durch Strahlmahlen so behandelt, daß es einen
großen Bereich von Teilchengrößen zwischen weniger als i M
bis 20 yu hatte. Vier einander abwechselnde Schichten von 0,15 mm dicken Aluminiumscheiben und 0,025 mm dicken Nickelscheiben
wurden im Boden einer Zirkoniumschale (Wanddicke 0,05 mm, innerer Durchmesser 3,89 mn) angebracht. Etwa 200
Milligramm des KBN-PuIvers wurden auf diese Metallmasse·gebracht, und eine Scheibe aus gesintertem Karbid (94 Gewichtsprozent
WC, 6 Gewichtsprozent Co, 3,175 mm dick,) wurde auf das Pulver aufgesetzt, wodurch die Zirkoniumschale verschlossen
wurde. Die gesamte Anordnung wurde etwa eine Minute lang bei
gemäßigter Amplitude mit einer Frequenz von etwa 36O Hertz
unter einem Druck von etwa 2,45 kp/cm vibriert. Die Anordnung
wurde sodann mit hexagonalem Bornitridpulver (Fig. 3 ) umgeben und unter einem Druck von 2450 kp/cm kaltgepresst.
Danach wurde.die gepresste Anordnung in eine Graphitform
(Fig. 4) übertragen und in einem Heißpreßofen auf 125ö°C
erhitzt. Die Erhitzung wurde in einer StickstoffUmgebung nach
anfänglicher Evakuierung durchgeführt. Nachdem die kritische
Benetzungstemperatur von 125OGC 18 Minuten lang aufrechterhalten
worden ist, wurde ein Druck von 525 kp/em auf die
Charge ausgeübt, und die Erhitzung wurde mit dem ausgeübten Druck 2 Minuten lang fortgesetzt. Während des Abkühlens wurde
die Anordnung unter Druck gehalten. Der erhaltene Verbundkörper hatte eine 1,27 mm dicke Schicht aus untereinander verbundenen
KBN-Kristallen, die mit der Fläche der Karbidscheibe verbunden war. Ein Schneidwerkzeug (5,969 mm im Quadrat) wurde
aus dem Verbundkörper gebildet und bei einem Drehvorgang an einer Nickel-Superlegierung (inco 718) verwendet. Nach 2
Minuten des Drehvorgänges bei einer Schneidgeschwindigkeit
von 60,96 m/Minute wurde ein Flankenverschleiß von nur 0,2794mm gemessen. A 0 9 8 1 9 / 0 8 0 4
- 12 Beispiel 2
Eine gegossene Legierungsscheibe (88 Gewichtsprozent Al,
12 Gewichtsprozent Ni) mit einer Dicke von 0,635 mm wurde
im Boden einer Molybdänschale (gleiche Abmessungen wie bei der Schale in Beispiel l) mit einer dünnen Zirkoniumauskleidung
darin angebracht. Eine Schicht einer abgestuften Mischung (120 Milligramm) von KBN-PuIver (65 Gewichtsprozent
0-2 jd Teilchengröße und 75 Gewichtsprozent 0-20 u Teilchengröße)
wurde auf dem Metall angebracht. Eine Scheibe aus gesintertem Karbid (wie in Beispiel 1 beschreiben) wurde
dazu verwendet, das KBN-Pulver zu bedecken und die Metallschale zu verschließen. Die Anordnung wurde gerüttelt, in
hexagonalem Bornitrid eingesetzt und wie in Beispiel 1 kaltgepresst. Die gepresste Anordnung wurde unter Aufrechterhaltung
ihrer seitlichen Abmessungen in eine Graphitform gebracht und in einer Stickstoffatmosphäre auf 1150°C erhitzt. Die
Anordnung wurde auf dieser kritischen Benetzungstemperatur 35 Minuten lang gehalten. Die Anordnung wurde während des
gesamten ErwärmungsVorganges und während der Abkühlung unter
einem Druck von 560 kp/cm gehalten. Ein aus dem erhaltenen
Verbundkörper hergestelltes Werkzeug (5»969 mm im Quadrat)
wurde zur Bearbeitung einer Hartgußeisenlegierung (Rockwell-Härte 68) bei einer Geschwindigkeit von 9-1» 4A m/Minute mit
einer Schnittiefe von 0,0635 mm verwendet. Eine gesamte Schneidzeit von 21 Minuten unter diesen schweren Bedingungen
ergab einen Flankenverschleiß von lediglich 0,45 mm.
