DE2124354A1 - Device for the purification of tritiated heavy water - Google Patents
Device for the purification of tritiated heavy waterInfo
- Publication number
- DE2124354A1 DE2124354A1 DE19712124354 DE2124354A DE2124354A1 DE 2124354 A1 DE2124354 A1 DE 2124354A1 DE 19712124354 DE19712124354 DE 19712124354 DE 2124354 A DE2124354 A DE 2124354A DE 2124354 A1 DE2124354 A1 DE 2124354A1
- Authority
- DE
- Germany
- Prior art keywords
- heavy water
- purification
- tritium
- dpo
- dto
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XLYOFNOQVPJJNP-ZSJDYOACSA-N Heavy water Chemical compound [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 title claims description 21
- 238000000746 purification Methods 0.000 title description 4
- YZCKVEUIGOORGS-NJFSPNSNSA-N Tritium Chemical compound [3H] YZCKVEUIGOORGS-NJFSPNSNSA-N 0.000 claims description 11
- 229910052722 tritium Inorganic materials 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 7
- 239000000446 fuel Substances 0.000 claims description 4
- 238000000926 separation method Methods 0.000 claims description 4
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 238000002485 combustion reaction Methods 0.000 claims description 3
- 239000003792 electrolyte Substances 0.000 claims description 3
- 238000004140 cleaning Methods 0.000 claims description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims 1
- 239000002253 acid Substances 0.000 claims 1
- 229910052739 hydrogen Inorganic materials 0.000 claims 1
- 239000001257 hydrogen Substances 0.000 claims 1
- 238000005868 electrolysis reaction Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 5
- 230000004907 flux Effects 0.000 description 3
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 2
- 239000002826 coolant Substances 0.000 description 2
- 229910052805 deuterium Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 210000000476 body water Anatomy 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D59/00—Separation of different isotopes of the same chemical element
- B01D59/28—Separation by chemical exchange
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B5/00—Water
- C01B5/02—Heavy water; Preparation by chemical reaction of hydrogen isotopes or their compounds, e.g. 4ND3 + 7O2 ---> 4NO2 + 6D2O, 2D2 + O2 ---> 2D2O
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Fuel Cell (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Description
Einrichtung zur Reinigung von tritiumhaltigem schwerem WasserDevice for the purification of tritiated heavy water
Die vorliegende Erfindung betrifft eine Einrichtung zur Reinigung von tritiumhaltigem schwerem Wasser unter Verwendung eines elektrolytischen Verfahrens und Trennung von Dp und TD sowie anschließender Verbrennung des D2 zu DgO. Derartige Einrichtungen werden in Verbindung mit Kernreaktoranlagen benötigt, die mit schwerem Wasser gekühlt und/oder moderiert werden. Solche Kernreaktoren haben wegen ihrer guten Neutronenökonomie verbreitete Anwendung sowohl als Forschungs- wie auch als Leistungsreaktoren gefunden. Während des Betriebes dieser Reaktoren wird im schweren Wasser durch Neutroneneinfang im Deuterium dessen schwereres Isotop Tritium gebildet, ein β-Strahler mit einer Halbwertszeit von 12,3 Jahren und einer maximalen β-Energie von 19 keV. Der Wirkungsquerschnitt dieser Kernreaktion liegt mit 5»5 . 10 barn zwar sehr niedrig, die hohen Neutronenflußdichten im Reaktorkern sowie die langen Bestrahlungszeiten des Kühlmittels haben jedoch den Aufbau merklicher Tritium-Konzentrationen zur Folge. Je nach der Neutronenflußdichte muß nach einem Jahr Betriebszeit bereits mit einer Tritium-Konzentration im DpO der Größenordnung 1 bis 10 Ci/l gerechnet werden.The present invention relates to a device for the purification of tritiated heavy water using an electrolytic process and separation of Dp and TD as well as subsequent combustion of the D2 to DgO. Such facilities are required in connection with nuclear reactor systems that are cooled and / or moderated with heavy water. Such nuclear reactors have found widespread use as both research and power reactors because of their good neutron economy. During the operation of these reactors, the heavier isotope tritium is formed in heavy water through neutron capture in the deuterium, a β- emitter with a half-life of 12.3 years and a maximum β- energy of 19 keV. The cross section of this nuclear reaction is 5 »5. 10 barn is very low, but the high neutron flux densities in the reactor core and the long irradiation times of the coolant result in the build-up of noticeable tritium concentrations. Depending on the neutron flux density, a tritium concentration in the DpO of the order of 1 to 10 Ci / l must be expected after one year of operation.
Das gebildete Tritium trägt zwar wegen der geringen /O-Energie nicht zur externen Strahlenbelastung der Umgebung bei. Die Flüchtigkeit des im schweren Wasser in Form von DTO vorliegenden Tritiums begünstigt jedoch sein Entweichen aus KreislaufUndichtigkeiten in die umgebende Luft, in der es dann als Wasserdampf vorliegt. Hier beisteht dann die Gefahr der Inkorporation für das Betriebspersonal und zwar nicht nur auf oralem Wege, sondern wegen des schnellenThe tritium formed carries because of the low / O energy does not contribute to the external radiation exposure of the environment. The volatility of the DTO present in heavy water However, tritium favors its escape from circulatory leaks into the surrounding air in which it is then present as water vapor. There is then the risk of incorporation for the operating personnel not just by the oral route, but because of the fast one
-3--3-
209849/0946209849/0946
VPA 71/9416VPA 71/9416
-2--2-
lBOtopenaustausches von DTO mit dem Körperwasser auch, durch die unverletzte Haut hindurch. In Räumen, in denen die Tritium-Konzentration in der Luft wesentlich, über der zuge-lBOtope exchange from DTO with the body water also through the uninjured skin through. In rooms in which the tritium concentration in the air is significantly higher than the
-6 lassenen maximalen Arbeitsplatzkonzentration von 5 . 10 /uCi/cnr (für 40-stündige Arbeitszeit in der Woche) liegt, ist daher der. Aufenthalt nur in Vollschutzanzügen möglich, die die,Durchführung von Arbeiten wesentlich erschweren.-6 allow maximum workplace concentration of 5. 10 / uCi / cnr (for 40 hours of work per week) is, is therefore the. Stay in full protective suits only possible, which make it much more difficult to carry out work.
Die Gefahr einer solchen Tritium-Kontamination kann am besten dadurch verringert werden, wenn das Tritium aus ■ den Kreisläufen entfernt wird, was einer Begrenzung der Tritiumkonzentration im schweren Wasser gleich kommt. Die Reinigung des schweren Wassers wird daher bereits bei verschiedenen Anlagen, insbesondere solchen mit hohen Neutronenflußdichten vorgesehen, sie kann dieskontinuierlich oder auch kontinuierlich durchgeführt v/erden.The risk of such tritium contamination can best be reduced if the tritium is removed ■ the circuits are removed, which is equivalent to limiting the tritium concentration in heavy water. the Purification of the heavy water is therefore already carried out at various Systems, especially those with high neutron flux densities, can do this continuously or also carried out continuously.
Zur Abtrennung des Tritiums aus dem schweren Wasser sind verschiedene Verfahren bekannt, u.a. die mehrstufige Destillation des DpO-DTO-Gemisches und der katalysierte Isotopenaustausch zwischen Dp-Gas und dem zu reinigenden DpO-DTO-Gemisch. In der Praxis werden oft beide Verfahren miteinander kombiniert. Beide Verfahren der Trennung von P DpO und DTO weisen jedoch nur wenig von 1 verschiedene Trennfaktoren auf, was in der Praxis zu relativ komplizierten Anlagen zwingt.Various processes are known for separating the tritium from the heavy water, including the multi-stage one Distillation of the DpO-DTO mixture and the catalyzed Isotope exchange between Dp gas and the DpO-DTO mixture to be cleaned. In practice, both procedures are often used combined with each other. Both methods of separating P DpO and DTO, however, differ only slightly from 1 Separation factors, which in practice compels relatively complex systems.