Eine Metallegierungsscheibe (88 Gewichtsprozent Al, 12 Gewichtsprozent
Ni) mit einer Dicke von 0,508 mm wurde im Boden der gleichen Metallschalenanordnung angebracht, wie sie in
Beispiel 2 verwendet wurde. Eine Schicht (l70 Milligramm) einer abgestuften Mischung aus KBN-Pulver (78 Gewichtsprozent
mit mittlerer Teilchengröße 40 yft, 12 Gewichtsprozent mit
4098 19/0804
O - l6 /ti Teilchengröße und 10 Gewichtsprozent mit 0 - 2/u
Teilchengröße ) wurde über die Legierungsscheibe verteilt. Eine Scheibe aus gesintertem Karbid (wie im Beispiel 1 beschreiben)
wurde über dem KBN-PuIver angebracht, wodurch die Metallschale verschlossen wurde» Die Anordnung wurde vibriert
und in hexagonalem Bornitrid wie in Beispiel 1 eingesetzt
und dann unter einem Druck von etwa 3500 kp/cm kaltgepresst.
Die kaltgepresste Anordnung wurde dann wie in den vorangehenden Beispielen in eine Graphitform übertragen und
für 40 Minuten auf 125O0C erwärmt. Ein Druck von etwa 700 kp/cm'
wurde während das gesamten Erwärmungs Vorganges und während cer
Abkühlung auf der Anordnung aufrechterhalten. Ein aus dem
erhaltenen Verbundkörper gebildetes Werkzeug (5,969 mm im
Quadrat) wurde dazu verwendet, eine Hartgußeisenlegierung bei einer Oberflächengeschwindigkeit von 60,96 m/Minute und
einer Schneidtiefe von 0,127 mm zu bearbeiten. Nach 4 Minuten
ergab sich ein Plankenverschleiß von 0,25 mm. Das Verbundwerkzeug
wurde ferner dazu verwendet, eine Superieglerung
(Rene 95) bei einer Oberflächengeschwindigkeit von 121,92m/
Minute und einer Schnittiefe von 0,2032 mm zu schneiden.
Nach 1 Minute und 32 Sekunden des Schneidvorganges wurde
ein Plankenverschleiß von nur 0,33 mm festgestellt.
Eine 0,635 min dicke Scheibe aus gegossener Legierung (90
Gewichtsprozent Al, 10 Gewichtsprozent Ni) wurde im Boden
einer Zirkoniumsehale (0,05 mm dicke Wand, 14,27 mm Innendurchmesser)
angebracht. Eine Schicht (380 Milligramm) einer Mischung von in ihrer Größe abgestuften KBN-Kristallen (73
Gewichtsprozent 5-7/u; 9 Gewichtsprozent 2-3,5/1 und 18 Gewichtsprozent 0-2 ja) wurde über der Oberseite der Legierungsscheibe verteilt. Eine Scheibe aus gesintertem Karbid (94
Gewichtsprozent WC, 6 Gewichtsprozent Co, Dicke 3,42 mm)
wurde über dem KBN-PuIver angebracht und verschloß die
Metallschale, Die Anordnung wurde gerüttelt, in hexagonalem
Bornitrid eingesetzt und kaltgepresst, wie in Beispiell.
4098 19/0804
Die gepresste Anordnung wurde in eine Graphitform wie in den vorhergehenden Beispielen übertragen, auf die kritische
Benetzungstemperatur (1250 c) erhitzt und auf dieser Temperatur eine halbe Stunde lang gehalten. Ein Druck von etwa
700 kp/cm wurde während dieses Erwärmens und während der
anschließenden Abkühlung aufrechterhalten. Ein Schneidwerkzeug (9,525 mm im Quadrat) wurde aus dem erhaltenen
Verbundkörper geformt und einem Bearbeitungsvorgang unterworfen, der die ausserordentlich wirksame Stoßfestigkeit
der Verbundkonstruktion beweist, die durch das erfindungsgemäße
Verfahren erzeugt wird. Das Werkzeug wurde für den Entzunderungsvorgang auf einer Ilartgußeisenlegierungswalze
verwendet. Die verwendete Schneidkante hielt über eine halbe Stunde lang.
4098 19/080
Claims (10)
- i· Verfahren zur Herstellung eines Abrieb-Verbundkörpers, dadurch, gekennzeichnet, daßa) in einem Metallschutzbehälter in einander berührenden Schichten eine Masse von reinem kubischem Bornitridkristallen, eine Metallmenge zur Bildung einer Legierung mit einer kritischen Temperatur von weniger als etwa 15000C zur Benetzung von Kapillardurchgängen in der Masse des kubischen Bornitrides und ein Körper aus einem Stoff mit einem Elastizitätsmodul von mindestensetwa 4 200 000 kp/cm angebracht werden,b) der Metallbehälter und sein Inhalt in einem druckübertragenden Medium untergebracht werden,c) semi-isostatischer Druck auf den Metallbehälter und seinenInhalt über das druckübertragende Medium ausgeübt wird,r 2wobei der Druck größer ist, als etwa 1^00 kp/cm und geringer, als der kubische Bornitrid- stabile Druck bei den Betriebstemperaturen,d) die Abmessungen des Metallbehälters und seines Inhalts zumindest in Ebenen durch den Metallbehälter stabilisiert werden, die parallel zu der Grenzfläche zwischen der Metallschicht und der Schicht aus kubischem Bornitrid durch den Metallbehälter verlaufen,e) gleichzeitig der Metallbehälter und sein Inhalt einem Druck und einer Temperatur über eine genügend lange Zeit ausgesetzt wird, um eine Infusion der Legierung in die Masse der kubischen Bornitridkristalle zu gestatten, wobei der Druck mindestens etwa 35 kp/cm und weniger als der kubische Bornitrid- stabile Druck bei den Betriebstemperaturen ist und die Erwärmung ausreicht, um die kritische Benetzungstemperatur der Legierung zu übersteigen,f) der Druck auf dem Metallbehälter und seinen Inhalt während der Abkühlung aufrechterhalten wird undg) der sich daraus ergebende Abrieb-Verbundkörper gewonnen wird, bei dem eine Schicht der durch Metall miteinander verbjifl(Jenen,kubischen Bornitridkristalle direktmit dem Körper aus dem Stoff mit hohem Elastizitätsmodul verbunden ist.
- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das druckübertragende Medium ein Stoff in Teilchenform ist.
- 3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die einleitende Druckausübung in einem ersten Gerät durchgeführt wird, und die gleichzeitige Ausübung von Druck und Temperatur in einem zweiten Gerät durchgeführt werien.
- k. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß die Druckausübung in dem zweiten Gerät der gleichzeitigen Ausübung von Druck und Temperatur vorangeht.
- 5. Verfahren nach. Anspruch 3, dadurch gekennzeichnet, daß die Erwärmung in dem zweiten Gerät der· gleichzeitigen Anwendung van Druck und Temperatur vorangeht,
- 6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der erhaltene Verbundkörper aus einer Schicht aus kubischen Bornitridkristallen besteht, die untereinander durch eine Aluminiumlegierung verbunden sind, wobei diese Schicht direkt mit einer Scheibe aus gesintertem Karbid verbunden ist.
- 7. Verfahren nach Anspruch-1, dadurch gekennzeichnet, daß die Metallmenge im Boden des Behälters angeordnet wird und die Masse der kubischen Bornitridkristalle zwischen dieser Metallmenge und dem Körper des Stoffes mit holiem Elastizitätsmodul angeordnet wird.
- 8. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Masse der kubischen Bornitridkristalle größenabgestuft ist, wobei die Kristallgrößen von weniger als ein /i bis mehr als 40 Ax betragen.409819/0804
- 9. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der kuhische Bornitridgehalt der Schicht aus kuhischem Bornitrid mehr als 70 YoT.-fo beträgt.
- 10. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Zeitspanne, während der die gteichzeitige Ausübung von Druck und Temperatur durchgeführt wird, mehr als 1 Minutebeträgt. ■ .409819/0804Leerseite
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US30280972A | 1972-11-01 | 1972-11-01 |
Publications (2)
Publication Number | Publication Date |
---|---|
DE2353324A1 true DE2353324A1 (de) | 1974-05-09 |
DE2353324C2 DE2353324C2 (de) | 1988-07-21 |
Family
ID=23169296
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE19732353324 Granted DE2353324A1 (de) | 1972-11-01 | 1973-10-24 | Verfahren zur herstellung einer schicht aus kubischem bornitrid, die direkt mit einer tragmasse mit hohem elastizitaetsmodul verbunden ist |
Country Status (7)
Country | Link |
---|---|
JP (1) | JPS5759228B2 (de) |
BE (1) | BE806779A (de) |
CH (1) | CH590108A5 (de) |
DE (1) | DE2353324A1 (de) |
FR (1) | FR2204482B1 (de) |
GB (1) | GB1447794A (de) |