Wesentlich günstigere Trannfaktoren sind durch Ausnutzung des größeren relativen Massenunterschiedes von D„ und DT mit Hilfe der Gaschromatografie oder Tieftemperaturdestillation zu erreichen. Als Vörstxife für diese Trennung müssen jedoch Dp und DT durch Elektrolyse aus dem zu reinigenden DpO-DTO-Gemisch hergestellt werden. Anschließend wird das gereinigte Dp durch Verbrennung wieder zu D2O umgesetzt. Der wesentliche Nachteil dieses für die wirkungsvolle Reinigung interessanten Verfahrens iöt der hohe Verbrauch an elektrischer Energie für die Elektrolyse.Much more favorable release factors can be achieved by utilizing the larger relative mass difference between D and DT with the aid of gas chromatography or low-temperature distillation. As a precondition for this separation, however, Dp and DT must be produced from the DpO-DTO mixture to be purified by electrolysis. The purified Dp is then converted back into D 2 O by combustion. The main disadvantage of this process, which is interesting for effective cleaning, is the high consumption of electrical energy for the electrolysis.
209849/09 4 5209849/09 4 5
VPA 71/9416VPA 71/9416
Zur Verringerung dieses Nachteils wird erfindungsgemäß für die· Umsetzung des Dp zu D2O eine an sich bekannte Wasserstoff-Sauerstoff- bzw. Wasserstoff-Luft-Brennstoffzelle vorgesehen, deren Elektrolyt jedoch deuteriert und in seiner Konzentration mit D2O eingestellt ist. Mit dieser Einrichtung gelingt es, einen wesentlichen Teil der zur Elektrolyse verbrauchten elektrischen Energie wieder zu gewinnen.To reduce this disadvantage, a hydrogen-oxygen or hydrogen-air fuel cell known per se is provided according to the invention for the conversion of Dp to D 2 O, the electrolyte of which, however, is deuterated and its concentration is adjusted with D 2 O. With this device it is possible to recover a substantial part of the electrical energy used for electrolysis.
Die Figur zeigt schematisch den Ablauf der erwähnten Vorgänge. Das Gemisch aus DpO und DTO wird der Elektrolyseeinrichtung E zugeführt, die an eine Gleichstromquelle G angeschlossen ist. Der bei der Elektrolyse entstehende Sauerstoff wird an die Luft abgegeben, das Gemisch von D2 und DT der Trenneinrichtung T zugeführt. Das hier gewonnene DT wird einer nicht dargestellten Sammeleinrichtung zugeführt. Das gereinigte Deuterium D2 gelangt zur Brennstoffzelle B und verläßt diese als schweres Wasser D2O, das in den Kreislauf des Reaktorkühlmittels zurückgegeben werden kann. Der an den elektrischen Ausgangsklemmen der Brennstoffzelle entnehmbare elektrische Strom kann dann, wie durch die strichpunktierte Linie angedeutet, wieder in die Elektrolyseeinrichtung E eingespeist werden.The figure shows schematically the sequence of the processes mentioned. The mixture of DpO and DTO is fed to the electrolysis device E, which is connected to a direct current source G. The oxygen produced during the electrolysis is released into the air, and the mixture of D 2 and DT is fed to the separating device T. The DT obtained here is fed to a collecting device (not shown). The purified deuterium D 2 reaches the fuel cell B and leaves it as heavy water D 2 O, which can be returned to the reactor coolant circuit. The electrical current that can be drawn from the electrical output terminals of the fuel cell can then be fed back into the electrolysis device E, as indicated by the dash-dotted line.