SE (1) | SE394107B (de) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IL60042A (en) * | 1979-05-16 | 1983-05-15 | De Beers Ind Diamond | Abrasive bodies |
NL1016112C2 (nl) * | 2000-09-06 | 2002-03-07 | Tno | Lichaam van gradueel hardmetaal zoals stansgereedschap en werkwijze voor het produceren daarvan. |
US7524785B2 (en) | 2004-01-08 | 2009-04-28 | Sumitomo Electric Hardmetal Corp. | Cubic boron nitride sintered body |
JP2006347850A (ja) * | 2005-06-20 | 2006-12-28 | Sumitomo Electric Ind Ltd | 立方晶窒化硼素焼結体およびその製造方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2232227C2 (de) * | 1971-07-01 | 1984-07-05 | General Electric Co., Schenectady, N.Y. | Verfahren zur Herstellung eines kubisches Bornitrid enthaltenden Werkzeugeinsatzes |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5243846A (en) * | 1975-10-03 | 1977-04-06 | Senichi Masuda | Device for electrostatic powder coating |
-
1973
- 1973-10-24 DE DE19732353324 patent/DE2353324A1/de active Granted
- 1973-10-25 GB GB4985473A patent/GB1447794A/en not_active Expired
- 1973-10-31 FR FR7338913A patent/FR2204482B1/fr not_active Expired
- 1973-10-31 CH CH1535473A patent/CH590108A5/xx not_active IP Right Cessation
- 1973-10-31 BE BE137286A patent/BE806779A/xx not_active IP Right Cessation
- 1973-10-31 JP JP48122698A patent/JPS5759228B2/ja not_active Expired
- 1973-11-01 SE SE7314882A patent/SE394107B/xx unknown
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2232227C2 (de) * | 1971-07-01 | 1984-07-05 | General Electric Co., Schenectady, N.Y. | Verfahren zur Herstellung eines kubisches Bornitrid enthaltenden Werkzeugeinsatzes |
Also Published As
Publication number | Publication date |
---|---|
SE394107B (sv) | 1977-06-06 |
JPS4997806A (de) | 1974-09-17 |
FR2204482B1 (de) | 1977-08-12 |
CH590108A5 (de) | 1977-07-29 |
JPS5759228B2 (de) | 1982-12-14 |
DE2353324C2 (de) | 1988-07-21 |
FR2204482A1 (de) | 1974-05-24 |
GB1447794A (en) | 1976-09-02 |
BE806779A (fr) | 1974-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE2845792C2 (de) | ||
DE69109033T2 (de) | Mehrschichtiges Schleifwerkzeug mit Diamanten. | |
DE69014263T2 (de) | Mehrschichtiger Schleifkörper. | |
DE60123825T2 (de) | Wärmeleitendes material | |
DE68901959T2 (de) | Thermisch stabiler kompaktierter diamantschleifkoerper. | |
DE3016971C2 (de) | ||
DE69517742T2 (de) | Auf einer Unterlage angeordneter polykristalliner Presskörper und Verfahren zu seiner Herstellung | |
DE3232869C2 (de) | ||
DE2117056C3 (de) | Schneideinsatz | |
DE69400547T2 (de) | Verfahren zur Herstellung eines Schleifkörpers | |
DE60034801T2 (de) | Hartmetall mit niedriger wärmeleitfähigkeit | |
DE69400418T2 (de) | Verfahren zur Herstellung eines Schleifkörpers | |
DE69626759T2 (de) | Verfahren zur Herstellung eines Schleifkörpers mit verbesserten Eigenschaften | |
DE69507417T2 (de) | Unterstützter polykristalliner Diamantkörper | |
DE2845834C2 (de) | ||
DE3012199C2 (de) | Sinterkörper aus Bornitrid mit einer Matrix aus MC&darr;x&darr;, MN&darr;x&darr; und/oder M(CN)&darr;x&darr; und Al und seine Verwendung | |
DE68909134T2 (de) | Verbundschneidelement, das kubisches Bornitrid enthält und Verfahren zu seiner Herstellung. | |
DE2232227C2 (de) | Verfahren zur Herstellung eines kubisches Bornitrid enthaltenden Werkzeugeinsatzes | |
DE1771896A1 (de) | Verfahren zur Herstellung von Metallcarbidkoerpern | |
DE69614804T2 (de) | Verbundwerkstoff und Verfahren zur Herstellung desselben | |
DE3008765A1 (de) | Pressling fuer schleifzwecke und verfahren zu seiner herstellung | |
DE2808497A1 (de) | Werkstueck mit grosser haerte | |
DE2221875A1 (de) | Oberflaechengehaerteter und gesinterter karbid-formgegenstand | |
DE3607037A1 (de) | Sinterkoerper hoher haerte und verfahren zu seiner herstellung | |
DE69709251T2 (de) | Keramisch gebundener kompakter Körper aus kubischem Bornitrid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OD | Request for examination | ||
8176 | Proceedings suspended because of application no: |
Ref document number: 2232227 Country of ref document: DE Format of ref document f/p: P |
|
8178 | Suspension cancelled | ||
8125 | Change of the main classification |
Ipc: C22C 29/00 |
|
D2 | Grant after examination | ||
8364 | No opposition during term of opposition | ||
8328 | Change in the person/name/address of the agent |
Free format text: SCHUELER, H., DIPL.-CHEM. DR.RER.NAT., PAT.-ANW., 6000 FRANKFURT |
|
8328 | Change in the person/name/address of the agent |
Free format text: VOIGT, R., DIPL.-ING., PAT.-ANW., 6232 BAD SODEN |