1 Figur1 figure
1 Patentanspruch1 claim
—4 — 209849/0945-4 - 209849/0945
Claims (1)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19712124354 DE2124354A1 (en) | 1971-05-17 | 1971-05-17 | Device for the purification of tritiated heavy water |
FR7217304A FR2137906B1 (en) | 1971-05-17 | 1972-05-15 | |
GB2303072A GB1385978A (en) | 1971-05-17 | 1972-05-16 | Removing tritium from tritium-containing heavy water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19712124354 DE2124354A1 (en) | 1971-05-17 | 1971-05-17 | Device for the purification of tritiated heavy water |
Publications (1)
Publication Number | Publication Date |
---|---|
DE2124354A1 true DE2124354A1 (en) | 1972-11-30 |
Family
ID=5808091
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE19712124354 Pending DE2124354A1 (en) | 1971-05-17 | 1971-05-17 | Device for the purification of tritiated heavy water |
Country Status (3)
Country | Link |
---|---|
DE (1) | DE2124354A1 (en) |
FR (1) | FR2137906B1 (en) |
GB (1) | GB1385978A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4190515A (en) * | 1978-05-18 | 1980-02-26 | Atomic Energy Of Canada Limited | Apparatus for removal and recovery of tritium from light and heavy water |
GB2067534A (en) * | 1980-01-17 | 1981-07-30 | Euratom | Reprocessing of spent plasma |
CN112408326A (en) * | 2020-11-16 | 2021-02-26 | 徐州亚兴医疗科技有限公司 | Production equipment and purification process of high-purity heavy water |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1593961A (en) * | 1968-12-03 | 1970-06-01 |
-
1971
- 1971-05-17 DE DE19712124354 patent/DE2124354A1/en active Pending
-
1972
- 1972-05-15 FR FR7217304A patent/FR2137906B1/fr not_active Expired
- 1972-05-16 GB GB2303072A patent/GB1385978A/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
GB1385978A (en) | 1975-03-05 |
FR2137906A1 (en) | 1972-12-29 |
FR2137906B1 (en) | 1975-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3606316A1 (en) | METHOD AND DEVICE FOR DECONTAMINATING THE EXHAUST GAS FROM THE FUEL CYCLE OF A FUSION REACTOR OF TRITIUM AND / OR DEUTERIUM IN CHEMICALLY BONDED EXHAUST GAS COMPONENTS | |
DE2900912A1 (en) | METHOD AND APPARATUS FOR THE REMOVAL AND RECOVERY OF TRITIUM FROM LIGHT AND HEAVY WATER | |
DE2545001C2 (en) | ||
DE3123860C2 (en) | Method and device for the gradual enrichment of deuterium and / or tritium by isotope exchange | |
DE1667426B2 (en) | METHOD AND DEVICE FOR EXTRACTION OF PROTIUM AND TRITIUM FROM HEAVY WATER | |
DE2819734A1 (en) | NUCLEAR REACTOR | |
DE2124354A1 (en) | Device for the purification of tritiated heavy water | |
DE60036308T2 (en) | METHOD FOR PRODUCING HYDROGEN | |
DE2552138A1 (en) | Purification of helium - after use in gas-cooled high temperature nuclear reactors | |
DE19951642A1 (en) | Method and device for reducing cationic impurities and for dosing lithium in the cooling water of a light water reactor and cooling water system of a light water reactor with such a device | |
LU88636A1 (en) | Process for the production of Actinium-225 | |
DE2758408A1 (en) | PROCESS FOR SEPARATION OF SEPARATE PRODUCTS | |
EP0198940B1 (en) | Process for the separation and enrichment of tritium from tritiated fluids, especially from cooling water of the primary cycle and the deuterium/tritium streams of a nuclear fusion plant | |
EP0028773A2 (en) | Process for removing radioactive carbon oxides produced by nuclear plants and device for carrying out this process | |
DE4321468A1 (en) | Light water reactor fuel assembly | |
DE1054186B (en) | Process for regulating reactors | |
DE3642841C2 (en) | ||
DE2430094A1 (en) | NUCLEAR FUEL, PROCESS, REACTOR AND REACTOR RODS FOR ITS MANUFACTURING | |
DE966850C (en) | Method and device for carrying out nuclear reactions | |
DE2348804A1 (en) | METHOD OF REMOVING FISSION PRODUCTS FROM COOLANT FROM NUCLEAR REACTOR PLANTS | |
DE2604974A1 (en) | CHEMICAL AND RADIOLYTIC MULTISTAGE PROCESS FOR THE PRODUCTION OF GAS | |
DE1539817C (en) | Process to compensate for the reactivitatsveranderungen a heavy water moderated nuclear reactor and nuclear reactor to carry out this process | |
DE2400423A1 (en) | PROCEDURE FOR CONTINUOUS MONITORING OF THE TRITIUM CONTENT IN THE FLUD OF A BROOD REACTOR AND DEVICE FOR CARRYING OUT SUCH A PROCESS | |
DE2512575A1 (en) | METHOD OF ELECTROLYSIS WITH INDEPENDENT ELECTRICAL SUPPLY | |
EP0403955B1 (en) | Method of reducing the content of plutonium in nuclear fuel and nuclear fuel element for nuclear reactor |